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acceleration with graphics processing units

Graphics Processing Units (GPUs) achieve teraflop performance:
can execute a trillion floating-point operations per second.

Instruction level, data parallel algorithms are required:
1 blocks of threads execute the same instructions on different data,
2 many more threads than the number of cores must be launched,

to keep the GPU fully occupied and achieve teraflop performance.

Blocks of threads are launched by the Central Processing Unit (CPU),
called the host, and the device (GPU) accelerates the computations.

In this lecture, the notion of thread divergence is defined.

Minimizing thread divergence leads to better reduction algorithms.
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block partitioning into warps

The grid of threads are organized in a two level hierarchy:
the grid is 1D, 2D, or 3D array of blocks; and
each block is 1D, 2D, or 3D array of threads.

Blocks can execute in any order.

Threads are bundled for execution.

Each block is partitioned into warps.

Definition (warp)
A warp is a unit of 32 threads,
executed simultaneously by a streaming multiprocessor.

On the Tesla C2050/C2070, K20C, P100, V100, and A100
each warp consists of 32 threads.
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thread scheduling
block 0 warps block 1 warps block 2 warps

��������������������
@@@@@@@@@@@@@@@@@@@@
��������������������
@@@@@@@@@@@@@@@@@@@@
��������������������

��������������������
@@@@@@@@@@@@@@@@@@@@
��������������������
@@@@@@@@@@@@@@@@@@@@
��������������������

��������������������
@@@@@@@@@@@@@@@@@@@@
��������������������
@@@@@@@@@@@@@@@@@@@@
��������������������

streaming multiprocessor

instruction L1

instruction fetch/dispatch

shared memory
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thread indices of warps
All threads in the same warp run at the same time.

The partitioning of threads in a one dimensional block,
for warps of size 32:

warp 0 consists of threads 0 to 31 (value of threadIdx),
warp w starts with thread 32w and ends with thread 32(w +1)−1,
the last warp is padded so it has 32 threads.

In a two dimensional block, threads in a warp are ordered along a
lexicographical order of (threadIdx.x,threadIdx.y).

For example, an 8-by-8 block has 2 warps (of 32 threads):
warp 0 has threads (0,0), (0,1), . . . , (0,7), (1,0), (1,1), . . . , (1,7),
(2,0), (2,1), . . . , (2,7), (3,0), (3,1), . . . , (3,7); and
warp 1 has threads (4,0), (4,1), . . . , (4,7), (5,0), (5,1), . . . , (5,7),
(6,0), (6,1), . . . , (6,7), (7,0), (7,1), . . . , (7,7).
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why so many warps?
Why give so many warps to a streaming multiprocessor
if there only 32 can run at the same time?

Answer: to efficiently execute long latency operations.

What about latency?
A warp must often wait for the result of a global memory access

— — an example of a long latency operation — —
and is therefore not scheduled for execution.

If another warp is ready for execution,
then that warp can be selected to execute the next instruction.

Definition (latency hiding)
The mechanism of filling the latency of an expensive operation with
work from other threads is known as latency hiding.
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zero overhead thread scheduling
Warp scheduling is used for other types of latency operations:

pipelined floating point arithmetic,
branch instructions.

With enough warps, the hardware will find a warp to execute,
in spite of long latency operations.

Definition (zero overhead thread scheduling)
The selection of ready warps for execution introduces no idle time and
is referred to as zero overhead thread scheduling.

The long waiting time of warp instructions is hidden by executing
instructions of other warps.

In contrast, CPUs tolerate latency operations with
cache memories, and
branch prediction mechanisms.
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applied to matrix-matrix multiplication

For matrix-matrix multiplication,
what should the dimensions of the blocks of threads be?

We narrow the choices to three: 8 × 8, 16 × 16, or 32 × 32?

Considering that the C2050/C2070 has 14 streaming multiprocessors:
1 32 × 32 = 1,024 equals the limit of threads per block.
2 8 × 8 = 64 threads per block and 1,024/64 = 12 blocks.
3 16 × 16 = 256 threads per block and 1,024/256 = 4 blocks.

Note that we must also take into account the size of shared memory
when executing tiled matrix matrix multiplication.

