Variable Precision Newton's Method to Solve Polynomial Systems

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/~jan
jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Outline

- Introduction
 - problem statement
- Condition Numbers
 - linear systems
 - polynomial evaluation
- Newton's Method in Variable Precision
 - relate precision to condition numbers
 - implementation in progress

Variable Precision Newton's Method

- Introduction
 - problem statement
- Condition Numbers
 - linear systems
 - polynomial evaluation
- Newton's Method in Variable Precision
 - relate precision to condition numbers
 - implementation in progress

problem statement

Application of Newton's method:

- Input: $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, a square polynomial system; \mathbf{z}_0 , an initial approximation for a root; d, number of correct decimal places in the result.
- Output: **z**, $|\mathbf{z} \mathbf{z}^*| \le 10^{-d}$, where **f**(\mathbf{z}^*) = **0**.

Problem: decide the working precision to get the desired accuracy.

Let precision the precision be variable:

- ① Double precision, $\epsilon_{mach}=2^{-53}\approx$ 1.110e-16, in hardware.
- ② Double double precision, $\epsilon_{\rm mach} = 2^{-104} \approx 4.930 {\rm e}{-32}$. Cost overhead is similar to the cost of complex arithmetic.
- **3** Quad double precision, $\epsilon_{\text{mach}} = 2^{-209} \approx 1.215 \text{e}-63$.
- Arbitrary multiprecision is flexible, but has a high cost.

references to the literature

- D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler:
 Adaptive multiprecision path tracking.
 SIAM J. Numer. Anal., 46(2):722–746, 2008.
- J.W. Demmel: *Applied Numerical Linear Algebra*. SIAM, 1997.
- G.H. Golub and C.F. Van Loan: *Matrix Computations*.
 The Johns Hopkins University Press, third edition, 1996.
- N.J. Higham: Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

numerical conditioning and variable precision

Condition numbers measure how sensitive

- the output of a numerical routine is,
- to changes in the input.

For example, assume

- the machine precision equals 10^{-16} , and
- our problem has a condition number of 10⁸,

then the error on the output of a numerically stable algorithm to solve our problem can be as large as $10^{-8} = 10^8 \times 10^{-16}$.

In general, the decimal logarithm of the condition number predicts the loss of the number of accurate decimal places.

Therefore, given a number of decimal places that should be correct, we estimate the condition number and then adjust the precision.

singularities and variable precision

Consider
$$\left(x - \frac{1}{3}\right)^2 = x^2 - \frac{2}{3}x + \frac{1}{9}$$

= $x^2 - 0.6666 \dots x + 0.1111 \dots$
 $\approx x^2 - 0.6666x + 0.1111$

Solving with numpy.roots([1, -0.6666, 0.1111]) returns array([0.3333+0.00333317j, 0.3333-0.00333317j]).

Each time we recompute $\frac{2}{3}$ and $\frac{1}{9}$ in a higher precision, the numerical conditioning of the roots worsen. In the limit, the condition number becomes ∞ .

For a badly scaled regular problem, the condition number is finite.

For a singular problem, estimates for the condition number grow as we increase the working precision, as the condition number is infinite.

Variable Precision Newton's Method

- Introduction
 - problem statement
- Condition Numbers
 - linear systems
 - polynomial evaluation
- Newton's Method in Variable Precision
 - relate precision to condition numbers
 - implementation in progress

singular values

Let $A \in \mathbb{C}^{n \times n}$, the Singular Value Decomposition (SVD) of A is

$$A = U\Sigma V^H$$
, $U^HU = I$, $V^HV = I$, $\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_n)$,

where

- U and V are unitary (orthogonal) matrices, and
- the singular values of A are sorted: $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$.

If $\sigma_n > 0$, then σ_n is the distance of A to the closest singular matrix.

Distance is measured in the 2-norm: $||A||_2 = \max_{||\mathbf{x}||_2=1} ||A\mathbf{x}||_2$.

The condition number of A with respect to the 2-norm:

$$\operatorname{cond}_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{\sigma_1}{\sigma_n}.$$

estimating condition numbers

Computing the Σ of a Golub-Reinsch SVD takes $4n^3$ operations.

LU decomposition (row reduction with pivoting) costs $\frac{2}{3}n^3$ operations.

