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CHAPTER 1

Introduction

1.1. Some motivation and history

Knots have been studied mathematically since approximately 1833, when
Gauss developed the linking number of two knots. Peter Tait was one of
the first to try to classify knots up to equivalence. He created the first knot
tables, listing knots up to seven crossings [18]. However, the study of the
geometry of knots, particularly hyperbolic geometry, did not really begin
until the late 1970s and early 1980s, with work of William Thurston.

In the 1980s, William Thurston conjectured that every 3–manifold de-
composes along spheres and incompressible tori into pieces that admit uniquely
one of eight 3–dimensional geometries (geometric structures) [20]. This is
the geometrization conjecture, and the proof of the full conjecture was an-
nounced in 2003 by Perelman. However, Thurston proved the conjecture
for certain classes of manifolds, including manifolds with boundary, in the
early 1980s. In fact, it has been known for nearly three decades that knot
complements in S3 decompose into geometric pieces.

What are the eight 3–dimensional geometries? Peter Scott has written
an excellent introduction to these geometries [17]. For our purposes, we
need to know that six of the eight geometries are so-called Seifert fibered,
and the last and most important geometry is hyperbolic.

Thurston showed that a knot complement will either be Seifert fibered,
toroidal, meaning it contains an embedded incompressible torus, or hyper-
bolic. If the knot is toroidal, to obtain its geometric pieces one must cut
along the incompressible torus and consider each resulting piece separately.
We know exactly which knot complements are Seifert fibered, toroidal, or
hyperbolic, again due to work of Thurston in the 1980s.

Figure 1.1. Left: a torus knot. Right: a satellite knot.
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6 1. INTRODUCTION

Theorem 1.1 (Thurston [20]). The knots whose complement can be
Seifert fibered consist of torus knots: knots which can be drawn on the
surface of a torus, as in Figure 1.1. Toroidal knot complements are exactly
the satellite knots: knots which can be drawn inside the complement of a
(possibly knotted) solid torus, as on the right in Figure 1.1. All other knots
are hyperbolic.

Hyperbolic knots form the largest and least understood class of knots. Of
all knots up to 16 crossings, classified by Hoste, Thistlethwaite, and Weeks
[8], 13 are torus knots, 20 are satellite knots, and the remaining 1,701,903
are hyperbolic.

By the Mostow–Prasad rigidity theorem [13, 14], if a knot complement
admits a hyperbolic structure, then that structure is unique. More carefully,
Mostow showed that if there was an isomorphism between the fundamental
groups of two closed hyperbolic 3–manifolds, then there was an isometry
taking one to the other. Prasad extended this work to 3–manifolds with
torus boundary, including knot complements. Thus if two hyperbolic knot
complements have isomorphic fundamental group, then they have exactly
the same hyperbolic structure. Finally, Gordon and Luecke showed that if
two knot complements have the same fundamental group, then the knots are
equivalent [5] (up to mirror reflection). Thus a hyperbolic structure on a
knot complement is a complete invariant of the knot. If we could completely
understand hyperbolic structures on knot complements, we could completely
classify hyperbolic knots.

1.2. Basic terminology

Definition 1.2. A knot K ⊂ S3 is a subset of points homeomorphic
to a circle S1 under a piecewise linear (PL) homeomorphism. We may also
think of a knot as a PL embedding K : S1 → S3. We will use the same
symbol K to refer to the map and its image K(S1).

More generally, a link is a subset of S3 PL homeomorphic to a disjoint
union of copies of S1. Alternately, we may think of a link as a PL embedding
of a disjoint union of copies of S1 into S3.

We assume our knots are piecewise linear to avoid wild knots. While
wild knots may have interesting geometry, we won’t be concerned with them
in these notes.

Definition 1.3. We will say that two knots (or links) K1 and K2 are
equivalent if they are ambient isotopic, that is, if there is a (PL) homotopy
h : S3 × [0, 1] → S3 such that h(∗, t) = ht : S

3 → S3 is a homeomorphism
for each t, and h(K1, 0) = h0(K1) = K1 and h(K1, 1) = h1(K1) = K2.

What we will deal with in this course is a special type of 3–manifold,
the knot complement (or link complement).

Definition 1.4. For a knot K, let N(K) denote an open regular neigh-
borhood of K in S3. The knot complement is the manifold S3rN(K).
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Notice that it is a compact 3–manifold with boundary homeomorphic to a
torus.

For our applications, we will typically be interested in the interior of
the manifold S3rN(K). I will denote this manifold by S3rK, and usually
(somewhat sloppily) just refer to this manifold as the knot complement.

Definition 1.5. A knot invariant (or link invariant) is a function from
the set of links to some other set whose value depends only on the equivalence
class of the link.

Knot and link invariants are used to prove that two knots or links are
distinct, or to measure the complexity of the link in various ways.

We wish to put a hyperbolic structure on (the interior of) our knot com-
plements. We will define a hyperbolic structure on a manifold more carefully
during the course. For now, if a manifold has a hyperbolic structure, then we
can measure geometric information about the manifold, including lengths of
geodesics, volume, minimal surfaces, etc.





CHAPTER 2

Polyhedral decomposition of the Figure–8 knot

complement

2.1. Introduction

We are going to decompose the figure-8 knot complement into ideal
polyhedra. This decomposition appears in Thurston’s notes [19], and with a
little more explanation in his book [21]. Menasco generalized the procedure
to all link complements [12]. His work is essentially what we present below.

2.2. Vocabulary

Definition 2.1. A knot diagram is a 4–valent graph with over/under
crossing information at each vertex. Figure 2.1 shows a diagram of the
Figure-8 knot complement.

Definition 2.2. A polyhedron is a closed 3–ball whose boundary is
labeled with a finite number of simply connected faces, edges, and vertices.

An ideal polyhedron is a 3–ball whose boundary is labeled with a finite
number of simply connected faces, edges, and vertices, but all of whose
vertices have been removed. That is, to form an ideal polyhedron, start
with a regular polyhedron and remove the points corresponding to vertices.

2.3. Polyhedra

Sometimes it is easier to study manifolds if we split them into smaller,
simpler pieces. We are interested in knot complements S3rK. We will
cut S3rK into two ideal polyhedra. We will then have a description of
S3rK as a gluing of two ideal polyhedra. That is, given a description of the
polyhedra, and gluing information on the faces of the polyhedra, we may
reconstruct the knot complement S3rK.

Figure 2.1. A diagram of the figure–8 knot
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F

B

C

D
E

A

Figure 2.2. Faces for the figure-8 knot.
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Figure 2.3. The knot is shown in bold. Faces labeled U
and T meet at the edge shown.

The example we will walk through is that of the figure-8 knot com-
plement. We will see that this particular knot complement has many nice
properties.

As homework, you will be asked to walk through the techniques below to
determine decompositions of other knot complements into ideal polyhedra.

2.3.1. Overview. Start with a diagram of the knot. There will be two
polyhedra in our decomposition. These can be visualized as two balloons:
One balloon expands above the diagram, and one balloon expands below
the diagram. As the balloons continue expanding, they will bump into each
other in the regions cut out by the graph of the diagram. Label these regions.
In Figure 2.2, the regions are labeled A, B, C, D, E, and F . These will
correspond to faces of the polyhedra.

The faces meet up in edges. There is one edge for each crossing. It runs
vertically from the knot at the top of the crossing to the knot at the bottom
(or the other way around). The balloon expands until faces meet at edges.
Figure 2.3 shows how the top balloon would expand at a crossing. The edge
is drawn as an arrow from the top of the crossing to the bottom. Faces
labeled T and U meet across the edge. Rotating the picture 180◦ about the
edge, we would see and identical picture with S meeting V .

It may be helpful to examine the meeting of faces at an edge by 3–
dimensional model. Henry Segerman has come up with a paper model to
illustrate of the phenomenon of Figure 2.3. Start with a sheet of paper
labeled as in Figure 2.4. Cut out the shaded square in the middle. Now
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V
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T

U

Figure 2.4. Cut out the shaded square. Start with a pair
of parallel lines. Fold the bold part of the line in a direction
opposite that of the dashed part of the line. Fold parallel
bold and dashed lines in opposite directions. Correct folding
results in a model that looks like Figure 2.3.

