Variable Precision Newton’s Method
to Solve Polynomial Systems

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/"jan
jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Jan Verschelde (UIC) Variable Precision Newton's Method 13 November 2014 1/20



Outline

O Introduction
@ problem statement

@ Condition Numbers
@ linear systems
@ polynomial evaluation

9 Newton’s Method in Variable Precision
@ relate precision to condition numbers
@ implementation in progress

Jan Verschelde (UIC) Variable Precision Newton's Method 13 November 2014 2/20



Variable Precision Newton's Method
@ Introduction

@ problem statement
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problem statement

Application of Newton’s method:

Input: f(x) = 0, a square polynomial system;

Zg, an initial approximation for a root;

d, number of correct decimal places in the result.
Output: z, |z — z*| < 1079, where f(z*) = 0.

Problem: decide the working precision to get the desired accuracy.
Let precision the precision be variable:

© Double precision, emah = 273 ~ 1.110e-16 , in hardware.

© Double double precision, emah = 2714 ~ 4.930e-32
Cost overhead is similar to the cost of complex arithmetic.

© Quad double precision, emach = 2729 ~ 1.215e-63
© Arbitrary multiprecision is flexible, but has a high cost.
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numerical conditioning and variable precision

Condition numbers measure how sensitive
@ the output of a numerical routine is,
@ to changes in the input.

For example, assume

@ the machine precision equals 10-16, and

@ our problem has a condition number of 108,
then the error on the output of a numerically stable algorithm to solve
our problem can be as large as 1078 = 108 x 1016,

In general, the decimal logarithm of the condition number predicts the
loss of the number of accurate decimal places.

Therefore, given a number of decimal places that should be correct,
we estimate the condition number and then adjust the precision.
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singularities and variable precision

. 1)\2 , 2 1
Consider (x-§> = x*—3x+3
= x%-0.6666...x +0.1111...

~ x?—-0.6666x +0.1111
Solving with numpy.roots([1, -0.6666, 0.1111]) returns
array([ 0.3333+0.00333317j, 0.3333-0.00333317j])

Each time we recompute % and % in a higher precision,
the numerical conditioning of the roots worsen.
In the limit, the condition number becomes oo.

For a badly scaled regular problem, the condition number is finite.
For a singular problem, estimates for the condition number grow as we
increase the working precision, as the condition number is infinite.
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Variable Precision Newton’s Method

@ Condition Numbers
@ linear systems
@ polynomial evaluation
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singular values
Let A € C"*", the Singular Value Decomposition (SVD) of A is
A=uUxVvH" UHu =1 VvHv =1 ¥ =dag(oy,0,...,00),

where
@ U and V are unitary (orthogonal) matrices, and
@ the singular values of A are sorted: o1 > 0, > -+ > op.

If on > 0, then oy is the distance of A to the closest singular matrix.

Distance is measured in the 2-norm: ||Al|; = ||rrhax1 ||AX]|2.
X||2=

The condition number of A with respect to the 2-norm:

01

conda(A) = [|A[l2]|AY ]2 = —.
On
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estimating condition numbers

Computing the ¥ of a Golub-Reinsch SVD takes 4n2 operations.
LU decomposition (row reduction with pivoting) costs %n3 operations.

Given A € C"*", the LINPACK command lufco computes
© an LU decomposition: PA = LU, P is a permutation matrix,
@ then solve UMz =d, LHy =z, and Ax = PHy,

where the components d; of d are chosen in {-1,+1}

to make ||y||, large, at a cost of 4n? operations.

Despite the existence of counterexamples, the estimator
“is regarded as being almost certain to produce an estimate correct to
within a factor of 10 in practice.” [Higham, 1996].

Naturally, if the estimate exceeds 10715, the outcome is no longer
reliable when computing in double precision, ...
... the actual condition number could for example be 10751,
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variable precision linear system solving

Input: (A,b) € C"™" x C" defines a linear system Ax = b,
d is the number of decimal places wanted as correct.
Output: solution to Ax = b, correct to d decimal places.

Solving a linear system with variable precision:

© Estimate the inverse x~1 of the condition number with lufco
Then L = log,,(x~1) is the expected loss in accuracy.

If [L| > 10910(|emach|), then double the working precision and
repeat the condition number estimation.

@ Set the working precision emach SO that

10910 (lemacn]) +L = d.

