Cemela Summer School Mathematics as language Fact or Metaphor?

John T. Baldwin

June 23, 2007

A Language of / for mathematics

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and
languages

variables

Defining Truth
equality
Moses
Diversions
"..., I interpret that mathematics is a language in a particular way, namely as a metaphor."
David Pimm, Speaking Mathematically

Alternatively

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and
languages
variables
Defining Truth
equality
Moses
Diversions

Scientists, Quine said, put a straitjacket on natural languages
Moses, Radical Equations page 198

Goals

Cemela
Summer School Mathematics
as language Fact or
Metaphor?
John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Formal languages arose to remedy the lack of precision in natural language.

1 Motivate with classroom examples the reasons for developing a formal language for mathematics.
2 Interweave the definition of a first order language adequate for mathematics
3 The interplay between natural language, 'regimented language', and formal language

Outline

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

1 Framing the issues
2 structures and languages
3 variables
4 Defining Truth
5 equality
6 Moses
7 Diversions

History of Formal Languages

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

> Foundations: 1850-1900
> Boole, Pierce, Frege, Schroeder

Formulation: 1900-1935

Hilbert, Russell-Whitehead, Tarski, Gödel

Applications: post 1950

Linguistics: Chomsky, Montague, Barwise
Computer Science: McCarthy, Codd, Scott contemporary symbolic logic

USA Today - Gallup Poll

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions
A. Evolution, that is, the idea that human beings developed over millions of years from less advanced forms of life is

Definitely	Probably	Probably	Definitely
true	true	false	false
18	35	16	28

B. Creationism, that is, the idea that God created human beings pretty much in their present form at one time within the last 10,000 years is

Definitely Probably Probably Definitely

$\begin{array}{llll}39 & 27 & 16 & 15\end{array}$

How do you tell a sentence is true?

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Compositional theory of truth

The truth of sentence ϕ is defined recursively from
1 the syntactic rule constructing ϕ from its components
2 the truth value of those components.

Metaphysics and Epistemology

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

We adapt naive realism about mathematical objects.

We are concerned about how students form their concepts.

The ontological status of various concepts is a different subject.

Syntax and Semantics

Cemela
Summer
School Mathematics
as language
Fact or
Metaphor?
John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

After the last 150 years of research, logicians divide the world into:

- Semantics: mathematical objects
- Syntax: the language to describe them

Example: Arithmetic

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

What do the following statements say?
What are they about?
I III $\oplus I V=V I I$
2 $11+10=111$
$3 \cdots+\cdots=\cdots$
4 tres mas cuatro es igual a siete.

Natural numbers

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

$$
\mathcal{N}=<\mathcal{N}, 1^{\mathcal{N}},+^{\mathcal{N}}>
$$

universe

$$
N=\langle a, \text { aa, aaa , aaaa, aaaaa }, \ldots\rangle
$$

Let u and v be in N i.e. strings of a's.

operations

$u+{ }^{\mathcal{N}} v=u v$.

Relations

$u<^{\mathcal{N}} v$ if u is an initial segment of v.
$=$ is always interpreted as 'identity'.

A language for Arithmetic

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

operations

Two binary and two 0 -ary function symbols (constants): $+, \times, 0,1$

Relations

Two binary relations symbols:
$=,<$
Discussion: What are the expressions in this formal language that denote the natural numbers?

A language for Arithmetic

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

operations

Two binary and two 0 -ary function symbols (constants): $+, \times, 0,1$

Relations

Two binary relations symbols:
$=,<$
Discussion: What are the expressions in this formal language that denote the natural numbers?

How should we distinguish the symbol and the interpretation?

Reflection

Cemela
Summer
School Mathematics
as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and
languages
variables
Defining Truth
equality
Moses
Diversions

This distinction is essential for primary school teachers. They confuse the addition algorithm with addition.

Reflection II

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Don't fall into 'numerals versus numbers'
Do Emphasize algorithms are means not ends.

Labeling

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables

Defining Truth
equality
Moses
Diversions

Is this a correct statement of the Pythagorean Theorem?
$a^{2}+b^{2}=c^{2}$

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables

Defining Truth
equality
Moses
Diversions

What about?

$c^{2}+a^{2}=b^{2}$

What's happening here?

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

What is the difference between these two equations?

$$
x^{2}+5 x+6=0
$$

$$
x y=y x
$$

Defining Truth
equality
Moses
Diversions

What's happening here?

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

What is the difference between these two equations?

$$
x^{2}+5 x+6=0
$$

$$
x y=y x
$$

$$
(\forall x)(\forall y) x y=y x
$$

Free Variables

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and
languages
variables
Defining Truth
equality
Moses
Diversions

A variable that is not in the scope of a quantifier is free.

$$
x^{2}+5 x+6=0
$$

An expression with free variables is a question.
What elements can be substituted for the free variables and give a true statement?

