
modified Gram-Schmidt Orthogonalization
on a Graphics Processing Unit (GPU)

with double double and quad double arithmetic

Jan Verschelde
joint with Genady Yoffe

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 1 / 29

Outline

1 Problem Statement
solving linear systems accurately
the modified Gram-Schmidt method
cost and accuracy

2 Massively Parallel Modified Gram-Schmidt Orthogonalization
defining the kernels
occupancy of multiprocessors and resource usage

3 Computational Results
experimental setup
running for increasing dimensions and precisions
simulating the tracking of one path

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 2 / 29

Orthogonalization on a GPU

1 Problem Statement
solving linear systems accurately
the modified Gram-Schmidt method
cost and accuracy

2 Massively Parallel Modified Gram-Schmidt Orthogonalization
defining the kernels
occupancy of multiprocessors and resource usage

3 Computational Results
experimental setup
running for increasing dimensions and precisions
simulating the tracking of one path

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 3 / 29

solving linear systems accurately

Tracking one path requires several thousands of Newton corrections.

Two computational tasks in Newton’s method for f (x) = 0:
1 evaluate the system f and its Jacobian matrix Jf at z;
2 solve the linear system Jf (z)∆z = −f (z), and do z := z + ∆z.

Problem: high degrees lead to extremal values in Jf .

Double precision is insufficient to obtain accurate results.

Solving linear systems with least squares using a QR decomposition

is more accurate than a LU factorization, and

applies to overdetermined problems.

Quality up: offset the extra cost with parallel algorithms.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 4 / 29

quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/ ∼dhbailey/mpdist/qd-2.3.9.tar.gz .

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by

M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/ .

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 5 / 29

equipment

Current hardware:

HP Z800 workstation running Red Hat Enterprise Linux 6.3
The CPU is an Intel Xeon X5690 at 3.47 Ghz.

The processor clock of the NVIDIA Tesla C2050 Computing
Processor runs at 1147 Mhz. The graphics card has 14
multiprocessors, each with 32 cores, for a total of 448 cores.

As the clock speed of the GPU is a third of the clock speed of the CPU,
we hope to achieve a double digit speedup.

Next graphics compute processor: NVIDIA Tesla K20.

The K20 has 2,496 cores and delivers a peak double precision
performance of 1.17 teraflops.

Problem: do we have algorithms and software?

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 6 / 29

the modified Gram-Schmidt method

Input: A ∈ C
m×n.

Output: Q ∈ C
m×n, R ∈ C

n×n: QHQ = I,
R is upper triangular, and A = QR.

let ak be column k of A
for k from 1 to n do

rkk :=
√

aH
k ak

qk := ak/rkk , qk is column k of Q
for j from k + 1 to n do

rkj := qH
k aj

aj := aj − rkjqk

Number of arithmetical operations: 2mn2.
With A = QR, we solve Ax = b as Rx = QHb, minimizing ||b − Ax||22.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 7 / 29

the cost of multiprecision arithmetic

User CPU times for 10,000 QR decompositions with n = m = 32:

precision CPU time factor
double 3.7 sec 1.0

complex double 26.8 sec 7.2
complex double double 291.5 sec 78.8

complex quad double 2916.8 sec 788.3

Taking the cubed roots of the factors 7.21/3 ≈ 1.931, 78.81/3 ≈ 4.287,
788.31/3 ≈ 9.238, the cost of using multiprecision is equivalent to
using double arithmetic, after multiplying the dimension 32
of the problem respectively by the factors 1.931, 4.287, and 9.238,
which then yields respectively 62, 134, and 296.

Orthogonalizing 32 vectors in C
32 in quad double arithmetic has the

same cost as orthogonalizing 296 vectors in R
296 with doubles.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 8 / 29

measuring the accuracy

Consider e = ||A − QR||1 = max
i=1,2,...,m
j=1,2,...,n

∣

∣

∣

∣

∣

aij −

n
∑

ℓ=1

qiℓrℓj

∣

∣

∣

∣

∣

.

For numbers in [10−g, 10+g], let me = min(log10(e)), Me = max(log10(e)),
and De = me − Me.

complex double complex double double
g me Me De me Me De

1 -14.5 -14.0 0.5 -30.6 -30.1 0.5
4 -11.7 -11.0 0.7 -27.8 -27.1 0.7
8 -7.8 -7.0 0.8 -24.0 -23.1 1.0

12 -3.9 -3.1 0.8 -20.1 -19.2 0.9
16 -0.2 1.0 1.2 -16.4 -15.1 1.3

complex double double complex quad double
g me Me De me Me De

17 -15.5 -14.1 1.3 -48.1 -47.1 1.0
20 -12.6 -11.1 1.5 -45.1 -44.2 0.9
24 -8.8 -7.2 1.6 -41.3 -40.2 1.2
28 -4.7 -3.2 1.5 -37.7 -36.1 1.6
32 -1.0 0.8 1.9 -33.9 -32.2 1.8

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 9 / 29

Orthogonalization on a GPU

1 Problem Statement
solving linear systems accurately
the modified Gram-Schmidt method
cost and accuracy

2 Massively Parallel Modified Gram-Schmidt Orthogonalization
defining the kernels
occupancy of multiprocessors and resource usage

3 Computational Results
experimental setup
running for increasing dimensions and precisions
simulating the tracking of one path

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 10 / 29

parallel modified Gram-Schmidt orthogonalization

Input: A ∈ C
m×n, A = [a1 a2 . . . an],

ak ∈ C
m, k = 1, 2, . . . , n.

