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The beginning. Have you ever wondered why
every number is either even or odd? I don’t mean
to ask if you ever wondered whether every number
is either even or odd, but why. Hardly anyone ex-
cept the most hardened skeptic would even question
that every number is either even or odd. But you
might have asked why. Then again, maybe the two
questions aren’t that different.

So, how do we know every number is either even
or odd? Experience, for one thing. We know the
numbers 2, 4, 6, 8, 10, 12, and so forth, are all
even; and the numbers 1, 3, 5, 7, 9, 11, and so
forth, are all odd. We see the pattern, namely odd,
even, odd, even, odd, even, and so forth, and that’s
pretty convincing.

For another thing, we all learned that numbers
are even or odd at a very young age. We learned it
so early that it probably didn’t even occur to us at
the time to question it. That’s a sort of knowledge
by authority. But even then the authorities proba-
bly gave us some reason why it’s true, and by now
we have forgotten that reason.

What are we looking for? Where do we look to
find out why all numbers are even or odd? How do
we know when we’ve found the answer? Are there
any guidelines?

Let’s go blindly forward, and, maybe we’ll find
some answers.

What do we know? Maybe if we look at some-
thing simpler we know, and analyze that, we’ll get
somewhere. Let’s start with the statement made
above: We know the numbers 2, 4, 6, 8, 10, 12, and
so forth, are all even; and the numbers 1, 3, 5, 7, 9,
11, and so forth, are all odd.

How do we know 2, 4, 6, 8, 10, 12, and so forth,
are all even? What does it even mean that 2, 4,
6, 8, 10, 12, and so forth, are all even? There are
a couple of answers that come to mind. One is
that the number 2 evenly divides them. Another is
that each of them is the sum of some other number
taken twice. The second statement seems to depend
on the concept of addition, while the first depends
on the concept of division, so, maybe the second
concept is simpler. Let’s analyze it a little more.

For instance, we’re saying a number, like 10, is
even, because it is the sum of some other number,
5, taken twice, that is, 10 is even since 10 = 5 + 5.
That looks like a pretty good definition. We can say
it in words, as we just did, or we can say it more
formally, using symbolism, as follows. A number n
is said to be even if there exists a number m such
that n = m+m. The phrase “there exists a number
n” is an example of an existential quantifier. There
is a standard notation for existential quantifiers,
and we can use it to abbreviate this definition a
little bit.

Definition. A number n is even if

∃m : n = m + m.

We read that defining clause as “there exists an m
such that n equals m plus m.” Note that the colon
for “such that” is only one abbreviation that has
been used for “such that,” but let’s stick to it here
for consistency.

With this definition, we can show that the num-
bers 2, 4, 6, 8, 10, and 12, are all even, since
2 = 1+1, 4 = 2+2, 6 = 3+3, 8 = 4+4, 10 = 5+5,
and 12 = 6+6. The “and so forth” gives us a little
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trouble since it’s not exactly clear what how we’re
supposed to go forth and what happens when we
do.

How about the other half of the statement, that
part that says “the numbers 1, 3, 5, 7, 9, 11, and
so forth, are all odd?” What is an odd number? It
means when you try to divide the number into two
equal parts, you can’t because you’ll have an odd
1 left over. Let’s suppose that we try to formalize
that a bit. Then n is odd when it is of the form
m + m + 1. We could make that a definition. A
number n is odd if ∃m : n = m + m + 1.

What do we count as a number? There’s a
little problem here. Certainly, 5 is odd since 5 =
2 + 2 + 1, and 3 is odd since 3 = 1 + 1 + 1. But
what about 1? We want 1 to be odd, but 1 =
0 + 0 + 1. Do we take 0 to be a number or not? If
we don’t, then we have to change the definition of
odd so it accommodates 1. But if we do, then our
investigation may become more complicated. And
what of negative numbers? Do we include them?
And fractions? Certainly not fractions, because a
number like 1 becomes even since 1 = 1

2
+ 1

2
and

we’d have to change our definition of even.

So, when we talk about “number” here, we ex-
clude fractions. We could include negative num-
bers, if we wanted to, since negative numbers are ei-
ther even or odd. And we could include 0 even if we
excluded negative numbers, if we wanted to. But
trust me, it’ll turn out easier if we exclude negative
numbers. And I’d like to exclude 0, not because
it’s easier, but for other reasons. Here’s one rea-
son. When we first learned that numbers were ei-
ther positive or negative, we probably didn’t think
of 0 as being a number yet; that probably came
later in our education. The other reason is his-
torical. Historically, when people first studied this
question, 0 wasn’t thought to be a number. Nei-
ther of these reasons are commanding, but, since
I’ll want to refer to early history later, it would be
nice to only include positive numbers.