Free Variables

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

A variable that is not in the scope of a quantifier is free.

$$
x^{2}+5 x+6=0
$$

An expression with free variables is a question.
What elements can be substituted for the free variables and give a true statement?

$$
x^{2}=-1
$$

Bound Variables

Cemela
Summer
School Mathematics
as language Fact or
Metaphor?
John T.
Baldwin

Framing the issues
structures and
languages
variables

$$
(\forall x)(\exists y) y>x
$$

The Angle Problem

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

The following statement is taken from a high school trigonometry text.

What does it mean?

$\sin A=\sin B$ if and only if
$A=B+360 K$ or $A+B=180+360 K$.

The Angle Problem

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

The following statement is taken from a high school trigonometry text.

What does it mean?

$\sin A=\sin B$ if and only if
$A=B+360 K$ or $A+B=180+360 K$.
$(\exists K)(A=B+360 K)$ or $(\exists K) A+B=180+360 K$.

SELF-CONSCIOUS MATHEMATICS

Cemela
Summer
School Mathematics
as language
Fact or
Metaphor?
John T.
Baldwin

Framing the issues
structures and languages

variables

Defining Truth
equality
Moses
Diversions

- A vocabulary (or signature) L is a collection of relation and function symbols.

■ A structure for that vocabulary (L-structure) is a set with an interpretation for each of those symbols.

Inductive definition of Language

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth equality Moses

terms

Every constant symbol is a term.
If f is an n-ary function and $t_{1}, \ldots t_{n}$ are terms then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
Nothing else is a term.

open sentences or well-formed -formulas

If R is an n-ary relation symbol and $t_{1}, \ldots t_{n}$ are terms then $\left(t_{1}, \ldots, t_{n}\right)$ is a wff.
If ϕ and ψ are wffs so are:

$$
\phi \wedge \psi, \neg \psi,(\exists x) \psi
$$

Nothing else is a wff.

Inductive definition of truth

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses

Fix an L-structure $\mathbb{M}=(M,+, 0,1, \cdot,=,<)$.
Add to L names for each element of M.
Then each closed term t (no free variables) denotes an element $t^{M} \in M$.
$\mathbb{M} \models t=s$ iff $t^{M}=s^{M}$.
$\mathbb{M} \models t<s$ iff $t^{M}<s^{M}$.
For any ϕ, ψ,
$\mathbb{M} \models \phi \wedge \psi$ iff $\mathbb{M} \models \phi$ and $\mathbb{M} \models \psi$.
$\mathbb{M} \models \neg \phi$ iff \mathbb{M} does not model ϕ.
$\mathbb{M} \models(\exists x) \phi(x)$ iff for some $m \in M, M \models \phi(m)$.

Important

Cemela
Summer
School Mathematics
as language
Fact or
Metaphor?
John T.
Baldwin

Framing the issues
structures and
languages
variables
Defining Truth
equality
Moses
Diversions

No one actually does mathematics in the formal language.
For logicians the fact that a certain concept can be expressed in a formal language is a powerful tool.

Doing it right

Cemela
Summer School Mathematics
as language Fact or
Metaphor?
John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Turn to page 158-159 of Khisty-Chval. On page 158, what decisions has the teacher made about 'mathematical' notions that need to be taught?

On page 159, why does Ms. Martinez expand on the students response?

Equality

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables

What do 6th graders put in the box?

What goes in the box?

$$
8+4=\square+5
$$

Defining Truth
equality
Moses
Diversions

Equality Explained

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses

blog of FemaleCSGradStudent

And yet, finally! I was so happy to learn that something from computer science could be reused in my Japanese class.
Consider the following snippet of code in VBA:
if $(a=b)$ then $a=b$ end if
That's right, the same symbol is used for testing equality and for variable assignment. The term is "overloaded operator" and it's particular use can only be determined based on context. So yesterday's Japanese class seemed obvious to me (for once) thanks to science.
http://thewayfaringstranger.blogspot.com/search /label/computer\%20science

Glencoe: Properties of Equality

Cemela
Summer School Mathematics
as language Fact or Metaphor?

John T.
Baldwin

1 reflexive property: $x=x$
2 symmetric property: $x=y \rightarrow y=x$
3 transitive property:

$$
(x=y \wedge y=z) \rightarrow x=z
$$

4 Addition and subtraction properties:

$$
(x=y \wedge y=z) \rightarrow x+z=y+z \text { and } x-z=y-z
$$

5 multiplication and division properties:

$$
(x=y \wedge y=z) \rightarrow x \cdot z=y \cdot z \text { and } x / z=y / z
$$

6 substitution property: For all numbers a and b if $a=b$ then a may be replaced by b in any equation or expression.
7 distributive property: $x(y+z)=x y+x z$

Leibnitz's Law

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

For all numbers a and b if $a=b$ then a may be replaced by b in any equation or expression.