Figure 2.5. A single edge.

fold the paper until it looks like that in Figure 2.3. By rotating the paper
model, we can see how faces meet up.

Stringing crossings such as this one together, we obtain the complete
polyhedral decomposition of the knot. This is the geometric intuition be-
hind the polyhedral expansion. We now explain a combinatorial method to
describe the polyhedra.

2.3.2. Step 1. Sketch faces and edges into the diagram.
Recall a diagram is a 4–valent graph lying on a plane, the plane of

projection. The regions of the plane of projection cut out by the graph
will be the faces, including the outermost unbounded region of the plane of
projection. We start by labeling those, in Figure 2.2.

Edges come from arcs that connect the two strands of the diagram at a
crossing. For ease of explanation, we are going to draw each edge four times,
as follows. Shown on the left of Figure 2.5 is a single edge corresponding
to a crossing. Note that the edge is ambient isotopic in S3 to the three
additional edges shown on the right in Figure 2.5.
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Figure 2.6. Edges of the figure-8 knot

The reason for sketching each edge four times is that it allows us to
visualize easily which edges bound the faces we have already labeled. In
Figure 2.6, we drawn four copies of each of the four edges we get from
crossings of the diagram. Note that the face labeled A, for example, will
be bordered by three edges, one with two tick marks, one with a single tick
mark, and one with no tick marks.

2.3.3. Step 2. Shrink the knot to ideal vertices on the top polyhedron.
Now we come to the reason for using ideal polyhedra, rather than regular

polyhedra. Notice that the edges stretch from a part of the knot to a part
of the knot. However, the manifold we are trying to model is the knot
complement, S3rK. Therefore, the knot K does not exist in the manifold.
An edge with its two vertices on K must necessarily be an ideal edge, i.e.
its vertices are not contained in the manifold S3rK.

Since the knot is not part of the manifold, we will shrink strands of
the knot to ideal vertices. Focus first on the polyhedron on top. Each
component of the knot we “see” from inside the top polyhedron will be
shrunk to a single ideal vertex. These visible knot components correspond
to sequences of overcrossings of the diagram. Compare to Figure 2.3 —
note that at an undercrossing, the component of the knot ends in an edge,
but at an overcrossing the knot continues on. Moreover, note that at an
undercrossing, the knot runs into just one edge, but at an overcrossing the
knot passes the same edge twice, once on each side.

In terms of the four copies of the edge in Figure 2.5, when we consider
the polyhedron on top, we may identify the two edges which are isotopic
along an overstrand, but not those isotopic along understrands. See Figure
2.7.

Shrink each overstrand to a single ideal vertex. The result is pattern of
faces, edges, and ideal vertices for the top polyhedron, shown in Figure 2.8.
Notice that the face D is a disk, containing the point at infinity.

2.3.4. Step 3. Shrink the knot to ideal vertices for the bottom poly-
hedron.
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Figure 2.7. Isotopic edges in top polyhedron identified.

D

F

BA

C

E

Figure 2.8. Top polyhedron, viewed from the inside.

Notice that underneath the knot, the picture of faces, edges, and vertices
will be slightly different. In particular, when finding the top polyhedron, we
collapsed overstrands to a single ideal vertex. When you put your head
underneath the knot, what appear as overstrands from below will appear as
understrands on the usual knot diagram.

The easiest way to see this difference is to take the 3–dimensional model
constructed in Figure 2.4. Figure 2.3 shows the view of the faces meeting at
an edge from the top. If you turn the model over to the opposite side, you
will see how the faces meet underneath. Figure 2.9 illustrates this. Note U
now meets T , and S meets V .

In terms of the combinatorics, edges of Figure 2.5 which are isotopic by
sliding an endpoint along an understrand are identified to each other on the
bottom polyhedron, but edges only isotopic by sliding an endpoint along an
overstrand are not identified.

As above, collapse each knot strand corresponding to an understrand to
a single ideal vertex. The result is Figure 2.10.

One thing to notice: we sketched the top polyhedron with our heads
inside the ball on top, looking out. If we move the face D away from the
point at infinity, then it wraps above the other faces shown in Figure 2.8.
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Figure 2.9. 3–dimensional model, opposite side as in Figure 2.3.
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Figure 2.10. Bottom polyhedron, viewed from the outside.

On the other hand, we sketched the bottom polyhedron with our heads
outside the ball on the bottom. If we move the face D away from the point
at infinity, it wraps below the other faces shown in Figure 2.10.

2.4. Exercises

This polyhedral decomposition works for any knot or link diagram, to
give a polyhedral decomposition of its complement.

Exercise 2.1. As a warmup exercise, determine the polyhedral decom-
position for one (or more) of the knots shown in Figure 2.11. Sketch both
top and bottom polyhedra.

Definition 2.3. An alternating diagram is one in which crossings al-
ternate between over and under as we travel along the diagram in a fixed
direction.

All the examples of knot diagrams we have encountered so far are alter-
nating. The diagram of the knot 819 in Figure 2.12 is not alternating. (In
fact, the knot 819 has no alternating diagram.)

Exercise 2.2. Determine the polyhedral decomposition for the given
diagram of the knot 819. Note: as above, many ideal vertices are obtained
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(a.) Trefoil. (b.) The 52 knot. (c.) The 63 knot.

Figure 2.11. Three examples of knots.

Figure 2.12. The knot 819, which has no alternating diagram.

by shrinking overstrands to a point. However, you will have to use, for
example, Figure 2.3 to determine what happens between two understrands.

Exercise 2.3. (a) If a knot diagram is alternating, we obtain a
very special ideal polyhedron. In particular, all ideal vertices will
have the same valence. What is it? Show that the ideal vertices
for an alternating knot all have this valence.

(b) What are the possible valences of ideal vertices in general (i.e. for
non-alternating knots)? For which n ≥ 0 ∈ Z is there a knot
diagram whose polyhedral decomposition yields an ideal vertex of
valence n? Explain your answer, with (portions of) knot diagrams.

Exercise 2.4. Note that in the polyhedral decomposition for alternat-
ing knots, the polyhedra are given by simply labeling each ball with the
projection graph of the knot and declaring each vertex to be ideal. Prove
this statement for any alternating knot. Show the result is false for non-
alternating knots.

Exercise 2.5. The decomposition admits a checkerboard coloring: faces
are either white or shaded, and white faces meet shaded faces across an edge.
Moreover, faces are identified from top to bottom by a “gear rotation”: white
faces on the top are rotated once counter–clockwise and then glued to the
identical face on the bottom; shaded faces are rotated once clockwise and
then glued to the identical face on the bottom. This is shown for the figure-8
knot in Figure 2.13. Prove the above statement for any alternating knot.

The diagrams we have encountered so far are all reduced. We can follow
the above procedure for non-reduced diagrams. For example, we obtain a
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Figure 2.13. Checkerboard coloring and “gear rotation” for
the figure-8 knot.

polyhedral decomposition for diagrams which contain nugatory crossings,
as in Figure 2.14.

Figure 2.14. A nugatory crossing.

Exercise 2.6. Show that the polyhedral decomposition will contain a
monogon, i.e. a face whose boundary is a single edge and a single vertex, if
and only if the diagram has a nugatory crossing.

Let bigons be bygone. — William Menasco

Definition 2.4. A bigon is a face of the polyhedral decomposition which
has just two edges (and two ideal vertices).

Note that the two edges of a bigon face must be isotopic to each other.
Hence, we sometimes will remove bigon faces from the polyhedral decompo-
sition, identifying their two edges.

Exercise 2.7. For the figure-8 knot, sketch the two polyhedra we get
when bigon faces are removed. How many edges are there in this new,
bigon–free decomposition? The resulting polyhedra are well known solids in
this case. What are they?

For each of the polyhedra obtained in exercise 1, sketch the resulting
polyhedra with bigons removed.

Exercise 2.8. Suppose we start with any alternating knot, and do the
polyhedral decomposition above, collapsing bigons at the last step. What
are possible valences of vertices? Sketch the diagram of a single alternat-
ing knot that has all possible valences of ideal vertices in its polyhedral
decomposition.
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What valences of vertices can you get if you don’t require the diagram
to be alternating but collapse bigons? Can you find 1–valent vertices? For
any n > 4 ∈ Z, can you find n–valent vertices?