Introduction to Supercomputing (MCS 572) Warps and Reduction Algorithms L-22 16 October 2024 10 / 41



Warps and Reduction Algorithms

1 Thread Divergence
acceleration with graphics processing units
block partitioning into warps
single-instruction, multiple-thread, and divergence

2 Parallel Reduction Algorithms
computing the sum or the maximum
a kernel for the parallel sum
a kernel with less thread divergence

3 Julia Defined Kernels
with Metal on a M1 Macbook Air
with CUDA on an NVIDIA GPU
using shared memory

Introduction to Supercomputing (MCS 572) Warps and Reduction Algorithms L-22 16 October 2024 11 / 41



Single-Instruction, Multiple-Thread (SIMT)

In multicore CPUs, we use Single-Instruction, Multiple-Data (SIMD):
the multiple data elements to be processed by a single instruction must
be first collected and packed into a single register.

In SIMT, all threads process data in their own registers.

In SIMT, the hardware executes an instruction for all threads in the
same warp, before moving to the next instruction.

This style of execution is motivated by hardware costs constraints.

The cost of fetching and processing an instruction is amortized over a
large number of threads.
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paths of execution

Single-Instruction, Multiple-Thread works well when all threads within
a warp follow the same control flow path.

For example, for an if-then-else construct, it works well
when either all threads execute the then part,
or all execute the else part.

If threads within a warp take different control flow paths,
then the SIMT execution style no longer works well.
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thread divergence

Considering the if-then-else example, it may happen that
some threads in a warp execute the then part,
other threads in the same warp execute the else part.

In the SIMT execution style, multiple passes are required:
one pass for the then part of the code, and
another pass for the else part.

These passes are sequential to each other
and thus increase the execution time.

Definition (thread divergence)
If threads in the same warp follow different paths of control flow,
then we say that these threads diverge in their execution.
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other examples of thread divergence

Consider an iterative algorithm with a loop
some threads finish in 6 iterations,
other threads need 7 iterations.

In this example, two passes are required:
1 one pass for those threads that do the 7th iteration,
2 another pass for those threads that do not.

In some code, decisions are made on the threadIdx values:
For example: if(threadIdx.x > 2){ ... }.
The loop condition may be based on threadIdx.

An important class where thread divergence is likely to occur is the
class of reduction algorithms.
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reduction algorithms

A reduction algorithm extracts one value from an array, e.g.:
the sum of an array of elements,
the maximum or minimum element in an array.

A reduction algorithm visits every element in the array,
using a current value for the sum or the maximum/minimum.

Large enough arrays motivate parallel execution of the reduction.

To reduce n elements, n/2 threads take log2(n) steps.

Reduction algorithms take only 1 flop per element loaded:
not compute bound, that is: limited by flops performance,
but memory bound, that is: limited by memory bandwidth.
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a tournament
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summing 32 numbers
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code in a kernel to sum numbers

The original array is in the global memory
and copied to shared memory for a thread block to sum.

__shared__ float partialSum[];

int t = threadIdx.x;
for(int stride = 1; stride < blockDim.x; stride *= 2)
{

__syncthreads();
if(t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}

The reduction is done in place, replacing elements.
The __syncthreads() ensures that all partial sums from the
previous iteration have been computed.
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thread divergence in the first kernel

Because of the statement

if(t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

the kernel clearly has thread divergence.

In each iteration, two passes are needed to execute all threads,
even though fewer threads will perform an addition.
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a different summation algorithm
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the revised kernel

The original array is in the global memory
and copied to shared memory for a thread block to sum.

__shared__ float partialSum[];

int t = threadIdx.x;
for(int stride = blockDim.x >> 1; stride > 0;

stride >> 1)
{

__syncthreads();
if(t < stride)

partialSum[t] += partialSum[t+stride];
}

The division by 2 is done by shifting the stride value to the right by 1 bit.
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why less thread divergence?

Af first, there seems no improvement, because of the if.

Consider a block of 1,024 threads, partitioned in 32 warps.
A warp consists of 32 threads with consecutive threadIdx values:

all threads in warp 0 to 15 execute the add statement,
all threads in warp 16 to 31 skip the add statement.

All threads in each warp take the same path ⇒ no thread divergence.

If the number of threads that execute the add drops below 32,
then thread divergence still occurs.

Thread divergence occurs in the last 5 iterations.

Introduction to Supercomputing (MCS 572) Warps and Reduction Algorithms L-22 16 October 2024 26 / 41



unrolling the last warp
When the number of active threads drops below 32,
then the __syncthreads() is needed for correctness.s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s
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five steps instead of a loop

All threads in the last warp execute the following statements:

int t = threadIdx.x

partialSum[t] += partialSum[t+16];
partialSum[t] += partialSum[t+8];
partialSum[t] += partialSum[t+4];
partialSum[t] += partialSum[t+2];
partialSum[t] += partialSum[t+1];

The elimination of __syncthreads() is for one particular size.
Use a function template parameter to define for any block size.