So, let’s exclude 0 from our discussion of even
and odd numbers. Then we have a problem. The
number 1, which we want to be odd, is not of the

form 1 = m + m + 1. How should we fix up our
definition of odd so that 1 is included? One possi-
bility is to say a number n is odd if it’s of the form
m+m−1; another is to say n is odd if either n = 1
or n is of the form m + m + 1. The second one is
clumsy. Let’s use the first one.

What? Clumsy? What does that have to do
with what we’re doing? Not an awful lot, but
when there’s a choice between two things, and one
is clumsier than the other, choose the other, that
is, the more elegant choice. Not just because it’s
more elegant, but because it may lead to simpler
analysis later on. We generally understand things
better when they’re described in simpler terms, so
long as those terms remain accurate and complete.

So, it looks like we have a defintion of odd num-
bers. We can make it a little bit simpler if we
change add 1 to each side of the defining equa-
tion so that instead of n = m + m − 1 we have
n+1 = m+m. Subtraction is determined by addi-
tion, so it does make the definition more primitive
if it’s stated in terms of addition.

Definition. A number n is odd if

∃m : n + 1 = m + m.

In other words, a number n is odd if the next num-
ber, n + 1, is even.

Along the way to this definition, we made the
decision that our numbers are supposed to exclude
fractions, negative numbers, and 0.

The pattern. We now know what we mean by
even and odd. But before going on to the big job
of showing every number is even or odd, let’s look
a bit the relation between even and odd numbers.

We saw a pattern for numbers earlier, namely
odd, even, odd, even, odd, even, and so forth. How
can we explain that pattern? We can restate it by
saying odd numbers are followed by even numbers
while even numbers are followed by odd numbers.
Can we explain why those two statements are cor-
rect?

Let’s start with the claim that an odd number
is followed by an even number. But that’s just the
defintion. In order for a number n to be odd, it is
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required that the next number n+1 be of the form
m + m, that is, that n + 1 be even.

Now let’s consider the claim that an even number
is followed by an odd number. Let the even number
be n, so that the next number is n + 1. Now, since
n is even, we know there is a number m so that
n = m+m. How are we going to conclude that the
next number n + 1 is odd? In order to show that
n + 1 is odd, according to our definition, we need
to show that the number after it, n + 2 is even.
But n was even, that is, n = m + m, therefore
n + 2 = m + m + 2 = (m + 1) + (m + 1), so n + 2
is even, as required. That’s a good explanation.

Now that we’ve found explanations, let’s write
them up formally for the record. We’ll do that by
stating the claim as a theorem along with the proof
we just found.

Theorem. The number after an odd number is
even, and the number after an even number is odd.

Proof. The first statement is the definition for
odd number.

Next, let n be an even number. Then n = m+m
for some number m. Therefore, n + 2 = (m + 1) +
(m + 1) is also an even number. Since the number
after n + 1 is even, therefore, by the definition for
odd number, n + 1 is odd. q.e.d.

We now understand why the pattern goes odd,
even, odd, even, odd, even, and so forth. We still
have to figure out how to use that knowledge to
show every number is either even or odd.

General principles. Here’s one way that might
help. To figure out the parity of n, that is, whether
n is even or odd, look at its predecessor n − 1. If
n − 1 is odd, then n is even, but if n − 1 is even,
then n is odd. Thus if the predecessor n − 1 is
either even or odd, then so will n be, but with the
opposite parity.

That helps, but we still have two problems. (1)
How do we know n has a predecessor? (2) How do
we know the predecessor is either even or odd?

Let’s look at (1) first. It may be that n doesn’t
have a predecessor. That happens when n = 1.
But, of course, 1 is the smallest number, and
doesn’t have a predecessor. In this even/odd in-

vestigation, that’s not a problem since we know 1
is odd. But we have identified two general princi-
ples, the first statement so basic that we’ll call it
an axiom and not try to prove it, and the second
we’ll prove after we find another axiom.

Axiom. 1 is a number that has no predecessor,
that is, there is no number m such that 1 = m + 1.

Theorem. Every number other than 1 does have
a predecessor, that is, if n 6= 1, then ∃m : n = m+1.
(Proof to come later.)

These two statements take care of problem (1).
But we still have problem (2) to address. There are
a three of ways to go, all more or less equivalent.

