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An elementary proof is given of a com- 

pleteness theorem for De Morgan Algebras. 

The proof involves a construction that 

associates to a De Morgan algebra B, a 

new De Morgan algebra ~. The construc- 

tion of ~ bears a close analogy to the 

construction of the complex numbers from 

the real numbers. Similarly, De Morgan 

algebras may be constructed from Boolean 

algebras. Relationships with recursion 

and periodic sequences are discussed. 

I. Introduction 

A D_e Morsan algebra is an algebra that 

satisfies most of the properties of a Boo- 

lean algebra except for the law of the ex- 

cluded middle, expressed as x + x' = 1 

or xx' = 0 in the usual Boolean nota- 

tion. These algebras have been studied by 

various authors (see [1],[2],[5]). The 

purpose of this paper is to give an ele- 

mentary proof of a completeness theorem 

for De Morgan algebras, and to indicate 

some interesting examples of these alge- 

bras. 

The completeness theorem that we prove 

may be deduced at once from deeper re- 

sults about the structure of De Morgan al- 

gebras (see Remark 2.10). Nevertheless, I 

believe that the proof given here is of 

interest because it is quite elementary, 

and it is a generalization of a corres- 

ponding argument for Boolean algebras. De 

Morgan algebras grow out of Boolean alge- 

bras. 

In section 2 we define De Morgan Al- 

gebras and give a construction that asso- 

ciates to a De Morgan algebra B a new 

De Morgan algebra B. The construction 

of ~ bears a close analogy to the con- 

struction of the complex numbers from the 

real numbers. With the aid of this con- 

struction, the completeness result (Theo- 

rem 2.5) is proved. In section 3 we show 

how ~ is related to recursion in B. 

Section 4 outlines the construction of an 

algebra of periodic sequences, and deline- 

ates directions for further investigation. 

2. The Completeness Theorem 

It is possible to choose a very con- 

cise set of axioms for the algebras we 

shall study. I shall give a longer llst, 

and thereby avoid extremely detailed de- 

monstrations. 

Definition 2.1. A De Morgan algebra B 

is a set B together with a unary opera- 

tion a ~ a' (inversion), and two binary 

operations a,b ~ a+b, a,b ~ ab that 

satisfy the following axioms: 

(i) The binary operations are each 

commutative and associative. 

(ii) (a')' = a, aa = a, a+a = a for 

all a E B. 
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(ill) (a+b)' = a'b', (ab)' = a'+b' 

for all a,b E B. 

(iv) There exist elements O,1 E B 

such that aO = O, a+O = a, al = a, 

a+l = 1 for all a E B. 

(v) a(b+c) = (ab)+(ac), a+(bc) = 

(a+b)(a+c) for all a,b,c E B. 

A Boolean algebra is a De Morgan algebra 

that satisfies the axioms above plus 

(vi) a+a' = 1 and aa' = 0 for 

all a E B. 

Definition 2.2. Let B be a De Morgan 

algebra and let ~ = BxB. Thus 

= [(a,b)ia,b E Bj. Define operations 

in B as follows: 

(a,b)(c,d) = (ac,bd), (a,b)+(c,d) : 

(a+c,b+d) 

(a,b)' : (b',a'), O= (0,0), i= (l,1), 
@ 

= (o,l) for a,b,c,d E B. 

With these definitions, it is easy to see 

that B becomes a De Morgan algebra. 

Note that Z I = Z  and ~'=~ . Hence, if 

B is a non-trivial (0 ~ I) Boolean al- 

gebra, then ~ is a De Morgan algebra 

that is not Boolean. 

If V = [O,I} is the smallest non- 

trivial Boolean algebra, then V = [o,~,t.~] 

is a small De Morgan algebra. Note that 

~ ,~=~ and ~=O , ~+~.~.. 