© Solve Ax = b in the right working precision.
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experimental setup

Let L be the loss of decimal places:

1 0 0 0 7
0 10v/(n-1) ... 0 0
Y= : : : ;
0 0 ... 10(0=2)L/(n-1) o
| 0 0 0 10t |

then A = UXVH for two random unitary matrices U and V.
The machine precision must be such that 109, (|€macn|) > [L|.
Forx =(1,1,...,1), compute b = Ax.

As test Ax = b, with cond,(A) = 10" and known solution.
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polynomial evaluation
Let f € C[x], a polynomial in n variables x = (X1, X2, ..., Xn):
f(x) = anxa, Ca € C\ {0}, X2 =x{1x52 - X3
acA
Measuring the sensitivity of evaluating the polynomial f at z € C™:

Z |cal |27

acA

f(2)]

Factors that determine the magnitude of cond(f, z):

the condition number is cond(f, z) =

© the magnitude of the coefficients |c,|,

© the magnitude of the coordinates of z: |z|,i =1,2,...,n,
© the largest degree of the monomials a; +a, + - - - + an,
@ the distance of z to a root, f(z) ~ 0.
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experimental setup

Making a polynomial f with prescribed condition number,
for evaluating f at z, choose the following factors:

© My is the magnitude of coefficients of f: Mg > |cal,
© M, is the magnitude of the coordinates of z: M, > |z,
© d is the degree of the polynomial f,
© J is the distance of z to a root,
change f(x) into f(x) — f(z) + 4.
Then the condition number can be as large as

M x MG,
-
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an expression motivating interval arithmetic

Problem: Evaluate f(x,y) =
(333.75 — x2)y® + x?(11x%y? — 121y* — 2) + 5.5y® 4 x/(2y)

at (77617, 33096).

An example of Stefano Taschini: Interval Arithmetic: Python
Implementation and Applications.  In the Proceedings of the 7th
Python in Science Conference (SciPy 2008).

Siegfried M. Rump: Verification methods: Rigorous results using
floating-point arithmetic. ~ Acta Numerica 19:287-449, 2010.

Problem: when does the precision become sufficient?
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condition numbers at variable precision

The expresssion in the string

(333.75 - x  #x 2) xysx 6 + Xk 2 (11 xxox 2xysx 2 - 121 *yex 4 - 2)

+ 55 xyx 8 + (1/2) *xxy~-1;

is parsed in to a Laurent polynomial (double precision format):

- xX"2 *y™6 + 5.50000000000000E+00 *y"8 + 11 *x" xy"2 - 121 *x"2+y™4

+ 3.33750000000000E+02 *y™6 - 2 *x"2 + 5.00000000000000E-01

rco = inverse of condition number

precision rco

value

* X * y/\__‘]_

double precision | 6.494E-17
double double precision | 5.225E-38
quad double precision | 5.225E-38
24 decimal places | 3.452E-25

30 decimal places | 1.501E-32

40 decimal places | 5.225E-38

-1.02823048247338E+21
-8.27396059946821E-01
-8.27396059946821E-01
5.46645820262317E+12
2.37695172603940E+05
-8.27396059946821E-01
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9 Newton’s Method in Variable Precision
@ relate precision to condition numbers
@ implementation in progress
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Newton’s method in variable precision

Denote by J¢(x) the Jacobian matrix of the system f(x) = 0 at x.
Apply Newton’s method on f(x) = 0, at z:

I(zk)Az = —f(zk), Zk41:= 2k + Az.
Estimate condition numbers:

© L; = log,y(cond(J(zx)) loss when solving linear system;
@ L, = log,y(cond(f, z¢)), loss when evaluating system,
where cond(f, zx ) = m?alx cond(f;, zk).
i=

Then L = max(L1, L) is the estimated loss of decimal places.
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experimental setup

For testing, we want a Jacobian matrix with given condition.
Making a polynomial f with prescribed gradient. Consider:

n
f(x) = g(x) + ) cxx + Co,
k=1

where g contains no linear or constant terms.

. f
Let v, be the ¢-th value of the gradient of f: v, = %(z).
¢
of J9g 9
Ve—a—xez) %, (Z)+Cé = Ce—Ve—(f)T()

Thenvy = f(z) = g(z) + chzk +Co = Co=Vo—g(z) — chzk.
k=1 k=1
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implementation in progress

Current newton_step in phcpy.solver

sols = newton_step(p,sols,precision="d’)
precision="dd’)
precision="qd’)
precision="mp’decimals=100)

The goal is to provide a prototype like

sols = newton_step(p,sols,accuracy=8)
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