Infinite descent. This will be a long trip. We
want to know n is either even or odd. If we knew
its predecessor n − 1 was either even or odd, we’d
be done. If n − 1 were 1, we’d be done, but, if
not, we’d need to know its predecessor n − 2 was
either even or odd. If that were 1, we’d be done,
but, if not, we’d need to know its predecessor was
either even or odd. And so forth. If at any stage we
reach 1, we would be done, but if we never reach 1,
then we would have an infinite decreasing sequence
of numbers n, n − 1, n − 2, . . . that never ended.
But, of course that can’t be. We’ve found another
general principle of numbers.

Axiom. There is no infinite decreasing sequence
of numbers.

This is a somewhat unsatisfactory axiom because
it explicitly mentions infinity. It would be nice to
have a general principle that didn’t depend on the
concept of infinity.

Mathematical induction. A standard way to
avoid this infinity is to appeal to a different general
principle called mathematical induction. Although
it’s a different principle, it is logically equivalent to
infinite descent.

For mathematical induction, build from the
ground up. In order to show that every number
n is either even or odd, we start with the base case
when n = 1. We know 1 is odd, so the statement
is true for n = 1. Next, we show how to argue
that if a statement is true for one value of n, it will
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be true for the next value of n. That’s called the
inductive step. But we’ve already done that when
we showed that if a number was even or odd, then
the next number was odd or even. The principle of
mathematical induction says that if the statement
is true for 1, and the inductive step is valid, then
it’s true for all numbers.

Axiom. If a property of numbers holds for n = 1,
and if it holds for any number n it also holds for
n + 1, then it holds for all numbers.

We can write this axiom symbolically if we add
some new notation. Let S(n) be an abbreviation
for “the property S holds for n.” In what we’re
looking at S(n) means “n is either even or odd.”
Let ∀n be an abbreviation for “for all n.” That’s
called a universal quantifier. Now we can write the
above axiom of mathematical induction as

If S(1), and ∀n (S(n) implies S(n + 1)), then
∀n S(n).

Minimization. A third principle, equivalent to
minimization and mathematical induction, is called
minimization.

Axiom. If a property of numbers holds for a least
one number, then it holds for a smallest number.

Minimization is usually used in proofs by contra-
diction. Here’s how we can use it in a proof by
contradiction to show every number is either even
or odd.

Assume that not every number is either even or
odd. There there is some number which is neither
even nor odd. By the principle of minimization, it
follows that there is a least number n which is nei-
ther even nor odd. Now, this n can’t be 1, since
1 is odd, so n has a predecessor n − 1. Since n is
the smallest number that is neither even nor odd,
therefore n − 1, being a smaller number than n,
must be either even or odd. But that implies its
successor n is either odd or even, a contradiction.
Since the assumption that not every number is ei-
ther even or odd leads to a contradiction, we may
conclude that every number is either even or odd.

Generally speaking, proofs by contradiction are a
little harder to follow than direct proofs, but, gen-
erally speaking, it’s easier to come up with a proof

by contradiction than it is to come up with a direct
proof.

We did it! We’ve got three explanations why
every number is either even or odd. In the process
we found definitions for even a and odd, a couple
other theorems, two basic axioms about numbers—
1 doesn’t have a predecessor, any number except 1
does have a predecessor—and three choices for a
third axiom—infinite descent, mathematical induc-
tion, and minimization. We could take any one of
the three choices as the third axiom, then prove the
other two follow from it. We won’t do that now.

Loose ends. Still, there’s a loose end to tie up.
We’ve still got to prove that theorem that we said
we’d prove later. Also, when we say every number is
either even or odd, we haven’t explicitly said “but
not both.” Let’s see if we can show no number
is both even and odd. We already know that the
number 1 is odd. We’ll need to know it’s not even.

Theorem. Every number other than 1 does have
a predecessor, that is, if n 6= 1, then ∃m : n = m+1.

Proof. (Delayed from earlier.) We’ll prove the
logically equivalent statement

For each number n, either n = 1 or n has
a predecessor

by induction.
The base case holds since if n = 1 then either

n = 1 or n has a predecessor.
Now assume the statement is true for n. We’ll

show it’s true for n + 1, that is, either n + 1 =
1 or n + 1 has a predecessor. But n + 1 has the
predecessor n. q.e.d.

Theorem. The number 1 is not even.