Given $A \in \mathbb{C}^{n \times n}$, the LINPACK command lufco computes

- \bigcirc an LU decomposition: PA = LU, P is a permutation matrix,
- ② then solve $U^H \mathbf{z} = \mathbf{d}$, $L^H \mathbf{y} = \mathbf{z}$, and $A\mathbf{x} = P^H \mathbf{y}$,

where the components d_j of **d** are chosen in $\{-1, +1\}$ to make $||\mathbf{y}||_1$ large, at a cost of $4n^2$ operations.

Despite the existence of counterexamples, the estimator "is regarded as being almost certain to produce an estimate correct to within a factor of 10 in practice." [Higham, 1996].

Naturally, if the estimate exceeds 10⁺¹⁵, the outcome is no longer reliable when computing in double precision, ...

 \dots the actual condition number could for example be 10^{+51} .

variable precision linear system solving

Input: $(A, \mathbf{b}) \in \mathbb{C}^{n \times n} \times \mathbb{C}^n$ defines a linear system $A\mathbf{x} = \mathbf{b}$, d is the number of decimal places wanted as correct. Output: solution to $A\mathbf{x} = \mathbf{b}$, correct to d decimal places.

Solving a linear system with variable precision:

- Estimate the inverse κ^{-1} of the condition number with lufco. Then $L = \log_{10}(\kappa^{-1})$ is the expected loss in accuracy. If $|L| \ge \log_{10}(|\epsilon_{\rm mach}|)$, then double the working precision and repeat the condition number estimation.
- 2 Set the working precision ϵ_{mach} so that

$$\log_{10}(|\epsilon_{\rm mach}|) + L \ge d.$$

3 Solve $A\mathbf{x} = \mathbf{b}$ in the right working precision.

experimental setup

Let *L* be the loss of decimal places:

$$\Sigma = \left[\begin{array}{ccccc} 1 & 0 & \cdots & 0 & 0 \\ 0 & 10^{L/(n-1)} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 10^{(n-2)L/(n-1)} & 0 \\ 0 & 0 & \cdots & 0 & 10^L \end{array} \right],$$

then $A = U\Sigma V^H$ for two random unitary matrices U and V.

The machine precision must be such that $\log_{10}(|\epsilon_{\mathrm{mach}}|) > |L|$.

For
$$\mathbf{x} = (1, 1, \dots, 1)$$
, compute $\mathbf{b} = A\mathbf{x}$.

As test $A\mathbf{x} = \mathbf{b}$, with $\text{cond}_2(A) = 10^L$ and known solution.

polynomial evaluation

Let $f \in \mathbb{C}[\mathbf{x}]$, a polynomial in n variables $\mathbf{x} = (x_1, x_2, \dots, x_n)$:

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{a} \in A} c_{\boldsymbol{a}} \boldsymbol{x}^{\boldsymbol{a}}, \quad c_{\boldsymbol{a}} \in \mathbb{C} \setminus \{0\}, \quad \boldsymbol{x}^{\boldsymbol{a}} = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}.$$

Measuring the sensitivity of evaluating the polynomial f at $\mathbf{z} \in \mathbb{C}^n$:

$$\text{the condition number is } \operatorname{cond}(f,\mathbf{z}) = \frac{\displaystyle\sum_{\mathbf{a} \in \mathcal{A}} |c_{\mathbf{a}}| |\mathbf{z}^{\mathbf{a}}|}{|f(\mathbf{z})|}.$$

Factors that determine the magnitude of $cond(f, \mathbf{z})$:

- the magnitude of the coefficients $|c_a|$,
- ② the magnitude of the coordinates of **z**: $|z_i|$, i = 1, 2, ..., n,
- 1 the largest degree of the monomials $a_1 + a_2 + \cdots + a_n$,
- the distance of **z** to a root, $f(\mathbf{z}) \approx 0$.

experimental setup

Making a polynomial f with prescribed condition number, for evaluating f at \mathbf{z} , choose the following factors:

- $M_{\rm cf}$ is the magnitude of coefficients of f: $M_{\rm cf} \ge |c_{\bf a}|$,
- ② M_{co} is the magnitude of the coordinates of **z**: $M_{co} \ge |z_i|$,
- d is the degree of the polynomial f,
- δ is the distance of **z** to a root, change $f(\mathbf{x})$ into $f(\mathbf{x}) f(\mathbf{z}) + \delta$.