CHAPTER 3

Hyperbolic geometry and ideal tetrahedra

3.1. Basic hyperbolic geometry

Some good references for hyperbolic geometry are books by Anderson
[2], Marden [11], Ratcliffe [15], and Thurston [21]. Here we include only
some of the most basic information, and most importantly, exercises to help
you get warmed up. For details and proofs of the following, we refer you to
one of the previous references.

3.1.1. 2–dimensional hyperbolic geometry. We start with hyper-
bolic 2–space, H2, since it gives a nice warm up to hyperbolic 3–space, H3.

Define hyperbolic 2–space, H2 as follows:

H2 = {z = x+ iy ∈ C | y > 0},

equipped with the metric

ds2 =
dx2 + dy2

y2
.

The geodesics in H2 (i.e. distance minimizing lines) are exactly those
lines and circles which meet the boundary R∪{∞} = {x+ iy | y = 0} of H2

at right angles. That is, geodesics consist of vertical straight lines, which
meet the real line in C at a right angle, and semi-circles with center on the
real line. See Figure 3.1.

Recall that an isometry preserves the metric, therefore preserves path
lengths, areas, etc. The group of isometries of H2 is generated by inver-
sions of the upper half plane in hyperbolic geodesics. The group of orienta-
tion preserving isometries is the group PSL(2,R), acting as linear fractional

d

b
a

c

Figure 3.1. Some geodesics and points in H2.
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transformations. That is, if A ∈ PSL(2,R) is given by

A =

(
a b
c d

)
,

where ad− bc = 1, then Az ∈ C is given by

Az =
az + b

cz + d
.

Recall that linear fractional transformations take circles to circles and
lines to lines.

Given any three points z1, z2, and z3 in ∂H2, there exists an isometry of
H2 taking z1 to 1, z2 to 0, and z3 to ∞ (exercise). It follows that there exists
an isometry of H2 taking any three distinct points on ∂H2 to any other three
distinct points.

Example 3.1. Length computation.
Suppose you wish to compute the length of a segment, or the distance

between two points in H3. One strategy for computing is to apply an isom-
etry taking the two points to a simpler picture. For example, in Figure 3.1,
find an isometry taking a and b to c and d, respectively, where we assume
the real coordinate of c and d is 0. In fact, we may assume c is the point
0 + i ∈ C and d is some point 0 + t i.

Now one way to compute the distance between 0+ i and 0+ t i is to find
the length of the path γ(s) = (0 + s i) from s = 1 to s = t. This can be
computed by integration as in a calculus class, only now we integrate using
the hyperbolic metric.

Dist(a, b) =

∫ t

1
||γ′(s)||hyp ds

=

∫ t

1
||γ′(s)||Eucl

1

s
ds

=

∫ t

1

1

s
ds

= log(t)

Definition 3.2. An ideal triangle in H2 is a triangle with three geodesic
edges, with all three vertices on ∂H2.

There is an isometry of H2 taking any ideal triangle to the ideal triangle
with vertices 0, 1, and ∞. Hence all ideal triangles in H2 are isometric, so
they have exactly the same area.

Definition 3.3. A horocycle at an ideal point p ∈ ∂H2 is defined as
a curve perpendicular to all geodesics through p. When p is a point on
R ⊂ ∂H2 = R ∪ {∞}, a horocycle is a Euclidean circle tangent to p, as in
Figure 3.2. When p is the point ∞, a horocycle at p is a line parallel to R.
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Figure 3.2. A horocycle

Figure 3.3. The region of example 3.5.

That is, in this case the horocycle consists of points of the form {x + ic}
where c > 0 is constant.

Definition 3.4. A horoball is the region of H2 interior to a horocycle.

Note a horoball will either be a Euclidean disk tangent to R ⊂ ∂H2 or a
region consisting of points of the form {x+ ic | y > c}.

Example 3.5. Area of a region in H2.
In this example, we will compute the area of the region of H2 bounded

by the lines x = 0, x = 1, and the horocycle y = 1. This region is shown in
Figure 3.3.

As in a standard Euclidean multivariable calculus class, to find the area
we can compute a double integral over the region 0 ≤ x ≤ 1 and y ≥ 1. We
use the hyperbolic area element, however: 1

y2
dx dy.

Area(R) =

∫ 1

0

∫
∞

1

1

y2
dy dx =

∫ 1

0
1 dx = 1.

3.1.2. 3–dimensional hyperbolic geometry. Hyperbolic 3–space is
defined as follows:

H3 = {(x+ iy, t) ∈ C× R | t > 0},
under the metric

ds2 =
dx2 + dy2 + dt2

t2
.

Geodesics are again vertical lines and semicircles orthogonal to the bound-
ary ∂H3 = C ∪ {∞}. Totally geodesic planes are vertical planes and hemi-
spheres centered on C. The full group of isometries of H3 is generated by
inversions in these hemispheres. We often restrict to the subgroup of ori-
entation preserving isometries. This group is PSL(2,C). Its action on the
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z

0 1

Figure 3.4. Ideal tetrahedron

boundary ∂H3 = C∪{∞} is the usual action of PSL(2,C) on C∪{∞}. This
action is extended to the upper half space. (Marden [11, Chapter 1] gives
an excellent presentation of this.)

Recall that elements of PSL(2,C) can be classified as one of three types:
elliptic, which have two complex conjugate eigenvalues and a single fixed
point in H2; parabolic, which have one eigenvalue and one fixed point on
the boundary R ∪ {∞} = ∂H2; and hyperbolic, which have two eigenvalues
and two fixed points on ∂H2.

Definition 3.6. An ideal tetrahedron is a tetrahedron in H3 with all
four vertices on ∂H3.

Since there exists a Möbius transformation taking any three points to
1, 0, and ∞ in C ∪ {∞}, we may assume our tetrahedron has vertices at
0, 1 and ∞, and at some point z ∈ Cr{0, 1}. So any ideal tetrahedron is
parameterized by z. See Figure 3.4.

Notice the argument of z is the dihedral angle between vertical planes
through 0, 1,∞ and through 0, z,∞. Take the hyperbolic geodesic through
z ∈ C that meets the vertical line from 0 to ∞ in a right angle. Take another
geodesic through 1 ∈ C that meets the vertical line from 0 to ∞ at a right
angle. The hyperbolic distance between the endpoints of the perpendiculars
on the line from 0 to ∞ is | ln |z|| (exercise). Hence

ln z = (signed dist between altitudes) + i(dihedral angle).

Definition 3.7. A horosphere about ∞ in ∂H3 is a plane parallel to C,
consisting of points {(x+ iy, c) ∈ C× R} where c > 0 is constant. Note for
any c > 0, it is perpendicular to all geodesics through ∞. When we apply an
isometry that takes ∞ to some p ∈ C, a horosphere is taken to a Euclidean
sphere tangent to p. By definition, this is a horosphere about p. A horoball
is the region interior to a horosphere.

The induced metric on a horosphere is Euclidean. When we intersect
horospheres about 0, 1, ∞ and z with an ideal tetrahedron through those
points, we get four Euclidean triangles. These four triangles are similar
(exercise).
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Figure 3.5. Horosphere

3.2. Exercises

Exercise 3.1. Work through the classification of isometries of H2 as
elliptic, parabolic, or hyperbolic. (Thurston, page 67 [19]).

Exercise 3.2. Isometries.

(a) Given any three points b, c and d in ∂H2, prove that there exists an
isometry of H2 taking b to 1, c to 0, and d to ∞. What is it? When will
it be orientation preserving? If it happens to be orientation preserving,
write it as an element of PSL(2,R).

(b) Similarly, given b, c and d in C∪ {∞}, prove there exists an orientation
preserving isometry of H3 taking b to 1, c to 0, and d to ∞. Write it
down as a matrix in PSL(2,C).

Exercise 3.3. Cross ratios.

Given a ∈ C, the image of a under the isometry of ex-
ercise (2)(b) is the cross ratio of a, b, c, d, and is denoted
λ(a, b; c, d).

Let x be the point on the geodesic in H3 between c and d such that the
geodesic from a to x is perpendicular to that between c and d. Let y be
the point on the geodesic between c and d such that the geodesic from b to
y is perpendicular to that between c and d. Prove the hyperbolic distance
between x and y is equal to | ln |λ(a, b; c, d)||.