If, for a,b,c E B, we adopt the con- 

vention a(b,c) = (ab,ac), then we may 
A 

identify a E B with (a,a) E B. In 

other words, the diagonal map A:B ~ ~, 

defined by A(a) = (a,a), is a De Morgan 

algebra homomorphism that exhibits B as 
^ 

a subalgebra of B. Every element of 

is of the form a{ + b~ for a,b E B. 

Definition 2~3. Let S be any set. The 

free De Morgan algebra o__ B S, denoted 

B(S), is obtained as follows: The primi- 

tive expressions in B(S) are O,1 and 

elements s E S. Let E(S) denote the 

set of expressions defined by the follow- 

ins rules: 

(i) Primitive expressions are in 

E(S). That is, O,1 E E(S) and 

s c E ( S ) .  

(ii) If x,y E E(S), then x', x+y, and 

xy belong to E(S). 

Let = denote the equivalence relation on 

E(S) that is generated by the axioms 

(i) - (v) of Definition 2.1. Let 

B(S) = E(S)/= . It is easy to verify that 

B(S) is a De Morgan algebra with opera- 

tions inherited from the formal operations 

of rule (ii). 

Definition 2.4. A homomorphism ¢:B - C 

of De Morgan algebras B and C is a set- 

mapping such that ~(xy) = ¢(x)¢(y), 

¢(x+y) = ¢(x) + ¢(y) and ¢(x') = ¢(x)' 

for all x,y E B. 

As usual, a homomorphism from a free 

algebra B(S), ¢:B(S) - C, is determined 

uniquely by its values ¢(s) for s E S. 

We are now prepared to state the com- 

pleteness theorem. 

Theorem 2. 5 . Let V = {o,~,{,~] be the 

four element De Morgan algebra described 

after Definition 2.2. Let B(S) be a 

free De Morgan algebra on a set S. Then 

for a,B E E(S), ~ = B if and only if 

¢(s) = ¢(B) for every homomorphism 

:B(S) 

In other words, an equality ~ = B is 

a consequence of the axioms for a De Morgan 

algebra if and only if it is true about the 

model V. 

In order to prove Theorem 2.5 we shall 

need some preliminary lemmas. 

Lemma 2.6. Let f(x) E E(S) be an expres- 

sion involving x E S. Then f(x) = 

Ax + Bx' + Cxx t + D where A,B,C,D are 

expressions that do not contain the element 

X. 

The proof of this lemma proceeds Just 

as in ordinary Boolean algebra, and will 

therefore be omitted. 
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Lemma 2.7. The following equivalence holds 

in E(S): 

(Ax + Bx' + Cxx')' = A'x + B'x' + xx' + 

A'B'C' . 

Proof: (Ax + Bx' + Cxx') a 

= (Ax)' (Bx ' (Cxx')' 

= (A' + x')(B' + x'')(C' + (xx')') 

= (A' + X')(B' + x)(C' + X' + x) 

= (A'B' + A'X + B'X' + X'x)(C' + x' + x) 

= A'B'C' + (A'C' + A'B' + A')X 

+ (B'C' + A'B' + B')X' 

+ (A' + B' + C' + 1 + 1)xx' 

= A'B'C' + A'(C' + B' + 1)x 

+ B'(C' + A' + 1)x' + xx' 

= A'B'C' + A'X + B'X' + XX' 

This completes the proof of the lemma. 

For the next lemma, we shall proceed 

informally, regarding f(x) as a function 

of x, and evaluating f(O), f(~), f(2), 

f(~). This can all be made more precise 

in terms of homomorphisms, but only at 

some loss in clarity. 

Lemma 2.8. Let f(x) = Ax + Bx' + Cxx' + D 

be an element of E(S) as described in 

Lemma 2.6. Then 

f(O) = B + D 

f(~) = A + D 

+i = D 

f(~) + f(~) = A + B + C + D. 
A 

Here equality means as functions on V. 