Then the condition number can be as large as

$$\frac{M_{\rm cf} \times M_{\rm co}^d}{\delta}$$
.

an expression motivating interval arithmetic

Problem: Evaluate f(x, y) =

$$(333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + x/(2y)$$

at (77617, 33096).

An example of Stefano Taschini: *Interval Arithmetic: Python Implementation and Applications*. In the Proceedings of the 7th Python in Science Conference (SciPy 2008).

Siegfried M. Rump: **Verification methods: Rigorous results using floating-point arithmetic.** *Acta Numerica* 19:287-449, 2010.

Problem: when does the precision become sufficient?

condition numbers at variable precision

The expresssion in the string

$$(333.75 - x**2)*y**6 + x**2*(11*x**2*y**2 - 121*y**4 - 2) + 5.5*y**8 + (1/2)*x*y^-1;$$

is parsed in to a Laurent polynomial (double precision format):

rco = inverse of condition number

precision	rco	value
double precision	6.494E-17	-1.02823048247338E+21
double double precision	5.225E-38	-8.27396059946821E-01
quad double precision	5.225E-38	-8.27396059946821E-01
24 decimal places	3.452E-25	5.46645820262317E+12
30 decimal places	1.501E-32	2.37695172603940E+05
40 decimal places	5.225E-38	-8.27396059946821E-01

Variable Precision Newton's Method

- Introduction
 - problem statement
- Condition Numbers
 - linear systems
 - polynomial evaluation
- Newton's Method in Variable Precision
 - relate precision to condition numbers
 - implementation in progress

Newton's method in variable precision

Denote by $J_f(\mathbf{x})$ the Jacobian matrix of the system $f(\mathbf{x}) = \mathbf{0}$ at \mathbf{x} .

Apply Newton's method on $f(\mathbf{x}) = \mathbf{0}$, at \mathbf{z}_k :

$$J_{\mathbf{f}}(\mathbf{z}_k)\Delta\mathbf{z} = -\mathbf{f}(\mathbf{z}_k), \quad \mathbf{z}_{k+1} := \mathbf{z}_k + \Delta\mathbf{z}.$$

Estimate condition numbers:

- $L_1 = \log_{10}(\text{cond}(J_f(\mathbf{z}_k)))$ loss when solving linear system;
- 2 $L_2 = \log_{10}(\operatorname{cond}(\mathbf{f}, \mathbf{z}_k))$, loss when evaluating system, where $\operatorname{cond}(\mathbf{f}, \mathbf{z}_k) = \max_{i=1}^n \operatorname{cond}(f_i, \mathbf{z}_k)$.

Then $L = \max(L_1, L_2)$ is the estimated loss of decimal places.

experimental setup

For testing, we want a Jacobian matrix with given condition. Making a polynomial *f* with prescribed gradient. Consider:

$$f(\mathbf{x}) = g(\mathbf{x}) + \sum_{k=1}^{n} c_k x_k + c_0,$$

where g contains no linear or constant terms.

Let v_{ℓ} be the ℓ -th value of the gradient of f: $v_{\ell} = \frac{\partial f}{\partial x_{\ell}}(\mathbf{z})$.

$$\mathbf{v}_{\ell} = rac{\partial f}{\partial \mathbf{x}_{\ell}}(\mathbf{z}) = rac{\partial g}{\partial \mathbf{x}_{\ell}}(\mathbf{z}) + \mathbf{c}_{\ell} \quad \Rightarrow \quad \mathbf{c}_{\ell} = \mathbf{v}_{\ell} - rac{\partial g}{\partial \mathbf{x}_{\ell}}(\mathbf{z})$$

Then
$$v_0 = f(\mathbf{z}) = g(\mathbf{z}) + \sum_{k=1}^n c_k z_k + c_0 \Rightarrow c_0 = v_0 - g(\mathbf{z}) - \sum_{k=1}^n c_k z_k$$
.

implementation in progress

Current newton_step in phcpy.solver:

The goal is to provide a prototype like

```
sols = newton_step(p,sols,accuracy=8)
```