Exercise 3.4. Areas of ideal triangles.
Prove that the area of an ideal hyperbolic triangle is π. (E.g. use

calculus.)

Exercise 3.5. Areas of 2/3–ideal triangles.

(a) A 2/3–ideal triangle is a triangle with two vertices at infinity, and the
third in the interior of H2 such that the interior angle at the third vertex
is θ. Show that all 2/3–ideal triangles of angle θ are congruent to the
triangle shown in Figure 3.6.

(b) Define a function A : (0, π) → R by: A(θ) is the area of the 2/3–ideal
triangle with interior angle π−θ. Show that A(θ1+θ2) = A(θ1)+A(θ2).
(Hint: Figure 3.7 may be useful.)

(c) It follows that A is Q–linear. Since A is continuous, it must be R–linear.
Show A(θ) = θ.
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Figure 3.6. 2/3–ideal triangle.
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Exercise 3.6. Areas of general triangles.
Using the previous two problems, show that the area of a triangle with

interior angles α, β, and γ is equal to π − α − β − γ. Note an ideal vertex
has interior angle 0.

Exercise 3.7. Ideal tetrahedra and dihedral angles.

(a) The dihedral angles on a tetrahedron are labeled A, B, C, D, E, and F
in Figure 3.8. Using linear algebra, prove that opposite dihedral angles
agree. That is, show A = E, B = F , and C = D.

(b) Prove the same thing using Möbius transformations: If the ideal tetra-
hedron has ideal vertices at 0, 1, ∞, and z, show that the triangles cut
off by horospheres are similar by applying isometries, taking each ideal
vertex to infinity carefully, and comparing the results.

Exercise 3.8. Ideal tetrahedra and cross ratios. Orient an ideal tetrahe-
dron with vertices a, b, c, d. When we apply a Möbius transformation taking
b, c, d to 1, 0,∞, respectively, the point a goes to the cross ratio λ(a, b; c, d).
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Label the edge from c to d by the complex number λ = λ(a, b; c, d). We may
do this for each edge of the tetrahedron, labeling by a different cross ratio.
(Notice you need to keep track of orientation.) Find all labels on the edges
of the tetrahedra in terms of λ.

Exercise 3.9. Symmetries. The group of symmetries of a generic hy-
perbolic ideal tetrahedron is isomorphic to Z2 × Z2. For each of the three
nontrivial elements of Z2 × Z2, find a symmetry of the ideal tetrahedron
corresponding to that element. Describe the symmetry geometrically.





CHAPTER 4

Geometric structures on manifolds

In the first chapter, we discussed decomposing manifolds into topolog-
ical ideal polyhedra. In the second chapter, we discussed basic hyperbolic
geometry, including hyperbolic structures on ideal tetrahedra. In this chap-
ter, we will begin to put these together and discuss hyperbolic structures on
manifolds.

Note: In this section, we lean very heavily on Chapter 3 of Thurston
[21], particularly sections 3.1 through 3.4. Our focus and exposition differs
slightly, but you may want to read that book to help you understand these
notes. Or the other way around.

4.1. Geometric structures

4.1.1. Introductory example: The torus. A geometric structure
you are familiar with is a 2–dimensional Euclidean structure on a torus.
Choose your favorite parallelogram. Obtain the torus by gluing the top
and bottom of the parallelogram, as well as the two sides, in an orientation
preserving manner.

Alternately, construct the universal cover of the torus by gluing copies
of the parallelogram to form a tiling of the plane, as in Figure 4.1.

Figure 4.1. The universal cover of a Euclidean torus.

27
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Figure 4.2. When we construct a torus from a quadrilat-
eral, generally a single point is omitted from the plane. (This
is a copy of a figure from [19].)

Modify this construction by choosing a more general quadrilateral in-
stead of a parallelogram. We can still identify opposite sides in an orien-
tation preserving manner, so when we glue we still get a topological torus.
However, when we glue copies of the quadrilateral to itself, as we did when
constructing the universal cover above, we have to shrink, expand, and ro-
tate the quadrilateral to glue copies, and the result is not a tiling of the
plane. See Figure 4.2.
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The torus was created by gluing quadrilaterals. More generally, we
will glue different types of polygons, including ideal polygons, and in 3–
dimensions, polyhedra.

Definition 4.1. LetM be a 2–manifold. A topological polygonal decom-
position of M is a combinatorial way of gluing polygons so that the result
is homeomorphic to M .

Notes:

• We allow ideal polygons, i.e. those with one or more ideal vertex.
• By gluing we mean something simplicial. That is, distinct polygons
meet only at an edge of both, and distinct edges meet only at a
vertex of both.

Both constructions of the torus above give examples.

Definition 4.2. A geometric polygonal decomposition of M is a topo-
logical polygonal decomposition along with a metric on each polygon such
that gluing is by isometry and the result of the gluing is a smooth manifold
with a complete metric.

The second construction of the torus is incomplete: We may take a
Cauchy sequence of points in the plane converging to the omitted point
in Figure 4.2. These project to give a Cauchy sequence in the torus that
does not converge. Hence this example does not give a geometric polygonal
decomposition.

We will be studying polygonal decompositions of manifolds and their
generalization to three dimensions: polyhedral decompositions. More gen-
erally, we can discuss geometric structures on manifolds.

4.1.2. Geometric structures on manifolds.

Definition 4.3. Let X be a manifold, and G a group acting on X.
We say a manifold M has a (G,X)–structure if for every point x ∈ M ,
there exists a chart (U, φ), that is, a neighborhood U ⊂ M of x and a
homeomorphism φ : U → X. Charts satisfy the following: If two charts
(U, φ) and (V, ψ) overlap, then the transition map or coordinate change

γ = φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V )

is an element of G.

We will take X to be simply connected, and G a group of real analytic
diffeomorphisms acting transitively on X. Recall that real analytic diffeo-
morphisms are uniquely determined by their restriction to any open set.
This is true, for example, of isometries of Euclidean space, and isometries
of hyperbolic space.

Example 4.4 (The Euclidean torus). Let X be 2–dimensional Euclidean
space, E2. Let G be isometries of Euclidean space, Isom(E2). The torus
admits a (Isom(E2),E2) structure, also called a Euclidean structure.
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Figure 4.3. Euclidean structure on a torus: Transition
maps are Euclidean translations.

To help us understand the definition, let’s look at some charts and over-
lap maps for this example.

We know the universal cover of the torus is given by tiling the plane
R2 with parallelogram. Pick your favorite such tiling. My favorite tiling
is the one where each parallelogram is a unit square, with one square with
vertices at (0, 0), (1, 0), (1, 1), and (0, 1) in R2. Now pick any point p on
the torus. This will lift to a collection of points on R2, one for each copy
of the unit square. Take a disk of radius 1/4, say, around each lift. These
all project under the covering map to an open neighborhood U of p in the
torus. Therefore we have the following charts: (U, φ) is a chart, where φ
maps U into the disk of radius 1/4 centered around the lift of p in the unit
square with corners (0, 0), (1, 0), and (0, 1). Another chart is (U,ψ), where ψ
maps U into the disk of radius 1/4 about the lift of p in some other square.
No matter which other square ψ maps into, φ ◦ ψ−1 will be a Euclidean
translation by integral values in the x and y direction. These are Euclidean
isometries.

More generally, let q be a point such that the distance between a lift of
q to our tiling of R2 by unit squares is less than 1/2 from a lift of p. Thus a
disk of radius 1/4 about this lift of p overlaps with a disk of radius 1/4 about
the lift of q. These disks both project to give open neighborhoods U and V
of p and q respectively in the torus. Since these neighborhoods overlap, we
need to ensure that the corresponding charts differ by a Euclidean isometry
in the region of overlap. Obtain charts by mapping U to your favorite disk
of radius 1/4 about a lift of p. Map V to your favorite disk of radius 1/4
about a lift of q in R2. Again, regardless of the choice of φ and ψ, the overlap
φ ◦ ψ−1 will be a Euclidean translation by some integer amount in x and y
directions.
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Therefore, we conclude that the charts obtained by reading disks of
radius 1/4 off of the universal cover of the torus give a Euclidean structure
on the torus.