Leibnitz's Law

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages variables

Defining Truth
equality
Moses

For all numbers a and b if $a=b$ then a may be replaced by b in any equation or expression.

Formally

For any function symbol f or formula ϕ :

$$
x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots x_{n}\right)=f\left(x_{1}, \ldots x_{n}\right)
$$

$$
x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow \phi\left(x_{1}, \ldots x_{n}\right) \leftrightarrow \phi\left(x_{1}, \ldots x_{n}\right)
$$

Equality Axioms

Cemela
Summer
School
Mathematics as language Fact or Metaphor?

John T.
Baldwin

$$
\begin{gathered}
x=x \\
x=y \rightarrow y=x \\
(x=y \wedge y=z) \rightarrow x=z
\end{gathered}
$$

equality
Moses
Diversions

Let M be Mary!

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses

Problem

I went to Pompeii and bought the same number of salads and small pizzas. Salads cost two dollars each and pizzas cost six dollars each. I spent $\$ 40$ all together. Assume that the equation $2 S+6 P=40$ is correct.

What is wrong with the following reasoning? Be as detailed as possible. How would you try to help a student who made this mistake?

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages

variables

Defining Truth
equality
Moses
Diversions

Solution

Then,

$$
2 S+6 P=40
$$

Since $S=P$, I can write

$$
2 P+6 P=40
$$

So

$$
8 P=40
$$

The last equation says 8 pizzas is equal to $\$ 40$ so each pizza costs $\$ 5$.

The Moses Analysis: General

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages

variables

Defining Truth
equality
Moses
Diversions

1 people talk (natural language)
2 feature talk (regimented language)
3 math talk (formal language)

A Socratic Dialogue

Cemela
Summer
School
Mathematics
as language
Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth

equality

Moses

People Talk

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Which costs less, a pizza or a salad?

People Talk

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Which costs less, a pizza or a salad?
A salad costs less than a pizza

Features

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

What feature of pizza and salad are we talking about?

Features

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

What feature of pizza and salad are we talking about?
Their cost

Feature Talk

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Write a sentence describing this situation beginning The cost of a salad

Feature Talk

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages

variables

Defining Truth
equality
Moses
Diversions

Write a sentence describing this situation beginning The cost of a salad is less than the cost of a pizza.

People Talk vrs Feature Talk

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages variables

Defining Truth
equality
Moses
Diversions

Where is the information about height encoded in
1 A salad costs less than a pizza.
2 The cost of a salad is less than the cost of a pizza.

People Talk vrs Feature Talk

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Where is the information about height encoded in
1 A salad costs less than a pizza.
2 The cost of a salad is less than the cost of a pizza.
Let's abbreviate 2):
$C(S)$ is less than $C(P)$.

How much?

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

How much less does a salad cost?

How much?

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

How much less does a salad cost?

\$4 less

How much?

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

How much less does a salad cost?
$\$ 4$ less
people talk: A salad costs $\$ 4$ less than a pizza.
feature talk: $C(S)$ is $\$ 4$ less than $C(P)$.

Syntactical Observation

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and
languages
variables
Defining Truth
equality
Moses
Diversions

English adds the amount of change to the linking phrase.
Feature talk puts it in a name position.

Mathematical Language

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
$C(S)$ compared to $C(P)$ is $\$ 4$ less.
Abbreviate:
$C(S) c / t C(P)$ is $\$ 4$ less.
variables
Defining Truth
equality
Moses
Diversions

3 variants

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
$C(S) c / t C(P)$ is $\$ 4$ less.
$C(S) c / t C(P)$ is $-\$ 4$.
$C(S)-C(P)=-\$ 4$.

variables

Defining Truth
equality

Moses

Vectors for K-8 ???

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin
Positive numbers wed direction and quantity.
They are displacements

Vectors for K-8 ???

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Positive numbers wed direction and quantity.
They are displacements
Moses continues the analysis with trips on the MTA.
Disposable materials for students are located at http://www.algebra.org/ (programs/curriculum development/algebra)

Context

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages

variables

Defining Truth
equality
Moses
Diversions

As in the logical approach I outlined at the beginning:
vocabulary: relations $<,=$, functions,+-
structure is $(Z,+,-)$

Two metaphors

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T
Baldwin

Framing the issues
structures and languages

variables

Defining Truth
equality
Moses
Diversions

The primary school metaphor for subtraction is 'take away'. The algebra metaphor for subtraction is 'compared to'.

Reflection

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

One should not justify 'borrowing' by:
Since 8 is greater than 7 we cannot subtract (take away) 8 from 7 .

Reflection

Cemela
Summer School Mathematics
as language Fact or
Metaphor?
John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

One should not justify 'borrowing' by:
Since 8 is greater than 7 we cannot subtract (take away) 8 from 7.