Performance is compared to the peak bandwidth performance,
which is currently also expressed in terabytes per second.
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summing 32 numbers in five steps
using Metal

"""
function gpusum32!(a)

sums the 32 numbers in the array a.
On return a[1] contains the sum.
"""
function gpusum32!(a)

i = thread_position_in_grid_1d()
a[i] += a[i+16]
a[i] += a[i+8]
a[i] += a[i+4]
a[i] += a[i+2]
a[i] += a[i+1]
return nothing

end
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padding with zeros

a_h = [convert(Float32, k) for k=1:32]
z_h = [0.0f0 for k=1:32] # padding with zeros
x_h = vcat(a_h, z_h)
println("the numbers to sum : ", x_h)
x_d = MtlArray(x_h)

@metal threads=32 gpusum32!(x_d)

println("the summed numbers : ", Array(x_d))

which prints the numbers 528.0, 527.0, 525.0, 522.0 . . .
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summing 32 numbers in five steps
using CUDA

"""
function gpusum32!(a)

sums the 32 numbers in the array a.
On return a[1] contains the sum.
"""
function gpusum32!(a)

i = threadIdx().x
a[i] += a[i+16]
a[i] += a[i+8]
a[i] += a[i+4]
a[i] += a[i+2]
a[i] += a[i+1]
return nothing

end
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padding with zeros
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x_h = vcat(a_h, z_h)
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summing the first N natural numbers

The output of running firstsum.jl on an NVIDIA GPU:

$ julia firstsum.jl
size of the vector : 33792
number of blocks : 32
threads per block : 256
number of threads : 8192

Does GPU value 570966528 = 570966528 ? true
$

In the check, we use
N∑

k=1

k =
N(N + 1)

2
.
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the kernel
using CUDA

"""
function sum(x, y, N, threadsPerBlock, blocksPerGrid)

computes the sum product of N numbers in x and
places the results in y, using shared memory.
"""
function sum(x, y, N, threadsPerBlock, blocksPerGrid)

# set up shared memory cache for this current block
cache = @cuDynamicSharedMem(Int64, threadsPerBlock)
# initialise the indices
tid = (threadIdx().x - 1) + (blockIdx().x - 1) * blockDim().x
totalThreads = blockDim().x * gridDim().x
cacheIndex = threadIdx().x - 1
# run over the vector
temp = 0
while tid < N

temp += x[tid + 1]
tid += totalThreads

end
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the reduction in the kernel
# set cache values
cache[cacheIndex + 1] = temp
# synchronise threads
sync_threads()
# we add up all of the values stored in the cache
i::Int = blockDim().x ÷ 2
while i!=0

if cacheIndex < i
cache[cacheIndex + 1] += cache[cacheIndex + i + 1]

end
sync_threads()
i = i ÷ 2

end
# cache[1] now contains the sum of the numbers in the block
if cacheIndex == 0

y[blockIdx().x] = cache[1]
end
return nothing

end
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launching the kernel
"""

Tests the kernel on the first N natural numbers.
"""
function main()

N::Int64 = 33 * 1024
threadsPerBlock::Int64 = 256
blocksPerGrid::Int64 =
min(32, (N + threadsPerBlock - 1) / threadsPerBlock)
println("size of the vector : ", N)
println(" number of blocks : ", blocksPerGrid)
println(" threads per block : ", threadsPerBlock)
println(" number of threads : ", blocksPerGrid*threadsPerBlock)
# input arrays on the host
x_h = [i for i=1:N]
# make the arrays on the device
x_d = CuArray(x_h)
y_d = CuArray(fill(0, blocksPerGrid))
# the shmem argument is necessary to allocate space
# for the cache on the gpu with @cuDynamicSharedMem
@cuda blocks = blocksPerGrid threads = threadsPerBlock shmem =
(threadsPerBlock * sizeof(Int64)) sum(x_d, y_d, N,
threadsPerBlock, blocksPerGrid)
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summary and exercises

We have covered the essentials of GPU acceleration.
1 Consider the code matrixMul of the GPU computing SDK.

Look up the dimensions of the grid and blocks of threads.
Can you (experimentally) justify the choices made?

2 Write code for the two summation algorithms we discussed.
Do experiments to see which algorithm performs better.

3 Apply the summation algorithm to the composite trapezoidal rule.

Use it to estimate π via
π

4
=

∫ 1

0

√
1 − x2dx .
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