Example 4.5 (The affine torus). Again let X = E2, but this time let
G be the affine group acting on R2. That is, G consists of invertible affine
transformations, where recall an affine transformation is a linear transfor-
mation followed by a translation:

x 7→ Ax+ b.

The torus of Figure 4.2 admits a (G,E2) structure. This can be seen in
a manner similar to that in the previous example. Charts will differ by a
scaling, rotation, then translation.

In practice, we rarely use charts to show manifolds have a particular
(G,X)–structure. Instead, we build manifolds by starting with an existing
manifold and quotienting out by the action of a group, or by gluing together
polygons.

4.1.3. Hyperbolic surfaces. Let X = H2, and let G = Isom(H2), the
group of isometries of H2. When a 2–manifold admits an (Isom(H2),H2)–
structure, we say the manifold admits a hyperbolic structure, or is hyperbolic.

We will look at some examples of hyperbolic 2–manifolds obtained from
geometric polygonal decompositions. To do so, we start with a collection
of hyperbolic polygons in H2, for example, a collection of triangles. We
will assume each polygon is convex, and edges are portions of geodesics in
H2. To each edge, associate exactly one other edge. Glue polygons along
associated edges.

When does the result of this gluing admit a hyperbolic structure? We
obtain a hyperbolic structure exactly when each point in the result has a
neighborhood U and a homeomorphism into H2 so that overlap maps are in
Isom(H2). This is equivalent to showing that each point has a neighborhood
isometric to a disk in the hyperbolic plane (exercise 4.3).

When does each point in a gluing of hyperbolic polygons have a neigh-
borhood isometric to a disk in the hyperbolic plane? Let x be a point in
one of the polygons.

(1) If x is in the interior of a polygon, then it has a neighborhood
isometric to a ball in H2. (Duh.)

(2) If x is on an edge of a polygon, then it has a neighborhood isometric
to a “half–ball”. It is glued to exactly one point on some other edge
of a polygon, which also has a “half–ball” neighborhood. These
patch up correctly to give a neighborhood isometric to a ball.

(3) If x is a finite vertex of a polygon, then we need to be careful.

Claim 4.6. A gluing of hyperbolic polygons gives a manifold with a hy-
perbolic structure if and only if for each vertex, the angle sum is 2π.

Proof. Exercise. �
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Figure 4.4. Non-singular structure if and only if angle sum
around each vertex is 2π.

4.2. Complete structures

Given a gluing of hyperbolic polygons, suppose the angle sum at each
vertex is 2π. Does it necessarily follow that we have a geometric polygonal
decomposition (Definition 4.2)?

Recall that for a geometric polygonal decomposition, we needed a geo-
metric structure on each polygon so that the result of the gluing is a smooth
manifold with a complete metric. We have a smooth manifold with a metric.
However, in the presence of ideal vertices, the metric may not be complete.

It will be easier to discuss criteria for completeness using the language
of developing maps and holonomy.

4.2.1. Developing maps and holonomy. Developing maps and ho-
lonomy are described very well in Thurston’s book, [21, pages 139–141]. At
this point in my course, I distributed these three pages to students, which
was perfectly fine to do using US fair use copyright laws. Unfortunately, to
make these notes complete and self contained, I will need to reproduce some
of that discussion. Hence the notation and exposition from here to Example
4.10 is very similar to that in [21].

We now restrict to the case that X is a real analytic manifold, and
G is a group of real analytic diffeomorphisms acting transitively on X. For
example, hyperbolic space and its isometries are real analytic, as is Euclidean
space with its isometries. The key feature of real analytic manifolds that we
need is that any element of G is completely determined by its restriction to
an open subset of X.

Now, letM be a (G,X)–manifold, and let (U1, φi), (U2, φ2), . . . be charts
for M , with transition functions

γij = φi ◦ φ−1
j .

By definition, each γij agrees with an element of G on φj(Ui ∩ Uj). Com-

posing with φ−1
j , we get a locally constant map from Ui ∩ Uj into G, which

we will also call γij .
Suppose both Ui and Uj contain x. Then note that the maps φi : Ui → X

and γij(x)φj : Uj → X agree on the component of Ui ∩ Uj that contains x,
and so we can view γij(x)φj as extending φi. We will generally run into
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inconsistencies if we try to extend φi too far. To fix this, we look a the
universal cover of M .

Recall that the universal cover M̃ of M is defined to be the space of
homotopy classees of paths in M that start at a fixed basepoint x0. Take a

path α : [0, 1] → X representing a point [α] ∈ M̃ , and a chart (U0, φ0) that
contains the basepoint x0. Now subdivide α at points

x0 = α(t0), x1 = α(t1), . . . , xn = α(tn)

where t0 = 0 and tn = 1 and so that each subpath α : [ti, ti+1] → X has
image contained in a single chart (Ui, φi).

Now, at the i-th step, adjust the chart φi by composing with γ(i−1),i, so
that it agrees with the previous (adjusted) chart. These form the analytic
continuation of φ0 along α. The last chart is

ψ = γ01(x1)γ12(x2) · · · γ(n−1),n(xn)φn.

Lemma 4.7. Analytic continuation is well defined. That is, the germ of
ψ at α(1) does not depend on the choices of the ti or the choice of α in the

homotopy class [α] ∈ M̃ .

Proof. Exercise. �

We set φ
[α]
0 = ψ, and by Lemma 4.7, the notation is well defined.

Definition 4.8. For M a (G,X)–manifold with universal covering map

π : M̃ →M , fixed basepoint x0 ∈ M , and fixed initial chart (U0, φ0) about

x0, the developing map D : M̃ → X is the map that agrees with the analytic
continuation of φ0 along each path, in a neighborhood of the path’s endpoint.
That is,

D = φσ0 ◦ π
in a neighborhood of σ ∈ M̃ .

Changing the basepoint and initial chart will change the developing map
by composition with an element of G (exercise).

Now, ifM has a (G,X)–structure, then so does M̃ (exercise). Under this
(G,X) structure, the developing map becomes a local (G,X)–difeomorphism

between M̃ and X.
Consider the case that σ is an element of the fundamental group of

M . Then σ is represented by a loop in M . Analytic continuation along a
loop gives a germ φσ0 that has domain a neighborhood of the basepoint of
the loop. That is, we obtain a new chart defined in a neighborhood of the
basepoint. Thus φσ0 and φ0 are both charts defined at the basepoint, and
hence the maps differ by an element of G. Let gσ ∈ G be the element such
that φσ0 = gσ φ0.

It follows that

D ◦ Tσ = gσ ◦D,
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=

Figure 4.5. A nontrivial curve γ (red) on the torus. Merid-
ian and longitude curves are shown in blue.

Figure 4.6. Left: developing a Euclidean torus. Right: de-
veloping an affine torus.

where Tσ is the covering transformation of M̃ associated with σ. Apply this
equation to a product. It follows that the map H : π1(M) → G defined by
H(σ) = gσ is a group homomorphism.

Definition 4.9. The element gσ is the holonomy of σ. The group
homomorphism H is called the holonomy of M . Its image is the holonomy
group of M .

Note that H depends on the choices from the construction of D. When
D changes, H changes by conjugation in G (exercise).

Example 4.10. Pick a point x on the torus, say x lies at the intersection
of a choice of meridian and longitude curves for the torus, and consider a
nontrivial curve γ based at x. An example of a nontrivial curve γ on the
torus is shown in Figure 4.5.

Now consider a Euclidean structure on the torus. There exists a chart
mapping x onto the Euclidean plane. We can take our chart to be an open
parallelogram about x, where boundaries of the parallelogram glue in the
usual way to form the torus. As the curve γ passes over a meridian or longi-
tude, in the image of the developing map we must glue a new parallelogram
to the appropriate side of the parallelogram we just left. See Figure 4.6,
left, for an example. The tiling of the plane by parallelograms is the image
of the developing map, or the developing image of the Euclidean torus.

As for the affine torus, Example 4.5, each time a curve crosses a meridian
or longitude we attach a rescaled, rotated, translated copy of our quadrilat-
eral to the appropriate edge. Figure 4.6 right shows an example. Figure 4.2
shows (part of) the developing image of the affine torus.