Note the statement is true in 2 nd grade because the term 8-7 cannot be interpreted in ($N,+, 1,-$).

Many algebra books have silly statement about 'closure' under the operations. The authors didn't realize that the closure condition was redundant when the intended interpretation is the real or rational numbers.

Aside

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and
languages

variables

Defining Truth
equality
Moses
Diversions

Moses's example is about the height of the boys: Coast to Coast (CTC) and Watch Me.

What are three ways this example is different from mine?

Reprise

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages

1 structures and languages
2 the compositional theory of truth
3 truth of a sentence is a structure

variables

Defining Truth
equality
Moses
Diversions

Truth and Validity

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses

We have defined $M \models \phi$.
But what does it mean to say ϕ is true?!

Validity

The sentence ϕ is valid if it is true in every structure.

A proof system

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Axioms

For any formula $\phi: \phi \vee \neg \phi$.
The equality axioms.

$$
\phi_{x}(a) \rightarrow(\exists x) \phi .
$$

Inference rules

- Expansion:Infer $\phi \vee \psi$ from ψ

■ Contraction:Infer ψ from $\psi \vee \psi$
■ Associative: Infer $(\phi \vee \psi) \vee \chi$ from $\phi \vee(\psi \vee \chi)$

- Cut: Infer $\phi \vee \psi$ from $\phi \vee \chi$ and $\chi \rightarrow \psi$

■ Exists introduction: If x is not free in ϕ, infer $(\exists x) \psi \rightarrow \phi$ from $\psi \rightarrow \phi$.

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

A formal proof from a set of axioms Φ is a sequence of wff's such that each one

1 is a member of Φ
2 or is a logical axiom
3 or follows from earlier lines by a rule of inference

The completeness theorem

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses

Gödel I

There is a proof of ψ if and only ψ is valid.
There is a proof of ψ from Φ if and only ψ is true in every structure that satisfies each member of Φ.

Gödel II

There is no effective way to decide whether a sentence phi is valid.

The inerrancy of mathematics

Cemela
Summer
School Mathematics
as language
Fact or
Metaphor?
John T
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

There is a procedure to check a proof is correct. There is no procedure to check if a sentence is valid. But the valid sentences are not interesting anyhow. To actually encode mathematics, add nonlogical axioms:

Some important sets of axioms

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

1 axioms for arithmetic
2 Axioms for the real field ($\Re,+, \times,<,=0,1$)
3 axioms for set theory

Natural numbers

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

universe

$0,1,2,3, \ldots$

operations

$+, \times, 0,1$

Relations

$=,<$

Patterns

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Consider a circle with n points on it. How many regions will the circle be divided into if each pair of points is connected by a chord?

Patterns

Cemela
Summer School Mathematics
as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Consider a circle with n points on it. How many regions will the circle be divided into if each pair of points is connected by a chord?

1 Is this question well-formed? That is does the answer depend on the placement of the points.
2 Variant: What is the
maximum number of regions of a circle that you can make by drawing
chords between n points on the circumference?
3 Guess the formula? Be very careful.

Metaphysics or Epistemology

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin issues languages
(a) The anti-realist often claims that the burden of proof is on the epistemological front and challenges the realist by asking: How is it that human beings are able to access information about this mysterious platonic universe of atemporal, acausal mathematical objects?
(b) The realist on the other hand, would often like to place the burden of proof on explaining the universality of mathematics. If mathematics is just a fiction, why is it so useful and universal in nature?
Both the realist and the anti-realist would like to make us believe that answering this question is such an impossible task that the only reasonable conclusion is to adopt their point of view. Henrik Nordmark (on fom)

What is mathematics?

Cemela
Summer School Mathematics as language Fact or Metaphor?

John T.
Baldwin issues
structures and languages

Quoting "Timothy Y. Chow" tchow at alum.mit.edui Sat, 03 Mar 2007:
Some years ago it occurred to me that a possible definition of mathematics is that anything that is *sufficiently precise* is mathematics.
The term "sufficiently precise" it itself not sufficiently precise to count as mathematical, but perhaps it is sufficiently precise to be a useful idea.
Thus mathematics, unlike most other fields of study, is characterized not so much by its *subject matter* as by a certain *threshold of precision*. Sazonov

Let M be Mary!

Cemela
Summer
School Mathematics as language Fact or Metaphor?

John T.
Baldwin

Framing the issues
structures and languages
variables
Defining Truth
equality
Moses
Diversions

Problem

The Golden Eagle Ferry is 150 feet long. Cars are 20 feet long and Trucks are 30 feet long.
Each lane holds the same number of cars and trucks.
How many cars and trucks are in each lane?

Solution:

$$
20 C+30 T=150
$$

Since $C=T$, I can write

$$
20 C+30 C=150
$$

So

$$
50 C=150
$$