Output: A ∈ C
m×n, AHA = I (i.e.: A = Q),

R ∈ C
n×n: R = [rij], rij ∈ C,

i = 1, 2, . . . , n, j = 1, 2, . . . , n.
for k from 1 to n − 1 do

launch kernel Normalize_Remove (k)
with (n − k) blocks of threads,
as the j th block (for all j : k < j ≤ n)
normalizes ak and removes the component
of aj in the direction of ak

launch kernel Normalize (n) with one
thread block to normalize an.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 11 / 29

occupancy of the multiprocessors

The Tesla C2050 has 448 cores, with 448 = 14 × 32:
14 multiprocessors with each 32 cores.

For dimension 32, the orthogonalization launches the kernel
Normalize_Remove() 31 times:

while first 7 of these launches employ 4 multiprocessors,

launches from 8 to 15 employ 3 multiprocessors,

launches 16 to 23 employ 2 multiprocessors,

and finally launches 24 to 31 employ only one multiprocessor.

Earlier stages of the algorithm are responsible for the speedups.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 12 / 29

computing inner products

In computing xHy the products xℓ ⋆ yℓ are independent of each other.

The inner product xHy is computed in two stages:

1 All threads work independently in parallel: thread ℓ calculates
xℓ ⋆ yℓ where the operation ⋆ is a complex double, a complex
double double, or a complex quad double multiplication.

Afterwards, all threads in the block are synchronized.

2 The application of a reduction to sum the elements in
(x1y1, x2y2, . . . , xmym) and compute x1y1 + x2y2 + · · · + xmym.

The + in the sum above corresponds to the ⋆ in the item above
and is a complex double, a complex double double, or a complex
quad double addition. There are log2(m) steps but if m equals the
warp size, there is thread divergence in every step.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 13 / 29

shared memory locations

Shared memory is fast memory shared by all threads in one block.

rkj := qH
k aj is inner product of two m-vectors:

qk










qk1

qk2
...

qkm











aj










aj1

aj2
...

ajm





















q̄k1 ⋆ aj1

q̄k2 ⋆ aj2
...

q̄km ⋆ ajm











Thread t computes q̄kt ⋆ ajt .

If we may override qk , then 2m shared memory locations suffice,
but we still need qk for aj := aj − rkjqk .

We need 3m shared memory locations to perform the reductions.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 14 / 29

the orthonormalization stage

After computing aH
k ak , the orthonormalization stage consists of

one square root computation,

followed by m division operations.

The first thread of a block performs rkk :=
√

aH
k ak .

After a synchronization, the m threads independently perform in-place
divisions akℓ := akℓ/rkk , for ℓ = 1, 2, . . . , m to compute qk .

Increasing the precision,

we expect an increased parallelism as the cost for the arithmetic
increased and each thread does more work independently.

Unfortunately, also the cost for the square root calculation
— executed in isolation by the first thread in each block —
also increases.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 15 / 29

parallel back substitution

Solving Rx = QHb:

Input: R ∈ C
n×n, an upper triangular matrix,

y ∈ C
n, the right hand side vector.

Output: x is the solution of Rx = y.
for k from n down to 1 do

thread k does xk := yk/rkk

for j from 1 to k − 1 do
thread j does yj := yj − rjk ⋆ xk

Only one block of threads executes this code.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 16 / 29

Orthogonalization on a GPU

1 Problem Statement
solving linear systems accurately
the modified Gram-Schmidt method
cost and accuracy

2 Massively Parallel Modified Gram-Schmidt Orthogonalization
defining the kernels
occupancy of multiprocessors and resource usage

3 Computational Results
experimental setup
running for increasing dimensions and precisions
simulating the tracking of one path

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 17 / 29

computers and compilers

Computations done on an HP Z800 workstation,
running Red Hat Enterprise Linux 6.3.

For speedups, we compare

the run times on one core of an 3.47 Ghz Intel Xeon X5690;

the run times on the NVIDIA Tesla C2050, with clock speed at
1147 Mhz, about three times slower than the CPU.

All times are wall clock times.

The C++ code is compiled with version 4.4.6 of gcc
and we use release 4.0 of the NVIDIA CUDA compiler driver.