4.2.2. Completeness of polygonal gluings. Let M be an oriented
hyperbolic surface obtained by gluing ideal hyperobolic polygons. An ideal
vertex ofM is an equivalence class of ideal vertices of the polygons, identified
by the gluing. Let v be an ideal vertex, and let h be a horocycle centered at
v on one of the polygons P incident to v. Now extend h counterclockwise
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d

Figure 4.7. Extending a horocyle: view inside the manifold.

around v via the gluing. The horocycle h will meet a polygon glued to P in
a right angle. Hence it will extend to a unique horocycle about v on that
polygon as well. Continue. Eventually, h will return to P .

Definition 4.11. Let d(v) denote the signed distance between h on P
and the point on P where h re-enters P after extending it around v. See
Figure 4.7. The sign is taken such that the direction shown in the figure is
positive. Note d(v) does not depend on the initial choice of h (exercise).

It may be easier to compute d(v) if we look at polygons in H2, using
terminology of developing map and holonomy.

Fix an ideal vertex on one of the polygons P . Put P in H2 with v at
infinity. Now take h to be a horocycle centered at infinity intersected with
P . Follow h to the right. When it meets the edge of P , a new polygon is
glued. The developing map instructs us how to embed that new polygon as
a polygon in H2, with one edge the vertical geodesic which is the edge of
P . Continue along h, placing polygons in H2 according to their developing
image. Eventually, the horocycle will meet P again. When this happens, the
developing map will instruct us to glue a copy of P to the given edge. This
copy of P will be isometric to the original copy of P , where the isometry is
the holonomy of the closed path which encircles the ideal vertex once in v
(why?). This holonomy element takes the horocycle h on our original copy
of P to a horocycle h0. The horocycle h0 will be of distance d(v) from the
extension of h. See Figure 4.8.

Proposition 4.12. Let S be a surface with hyperbolic structure obtained
by gluing hyperbolic polygons. Then the metric on S is complete if and only
if d(v) = 0 for each ideal vertex v.

Before we prove this proposition, let’s look at an example.

Example 4.13 (Complete structures on the 3–punctured sphere). A
topological polygonal decomposition for the 3–punctured sphere consists of
two ideal triangles. See Figure 4.9.

Let’s try to construct a geometric polygonal decomposition by building
the developing image. We can put one of the ideal triangles in H2 as the
triangle with vertices at 0, 1, ∞. If we glue the other triangle immediately
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d

h

Figure 4.8. Extending a horocycle.

B

=
A

Figure 4.9. Topological polygonal decomposition for the 3–
punctured sphere.

yx0 1

BA A

Figure 4.10. We may choose any x > 1, y > x when finding
a hyperbolic structure.

to the right, we have two vertices at 1 and at ∞, but the third can go to
any point x, where x > 1. See Figure 4.10. These two triangles on the left,
labeled A and B, give a fundamental region for the 3–punctured sphere.
The developing image will be created by gluing additional copies of these
two triangles to edges in the figure by holonomy isometries.

We may choose the position of the next copy of the triangle A glued
to the right, putting its vertex at the point y as in Figure 4.10. After this
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ℓ1

x0 1

BA

ℓ3

ℓ2

Figure 4.11.

choice, notice we cannot choose where the next vertex of B to the right will
go. This is because the choice y determines an isometry of H2 taking the
triangle A on the left to the triangle labeled A on the right. This isometry
is exactly the holonomy element corresponding to the closed curve running
once around the vertex at infinity. The same isometry, which has been
determined with the choice of y, must take B in the middle to the next
triangle glued to the right in our figure. This is because the element of the
fundamental group taking B in the middle to the next triangle on the right
is exactly the same element of the fundamental group taking the triangle
labeled A on the left to the one labeled A on the right. Thus the holonomy
isometries must agree, and we cannot choose the next vertex of the triangle
on the right. In fact, now that we know this holonomy element, we may
apply it and its inverse successively to the triangles of Figure 4.10, and we
obtain the entire developing image of all triangles adjacent to infinity.

Recall that we want our hyperbolic structure to be complete. By Propo-
sition 4.12, we need to look at horocycles. Pick a collection of horocycles
about the vertices 0, 1, and ∞. Each of these horocycles extends to give
a new horocycle about another copy of A. Each copy of A is obtained by
applying a holonomy isometry to the original triangle with vertices at 0, 1,
and ∞. We want the horocycles obtained under these holonomy isometries
to agree with the horocycles obtained by extending the original horocycles.
This is the condition for completeness.

Here is a quick way to determine complete structures. Note that if the
extended horocycles agree with the image of the horocycles under holonomy
isometries, then the distances between horocycles will remain constant. Let
the distance between horocycles be given by lengths ℓ1, ℓ2, and ℓ3 as in
Figure 4.11.

If these lengths are to agree on each of the next copies of A under
holonomy elements, then notice these lengths must agree on the triangle
labeled B. Looking just at the vertical edges of B, one of them is already
the appropriate length (that from 1 to ∞). To make the other the correct
length, the horocycle at the vertex x to be the same (Euclidean) size as that
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...

0 1

BA

Figure 4.12. Part of developing image of an incomplete
structure on a 3–punctured sphere.

at the vertex 0. But then the length of the third edge of B is determined.
In order for this length to also be correct, we must set x = 2.

This analysis shows that there is exactly one complete structure on the
3–punctured sphere, a fundamental region for which is given by the two tri-
angles with vertices 0, 1, ∞ and 1, 2, ∞. Notice that the same discussion
of lengths of edges will tell us exactly where to place each of the next trian-
gles. We may create the entire developing image of the complete hyperbolic
3–punctured sphere by looking at lengths between horospheres.

Example 4.14 (An incomplete structure on the 3–punctured sphere).
What if we choose a different value for x besides x = 2? Say we let x = 3/2.
To simplify things, let’s keep the length of the edge between horocycles at
0 and 1 constant as we extend horocycles. Choose horocycles at 0 and 1
of (Euclidean) radius 1/2, so that these horocycles are tangent along the
edge between 0 and 1, hence the length of the edge between horocycles is
0. We will keep the length of this edge 0 under each holonomy element.
Then the horocycle about 3/2 must be tangent to the horocycle about 1, to
keep the length between horocycles on this edge equal to 0. This determines
where the next copy of the triangle A must go: its third vertex must have
a horocycle about it of the same (Euclidean) size as the horocycle at 3/2.
This determines the holonomy isometry about the vertex at infinity. Apply
this successively, and we obtain a pattern of triangles as in Figure 4.12.

Note the edges of the triangles approach a limit — the thick line shown
on the far right of the figure. Notice this line is not part of the developing
image of the 3–punctured sphere.

This hyperbolic structure is incomplete: a sequece of points running
along a horocycle about infinity in H2 projects to a Cauchy sequence that
does not converge. Alternately, the value d(v) is nonzero for v the ideal
vertex lifting to the point at infinity. The completion of this manifold is given
by attaching a geodesic of length d(v): each point of the geodesic corresponds
to the limiting point of the Cauchy sequence given by a horocycle about
infinity at the appropriate height. The triangles spiral around below this
geodesic infinitely often, while horocycles head straight into it.
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Proof of Proposition 4.12. Suppose d(v) is nonzero. Then take a
sequence of points on a horocycle about v. This gives a Cauchy sequence
that does not converge. Therefore, the metric is not complete.

Now suppose d(v) = 0 for each ideal vertex v. Then some horocycle
closes up around each ideal vertex, so we may remove the interior horoball
from each polygon. After this removal, the closure of the remainder is a
compact manifold with boundary. For any t > 0, let St be the compact
manifold obtained by removing interiors of horocycles of distance t from
our original choice of horocycle. Then the compact subsets St of S satisfy⋃

t∈R+ St = S and St+a contains a neighborhood of radius a about St. Any
Cauchy sequence must be contained in some St for sufficiently large t. Hence
by compactness of St, the Cauchy sequence must converge. �

4.3. Developing map and completeness

Here is a better condition for completeness that works in all dimensions
and all geometries.

Theorem 4.15. LetM be an n–manifold with a (G,X)–structure, where
G acts transitively on X, and X admits a complete G–invariant metric.
Then the metric on M inherited from X is complete if and only if the de-

veloping map D : M̃ → X is a covering map.

Proof. (C.f. Thurston [21, Proposition 3.4.15].) Suppose M is com-

plete. To show D : M̃ → X is a covering map, we show that any path αt in

X lifts to a path α̃t in M̃ . Since D is a local homeomorphism, this implies
that D is a covering map.