Proof: Certainly f(0) = B + D and 

f(1) = A + O. Now 

f(Z) = (A + B + C)Z + D (since~t=Z), and 

f(~) : (A + B + C)~+ D. Hence 

f(Z) +~ = (A + B + C + I)~ + D = i + D, 

and 

f(~) +~,= ~.~ + D. Therefore 

(f(~) +Z)(f(~) +&) = (Z+ D)(~+ D) 

= ~+2D +~D + D 

= 0 + (~+~)D + D 

=D+D=D. 

Finally, f(i) + f(~) = (A + B + C)(#+~D+ D 

=A+B+C+D. 

This completes the proof of the lemma. 

Proof of Theorem 2. 5 . Let m,6 E E(S). 

By Lemma 2.6 we may assume that ~ = Ax 

+ Bx' + Cxx' + D and that ~ = Ax + 

+ ~x' + ~xx' + ~ where A,B,C,D and 

A,B,~,D are expressions that do not con- 

tain x. The proof will proceed by in- 

duction on the total number N of vari- 

ables (elements of S) that occur in the 

two expressions. If N=O, then a = D 

and ~ = ~ where D and D are equal 

to 0 or I. Since 0 ~ 1 in a free 

De Morgan algebra, the theorem is trivial 

for the case N=0. If N > O, then either 

or ~ contains a variable x and we 

may use the equivalence indicated above. 

Thus we may assume by induction (using 

Lemma 2.8) that the following equivalences 

hold in E(S): 

(,) + D_ A + 

=D 

A+ B+ C +D = A+~+ ~+D 

We now use (*) to show that ~ = ~ in 

E(S). 

= Ax + Bx' + Cxx' + D 

= (A'x + B'x' + xx' + A'B'C')' + D, 

by (Z.7) 
: (A'x)'(B'x')'(xx')'(A'B'C')' + D 

= ((A'X)' + D)((B'x')' + D)((XX')' + D) 

((A'B'C')' + D) 

= ((A + D) + X')((B + D) + X)((XX')' 

+O)(A+B+C+D) 

Now make the substitutions indicated by 

(*), reverse steps, and conclude that 

= 6. This completes the induction step 

and the proof of the theorem. 

Note that Theorem 2.5 has the follow- 

ing corollary: 

Corollary 2.9. Let B(S) be a free De 

Morgan algebra. Then B(S) is isomorphic 

to a sub-algebra of a product of copies of 

the four element algebra V = [o~,{,~ J. 

Proof: Let ~ = (¢:B(S) - ~I ¢ is a 

homomorphism~. Let V¢ be a copy of V 
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indexed by an element of ~, and let 
A 

= U V¢. Define F : B(S) - W by 

F(e) = U ¢(a) where ¢ : B(S) - V¢. Then 

by 2.5 F(e) = F(0) if and only if c~-6. 

Hence F injects B(S) as a subalgebra 

of ~. 

Remark 2.!0. In fact, Corollary 2.9 is 

true for arbitrary De Morgan algebras. 

This deeper result may be found in [2] or 

[5]. 

~. Recursion and Fixed Points 

The A construction leading from a 

Boolean algebra B to its corresponding 
A 

De Morgan algebra B is closely related 

to the structure of recursion in the given 

Boolean algebra. 

Let T : B - B be a mapping of the 

form T(x) = ax + bx' where a,b E B. T 

has period two; in fact 

T2(x) = T(T(x)) = (a + b)x + abx' 

T3(x) = ax + bx' = T(x) 

o,. 

Tn+2(x ) = Tn(x). 

Hence there may be no element X E B such 

that T(X) = X. However, B does contain 

such fixed points. For example, if 

T(x) = x', then x = x' has no solutions 

in the Boolean algebra B, but is satis- 

fied by { and & in 

proposition 3.I. Let B be a Boolean al- 

gebra, and let T : B - B be the mapping 
A 

described above. Let ~ : B - B be the 

corresponding mapping on B. Then there 

exist elements X of B such that 

~(X) = X. In particular, we may take 

X = (T(x), T2(x)) or X = (T2(x), T(x)) 

for any x E B. 