Proof. Suppose 1 is even. Then 1 = m + m for
some number m. If m is 1, then 1 = m + 1 which
says that 1 is the successor of some number, which
it isn’t. But if m is not 1, then it is a successor
itself, m = k + 1, but then 1 = m + k + 1 says that
1 is again the successor of some number, which it
isn’t. Thus, the assumption that 1 is even leads to
a contradiction. Therefore, 1 is not even. q.e.d.

We’ll also need the converse to theorem above
that says that the number after an odd number is
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even, and the number after an even number is odd.

Theorem. If a number has a predecessor, then
when that number is even its predecessor is odd,
but if that number is odd its predecessor is even.

Proof. Let the predecessor be n so that the num-
ber is n + 1. Suppose that the number n + 1 is
even, that is n + 1 = m + m for some m. Then by
our definition for odd, that says the predecessor n
is odd.

Now suppose that the number n+1 is odd. Then
n + 1 + 1 = m + m for some m. First note that m
is not 1, for if m = 1, then n+1+1 = 1+1, which
implies n+1 = 1, that is, 1 has a predecessor, which
it doesn’t. Therefore m is not 1, and, thus, has its
own predecessor, m = k + 1. Then n + 1 + 1 =
k + 1 + k + 1, so n = k + k, which says n is even.
q.e.d

Now we can prove the theorem.

Theorem. No number is both even and odd.

Proof. We can arrange the proof so that we use
induction, but minimization is just a little simpler
here.

Suppose that some number is both even and odd.
Then there is a smallest number n that is both even
and odd. This number n is not 1, since we’ve al-
ready proved that 1 is not even. Therefore n must
have a predecessor. But then, since n is both even
and odd, by the previous theorem, then its prede-
cessor will be both odd and even, and that con-
tradicts the minimality of n. Thus, there can’t be
a smallest number that’s both even and odd, so
there can’t be any number that’s both even and
odd. q.e.d

We can summarize our investigation on even and
odd numbers—their parity—in a few sentences.
Every number has a parity, that is, it is either even
or odd, but not both. The number 1 is odd. The
successor of a number has the opposite parity, also,
the predecessor of a number, if it has one, has the
opposite parity.

History. Parity is one of the oldest concepts in
formal mathematics. Euclid devotes part of Book
IX of his Elements to the concept. He includes
propositions such as these three.

Proposition IX.21. If as many even numbers as
we please are added together, then the sum is even.

Proposition IX.26. If an odd number is sub-
tracted from an odd number, then the remainder
is even.

Proposition IX.29. If an odd number is multi-
plied by an odd number, then the product is odd.

Each of his propositions on even and odd numbers
comes with a proof. His definition for even and odd
numbers appear earlier in Book VII, the first book
in the Elements on number theory.

Definition VII.6. An even number is that which
is divisible into two equal parts.

Definition VII.7 An odd number is that which is
not divisible into two equal parts, or that which
differs by a unit from an even number.

His definition of even number is the same as ours,
but he includes two clauses in his definition of odd
number. From his use of this definition in various
propositions, it’s clear that he means them to be
equivalent, that is, he assumes that a number is not
even if and only if it differs from an even number
by 1. But he never proves that equivalence and he
never made that an explicit axiom.

The first few books of the Elements are about
plane geometry and Euclid includes many axioms
for geometry. But he has no axioms for number the-
ory, and it’s unclear why. Perhaps he didn’t think
axioms were necessary for numbers. More likely,
he just didn’t devote as much time to the founda-
tions of number theory as he did for the founda-
tions of geometry. It appears that he restructured
plane geometry into a logical order, but he didn’t
do the same for number theory. The propositions
stated above from Book IX on even and odd num-
bers are very elementary, but they don’t come at
the beginning of the discussion of number theory,
which begins in Book VII, but are inserted in the
last third of Book IX. He might have left them out
altogether if they weren’t needed to prove his last
proposition in Book IX.

Proposition IX.36. If as many numbers as we
please beginning from a unit are set out continu-
ously in double proportion until the sum of all be-
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comes prime, and if the sum multiplied into the last
makes some number, then the product is perfect.

(A number is perfect if it is the sum of its proper
divisors, Definition VII.22.) It is likely that the
propositions about even and odd numbers were
taken from some earlier work on number theory,
now lost, as a group, and Euclid did not criti-
cally analyze them as he did for his propositions
on geometry. Indeed, it is likely that these propo-
sitions on even and odd numbers are among the
earliest propositions that appear in the Elements,
and that go back a century or two before Euclid to
the Pythagoreans.
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