First, ifM is complete, then M̃ must also be complete, where the metric

M̃ is the lift of the metric on M , as follows. The projection to M of any
Cauchy sequence gives a Cauchy sequence in M , with limit point x. Then

x has a compact neigbhorhood which is evenly covered in M̃ , hence there

is a compact neighborhood in M̃ containing all but finitely many points of
the Cauchy sequence and also containing a lift of x. Thus the sequence

converges in M̃ .
Let αt be a path in X. Because D is a local homeomorphism, we may

lift αt to a path α̃t in M̃ for t ∈ [0, t0), some t0 > 0. By completeness of

M̃ , the lifting extends to [0, t0]. But because D is a local homeomorphism,
a lifting to [0, t0] extends to [0, t0 + ǫ). Hence the lifting extends to all of αt

and D is a covering map.
The converse, which may be proved by similar methods, is Exercise

4.11. �

4.4. Exercises

Exercise 4.1. Fact: Up to rescaling, all Euclidean structures on a torus
can be obtained by tiling the plane with parallelograms, and reading off
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charts as in Example 4.4. We may take one of the parallelograms to have
vertices at (0, 0), (1, 0), (p, q), and (p+ 1, q) for p > 0. Prove this fact.

Exercise 4.2. (Induced structures — Exercise 3.1.5 of Thurston [21]).
Let π : N →M be a local homeomorphism from a topological space N into
a manifold M with a (G,X)–structure. Prove N has a (G,X)–structure so
that π preserves the (G,X)–structure.

Exercise 4.3. Show that the following are equivalent for the manifold
M .

(a) M admits an (Isom(H2),H2)–structure.
(b) For each point x inM , there exists a neighborhood U of x isometric

to a ball in H2.

Exercise 4.4. Prove Claim 4.6. You may assume Exercise 4.3.

Exercise 4.5. Thurston [21, Exercise 3.4.1]. Prove Lemma 4.7. Also,

determine how φ
[α]
0 changes if we change the basepoint x0 or the initial chart

φ0.

Exercise 4.6. Thurston [21, Exercise 3.4.3]. Compute developing maps
and holonomies of a Euclidean and affine torus.

Exercise 4.7. Show d(v) is independent of initial choice of horocycle.

Exercise 4.8. How many incomplete hyperbolic structures are there on
a 3–punctured sphere? How can they be parameterized? Give a geometric
interpretation of this parameterization – i.e. relate the parameterization to
the developing image of the associated hyperbolic structure.

Exercise 4.9. A torus with 1 puncture has a topological polygonal
decomposition consisting of two triangles.

(a) Find a complete hyperbolic structure on the 1–punctured torus and
prove your structure is complete.

(b) Find all complete hyperbolic structures on the 1–punctured torus.
How are they parameterized?

Exercise 4.10. A sphere with 4 punctures has a topological polygonal
decomposition consisting of four triangles. Find all complete hyperbolic
structures on a 4–punctured sphere.

Exercise 4.11. Let M have a (G,X)–structure, where G acts transi-
tively on X, and X is a complete G–invariant metric space. Prove that if

the developing map D : M̃ → X is a covering map, then M is complete
under the metric inherited from X.



CHAPTER 5

Hyperbolic structures on knot complements

References for this section are Thurston’s book [21], and especially
Thurston’s 1979 Princeton notes [19], particularly Chapter 4. In these notes,
the example of the figure–8 knot is worked out in full detail (although you
may find the language of that chapter confusing, the pictures are helpful).

5.1. Geometric triangulations

In the last set of notes, we defined topological and geometric polygonal
decompositions of 2–manifolds. We can extend these notions to 3–manifolds.
In the first set of notes, we obtained topological ideal polyhedral decompo-
sitions for knot complements. We can restrict further:

Definition 5.1. Let M be a 3–manifold. A topological ideal triangu-
lation of M is a combinatorial way of gluing truncated tetrahedra (ideal
tetrahedra) so that the result is homeomorphic to M . Truncated parts will
correspond to the boundary of M .

Example 5.2. The figure–8 knot has a topological ideal triangulation
consisting of two ideal tetrahedra, as we saw in exercise 7 of the first set of
notes.

For a given knot complement, it is relatively easy to find topological
ideal triangulations. Take any polyhedral decomposition, for example the
one from the first set of notes. For each face of the polyhedral decomposition,
pick an ideal vertex and subdivide the face into triangles with one vertex at
the chosen ideal vertex. (Ensure that the same vertex is selected for faces
that are glued, so the gluing extends to a gluing of triangles.) Now for each
polyhedron, split off ideal tetrahedra by creating triangular faces.

5.1.1. An extended example: the 61 knot. We now work out an
example for the 61 knot carefully. We will see how to decompose the com-
plement into five tetrahedra. (In fact, the complement of the 61 knot can be
decomposed into four tetrahedra, but we won’t bother simplifying further
here.)

We start with a polyhedral decomposition of the 61 knot. We use the
decomposition obtained using the methods of Chapter 2. The result is shown
in Figure 5.1, with the knot on the left, the top polyhedron in the center
(viewed from inside), and the bottom polyhedron on the left (viewed from
outside).

41
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Figure 5.1. Left: The 61 knot. Middle: Top polyhedron
(from inside). Right: Bottom polyhedron (from outside).

Figure 5.2. Left: Top polyhedron with no bigons (from
inside). Right: Bottom polyhedron with no bigons (from
outside).

The next step is to collapse all bigons. When we do so, edges in Figure
5.1 labeled 2 become edges labeled 1 with opposite orientation. Edges 3, 5,
and 6 are collapsed to edge 4, with 3 and 5 switched to 4 with the opposite
orientation, and 6 switched to 4 with the same orientation. The result is
shown in Figure 5.2.

Now subdivide faces C and D into triangles. We subdivide those on the
top first. Note this forces the subdivision of C and D on the bottom, to
match the top. One choice of subdivision is shown in Figure 5.3.

Next we split these polyhedra into tetrahedra, by cutting off tetrahedra
chunks. That is, cut along a new face to split the polyhedra into tetrahedra.
We do two such moves on the top polyhedron. These are shown in Figures
5.4 and 5.5.

Now we split the bottom polyhedron into smaller chunks, by cutting
along triangular faces, splitting off four ideal vertices at a time. We perform
two cuts on the bottom polyhedron, shown in Figures 5.6 and 5.7.

Notice that the polyhedron on the left in Figure 5.7 is not a tetrahedron:
the edges labeled 7 and 10 in that polyhedron form a bigon, which collapses
to a single edge which we label 7. When we do the collapse, the faces E4 and
D2 collapse to a single triangle, which we will label D2. The faces E3 and
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Figure 5.3. A subdivision of faces C and D in the top poly-
hedron (left) leads to a subdivision of the bottom (right)

Figure 5.4. Cut along a new face E1 (dashed on the left) to
split polyhedron into one tetrahedron (middle) and another
ideal polyhedron (right). We will cut the polyhedron on the
right along the face E2.

Figure 5.5. Cut the polyhedron on the right of Figure 5.4
along the face E2 to split it into the two tetrahedra shown
above.

D3 also collapse to a single triangle, which we will label D3. The resulting
tetrahedra are shown in Figure 5.8.
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Figure 5.6. Cut the bottom polyhedron along a triangle E3

on left, splitting into two polyhedra shown middle and right.
We will next cut along the triangle E4 shown on right.

Figure 5.7. Cutting along E4 in Figure 5.6 yields the two
polyhedra shown above.

Figure 5.8. Two tetrahedra remain from the original bot-
tom polyhedron after collapsing degenerate polyhedra.

When we have finished, we have five tetrahedra that glue to give the
complement of the 61 knot. All five tetrahedra with their edges and faces
labeled are shown in Figure 5.9.

5.1.2. Geometric ideal triangulations.

Definition 5.3. A geometric ideal triangulation of M is a topological
ideal triangulation such that each tetrahedron has a geometric structure,
and the result of gluing is a smooth manifold with a complete metric.
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Figure 5.9. Five tetrahedra which glue to give the comple-
ment of the 61 knot.