Proof: The following identities in B 

are easily verified: 

T(x) : aT(x) + bT2(x),, T2(x) : aT2(x) 

+ bT(x) '. 

Let X = (T(x), T2(x)). Then 

~(X) = aX + bX' 

= a(T(x), T2(x)) + b(T2(x)', T(x)') 

= (aT(x) + bT2(x)', aT2(x) + bT(x)') 

= (T(x), T2(x)) 

---- X • 

Thus the algebraic structure of B re- 

flects the properties of period two sequen- 

ces recurslvely generated from B. The 

next section describes a more general De 

Morgan algebra of sequences. 

~. Sequence Models 

Corresponding to a De Morgan algebra B 

let 8(B) denote the set of all sequences 

of elements of B with an assigned even 

period (possibly of period 0). That is 

8(B) consists of sequences b = [bnJ such 

that n ranges over the integers and 

bn+ p = b n for all n, where p = p(b) is 

an even non-negative integer associated 

with the sequence. 

8(B) has the structure of an algebra 

as follows: 

and 

Here the symbol 

common multiple. 

(ii) (a')n = (an_k)' where k = p(a)/2, 

p(a') = p(a). 

Note that in the sequence algebra, inver- 

sion is obtained by ordinary inversion 

plus a half-period shift. The sub-algebra 

of period two sequences in 8(B) is iso- 

morphic to B. As it stands, the sequence 

algebra is not a De Morgan algebra. 

(1) (ab) n = (anbn), Ca + b) n = a n + b n 

PCab) = P(a + b) = Icm(p(a), p(b)) 

if p(a) ~ o 

and p(b) + O, 

0 otherwise, 

lcm denotes least 
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Axioms (1), (ll), (lii), and (v) are satis- 

fied but there is no available choice for 

0 or 1. If 8 (B)p denotes the sub- 

algebra of sequences of period p then 

we may take 0p and lp to be the cons- 

tant sequences of zeroes and ones respect- 

ively, with assigned period p. This gives 

8(B)p the structure of a De Morgan alge- 

bra for each p. We could force 8(B) in- 

to the mold by taking a quotient construc- 

tion, but I believe it is more interest- 

ing to leave it as it stands. Our rules 

for combining sequences of different 

periods provide a simple model of inter- 

ference phenomena that bears investigation 

on its own grounds. 

We may regard 8 (B) as a set of peri- 

odic oscillations. In this regard it is 

interesting to compare our ideas with the 

suggestions of G. Spencer Brown in his 

book Laws of Form ([4]). Spencer Brown 

suggests that an element X satisfying 

X' = X might be seen as an oscillation 

(if its O, then its l, then its O, then 

its l, ...). Taking this literally, we 

might form a diagram: 

-n vq F -LY-L_ 

In each case, the spatial sense in which 

i and ~t = ~ involves ordinary in- 

version plus a left-right shift. With Z" 

and ~ synchronized (and note that here 

the synchronization has become the spatial 

relationship of the two sequences) as 

~=O. This is the moti- above, we have 

vation for our construction of 8 (B), and 

also for the construction B ~ of sec- 

tion 2. 

There are many connections between our 

discussion and Brown's work. These will 

be explored in another paper. I would 

like to remark here that it is striking 

that once one lifts the law of the exclu- 

ded middle from Boolean algebra, there is 

opened up the possibility of infinite 

models involving simple analogs of wave- 

forms and interference phenomena. This 

temporal, musical aspect is precisely 

what is prohibited by the stark all or 

nothing of two-valued logic. When we drop 

these restrictions, the result is not 

fuzziness and ambiguity, but the precise 

emergence of patterned forms, spatial and 

temporal. 
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