The GPU has 448 cores, so we hope for double digit speedups.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 18 / 29

running at different precisions

Wall clock times and speedups for 10,000 orthogonalizations,
on 32 random complex vectors of dimension 32:

precision 1 CPU core Tesla C2050 speedup
complex double 13.4 sec 5.3 sec 2.5

complex double double 115.6 sec 16.5 sec 7.0
complex quad double 785.0 sec 108.0 sec 7.3

For quality up, compare

the 115.6 seconds with complex double doubles on CPU;

the 108.0 seconds with complex quad doubles on GPU.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 19 / 29

corresponding bar plot

CPU GPU
orthogonalization with modified Gram-Schmidt on CPU and GPU

0

100

200

300

400

500

600

700

800
se

co
nd

s

wall clock times on 10,000 runs with n = 32

double
double double
quad double

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 20 / 29

for increasing dimensions with complex doubles
Wall clock times for 10,000 runs, each followed by one backsubstitution:

complex double arithmetic
n CPU GPU speedup

16 2.01 4.11 0.49
32 14.61 6.52 2.24
48 47.80 11.11 4.30
64 112.60 15.38 7.32
80 217.52 22.89 9.50
96 373.06 30.43 12.26

112 589.35 40.82 14.44
128 876.11 49.10 17.84
144 1243.26 67.41 18.44
160 1701.57 80.42 21.16
176 2260.07 99.94 22.61
192 2932.15 116.90 25.08
208 3722.77 149.45 24.91
224 4641.71 172.30 26.94
240 5703.77 211.30 26.99
256 6935.10 234.29 29.60

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 21 / 29

corresponding bar plot

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
least squares with modified Gram-Schmidt on CPU and GPU

0

1000

2000

3000

4000

5000

6000

7000
se

co
nd

s

wall clock times on 10,000 runs with complex doubles

CPU
GPU

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 22 / 29

running with double doubles and quad doubles

Wall clock times for 10,000 runs of the modified Gram-Schmidt method
(each followed by one backsubstitution) in complex double double and
complex quad double arithmetic:

complex double double complex quad double
n CPU GPU speedup CPU GPU speedup

16 17.17 11.85 1.45 113.51 143.07 0.79
32 125.06 22.44 5.57 813.65 155.32 5.24
48 408.20 35.88 11.38 2556.36 266.55 9.59
64 952.35 55.18 17.26 6216.06 409.57 15.18
80 1841.07 79.11 23.27 12000.15 597.47 20.08

Double digit speedups occur for n ≥ 48.
For quality up, compare CPU time for double doubles
with GPU time for quad doubles.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 23 / 29

corresponding bar plot for double doubles

n = 16 n = 32 n = 48 n = 64 n = 80
least squares with modified Gram-Schmidt on CPU and GPU

0

500

1000

1500

2000
se

co
nd

s

wall clock times on 10,000 runs with complex double doubles

CPU
GPU

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 24 / 29

corresponding bar plot for quad doubles

n = 16 n = 32 n = 48 n = 64 n = 80
least squares with modified Gram-Schmidt on CPU and GPU

0

2000

4000

6000

8000

10000

12000

14000
se

co
nd

s
wall clock times on 10,000 runs with complex quad doubles

CPU
GPU

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 25 / 29

simulating the tracking of one path

Along a path we may do 10,000 Newton corrections.

Take dimension 32 and compare the wall clock times for

10,000 orthogonalizations; and

10,000 polynomial evaluations and differentiations of polynomial
system of 32 equations with 32 variables, with 32 monomials per
polynomial, with 5 variables in each monomial, with variable
degrees uniformly taken from {1, 2, 3, 4, 5},

for increasing levels of precision.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 26 / 29

wall clock times

precision CPU PE GPU PE speedup
complex double 11.0 sec 1.3 sec 8.5

complex double double 66.0 sec 2.1 sec 31.4
complex quad double 396.0 sec 14.2 sec 27.9

precision CPU MGS GPU MGS speedup
complex double 13.4 sec 5.3 sec 2.5

complex double double 115.6 sec 16.5 sec 7.0
complex quad double 785.0 sec 108.0 sec 7.0

precision CPU PE+MGS GPU PE+MGS speedup
complex double 24.4 sec 6.6 sec 3.7

complex double double 181.6 sec 18.6 sec 9.8
complex quad double 1181.0 sec 122.2 sec 9.7

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 27 / 29

corresponding bar plot

CPU PE CPU MGS CPU PE+MGS GPU PE GPU MGS GPU PE+MGS
PE = polynomial evaluation and differentiation, MGS = modified Gram-Schmidt

0

200

400

600

800

1000

1200
se

co
nd

s

wall clock times on CPU and GPU

double
double double
quad double

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 28 / 29

conclusions

The fine granularity gives speedups because of the increased cost
of the multiprecision arithmetic.

With a graphics compute processor we can compensate
for the cost overhead of multiprecision and achieve quality up.

Future plans:

Combine into Newton’s method and path tracker.

Integrate into the PHCpack solver.

Jan Verschelde joint with Genady Yoffe (UIC) Orthogonalization on a GPU 17 January 2013 29 / 29

	Problem Statement
	solving linear systems accurately
	the modified Gram-Schmidt method
	cost and accuracy

	Massively Parallel Modified Gram-Schmidt Orthogonalization
	defining the kernels
	occupancy of multiprocessors and resource usage

	Computational Results
	experimental setup
	running for increasing dimensions and precisions
	simulating the tracking of one path