We will eventually see that every hyperbolic 3–manifold M has a geo-
metric ideal polyhedral decomposition, called the canonical polyhedral de-
composition. However, subdividing this decomposition into tetrahedra may
create degenerate tetrahedra — actual topological tetrahedra (as opposed
to the object labeled (5) in example 5.1.1), but tetrahedra that are flat or
negatively oriented in the hyperbolic structure on M .

The following questions are unknown (i.e. you may do a final project on
any of them). They are listed in decreasing order of generality.

Open Problem 5.4. Does every hyperbolic manifold have a geometric
ideal triangulation?

Open Problem 5.5. Does every hyperbolic knot complement have a
geometric ideal triangulation?

Open Problem 5.6. Does every complement of a hyperbolic alternating
knot have a geometric ideal triangulation?

As far as I am aware, only 2–bridge knots are known to have a geometric
ideal triangulation.

Open Problem 5.7. Prove that for some other large class of knots, all
knots in the class have a geometric ideal triangulation.

5.2. Gluing equations

In the 3rd set of notes, we saw that a gluing of polygons has a hyperbolic
structure if and only if the angle sum around each finite vertex is 2π (in
exercise). There are similar conditions for a gluing of hyperbolic tetrahedra.
We now need to consider gluing around an edge. First, consider edges of
ideal tetrahedra.

Any ideal tetrahedron has six edges. Recall: If we select any one, say
e, we may put the endpoints of e at 0 and ∞, send a third vertex to 1,
and the fourth vertex will be some z′ ∈ C. We may assume that z′ has
positive imaginary part, for if not, apply an isometry of H3 rotating around
the geodesic from 0 to ∞ and rescaling so that z′ maps to 1. The image
of 1 under this isometry will be the desired complex number. For the edge
e, define the number z(e) in C to be the complex number with positive



46 5. HYPERBOLIC STRUCTURES ON KNOT COMPLEMENTS

z(e1)z(e2)z(e3)

e1
e2

0 1

z(e1)

z(e1)z(e2)

e3

Figure 5.10. Vertices of attached triangles.

imaginary part we obtain from this process. This is called the edge invariant
of e.

Now consider a gluing of ideal tetrahedra. Fix an edge e of the gluing,
and let T1 be a tetrahedron which has edge e1 glued to e. Put T1 in H3

with the edge e1 running from 0 to ∞, with a third vertex at 1, and the
fourth vertex at z(e1), where z(e1) has positive imaginary part. The gluing
identifies each face of T1 with another face. Let F1 denote the face of T1
with vertices 0, z(e1), and ∞. This is glued to a face F ′

1 in some tetrahedron
T2, where the edge e2 in T2 glues to e.

Now, we could put T2 in H3 with vertices at 0, ∞, 1, and z(e2), but
since we’re gluing to T1, we want the face F ′

1 to have vertices 0, ∞, and
z(e1) rather than vertices 0, ∞, and 1. Thus to do the gluing, we apply an
isometry of H3 fixing 0 and ∞, mapping 1 to z(e1). This takes the fourth
vertex of T2 to z(e1)z(e2).

Continue attaching tetrahedra counterclockwise around e. The next
tetrahedron attached will have vertices 0, ∞, z(e1)z(e2), and z(e1)z(e2)z(e3) ∈
C. See Figure 5.10. Eventually one of the tetrahedra will be glued to T1
again. The fourth vertex of the final tetrahedron will be at z(e1)z(e2) · · · z(en).

Theorem 5.8 (Gluing equations). Let M3 admit a topological ideal
triangulation such that each ideal tetrahedron has a hyperbolic structure.
The hyperbolic structures on the ideal tetrahedra induce a hyperbolic struc-
ture on the gluing, M , if and only if for each edge e,

∏
z(ei) = 1 and∑

arg(z(ei)) = 2π, where the product and sum are over edges that glue to e.

Proof. The hyperbolic structure on the tetrahedra induces a hyperbolic
structure onM if and only if every point inM has a neighborhood isometric
to a ball in H3. Consider a point on an edge. If it has a neighborhood
isometric to a ball in H3 then the sum of the dihedral angles around the edge
must be 2π. See Figure 5.11. This sum of dihedral angles is

∑
arg(z(ei)).

Moreover there must be no nontrivial translation as we move around the
edge. Since the last face of the last triangle glues to the triangle with
vertices 0, 1, and ∞, this condition requires that

∏
z(ei) = 1.
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Figure 5.11. Left: Angle sum must be 2π. Right: An ex-
ample of why this condition is important.

Conversely, if we have
∏
z(ei) = 1 and

∑
arg(z(ei)), then the developing

image around the edge gives a smooth hyperbolic structure. �

The equations
∏
z(ei) = 1 (and restrictions

∑
arg(z(ei))) are called the

gluing equations. We have one for each edge.
How many hyperbolic structures does this give us? Each ideal tetrahe-

dron has six edges. Are there 6t unknowns in the gluing equations, where t
is the total number of tetrahedra? No — we can determine the number of
unknowns for each tetrahedron by applying Möbius transformations.

(This was exercise (3.8) in Chapter 3 of the notes, but nobody did it in
class.)

Put edge e1 running from 0 to ∞, with a third vertex at 1 and the
fourth vertex at z. The edge invariant z(e1) = z. Let e2 be the edge
running from 1 to ∞. What is its edge invariant? To determine z(e2), we
apply a Möbius transformation fixing ∞, taking 1 to 0, and taking z to 1.
This transformation is given by

w 7→ w − 1

z − 1
.

It sends 0 to −1/(z − 1). Thus z(e2) = 1/(1 − z).
As for the edge e3 running from z to ∞, to determine its edge invariant

we apply a Möbius transformation fixing ∞, sending z to 0, and sending 0
to 1. This is given by

w 7→ w − z

−z .

It sends 1 to (1− z)/(−z). Thus z(e3) = (z − 1)/z.
Summarizing, we have:

(1) z(e1) = z z(e2) =
1

1− z
z(e3) =

z − 1

z

Note we have the following relationships for these edge invariants.

z(e1)z(e2)z(e3) = −1

1− z(e1) + z(e1)z(e3) = 0
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z

e1 e2

e3

0 1

z(e2) =
1

1−z

z(e3) =
z−1

z

z(e1) = z

Figure 5.12. Edge invariants

Finally, the tetrahedron has three additional edges. By the proof of part
(b) of exercise (7) from the notes part 2, opposite edges have identical edge
invariants. Thus one ideal tetrahedron contributes at most one unknown to
the gluing equations.

Example 5.9 (Gluing equations for figure–8 knot). We saw in the first
set of notes that the figure–8 knot decomposes into two ideal tetrahedra.
Choose the two tetrahedra to be regular. That is, all dihedral angles are
π/3. We claim that this gives a hyperbolic structure on the figure–8 knot
complement.

We wish to find all such structures.
Thurston worked through this example in detail in his notes [19, pages

50–52]. We recall his work here.
Figure 5.13 is from page 51 of [19]. This shows the two tetrahedra in

the decomposition of the figure–8 knot complement, which we obtained in
Chapter 2. These tetrahedra differ from ours in the following ways. First,
the bottom tetrahedron agrees with ours, except that all edges have been
reversed. The top doesn’t look like ours because in Chapter 2, recall that we
created the top polyhedron with our head on the inside. To get Thurston’s
picture, we need to move our head to the outside. This reflects the polyhd-
edron. After a rotation, we see that the decomposition agrees with ours.

Note there are two edge classes in the tetrahedra in Figure 5.13, labelled
with one or two lines on the edge. However, each tetrahedron has three com-
plex numbers, z1, z2, z3 and w1, w2, w3, respectively, which will give gluing
consistency equations. We read these off of the two edges.

For the edge with one line through it, we have:

z21z2w
2
1w2 = 1.

For the edge with two lines:

z23z2w
2
3w2 = 1.

We set z1 = z and w1 = w. From equations (1), we obtain:

z2
(
z − 1

z

)
w2

(
w − 1

w

)
= 1,
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Figure 5.13. The ideal tetrahedra of the Figure–8 knot,
from [19].

or

z(z − 1)w(w − 1) = 1.

Solve for z in terms of w:

(2) z =
1±

√
1 + 4/(w(w − 1))

2
.

We need the imaginary parts of z and w to be strictly greater than 0. For
each value of w, there is at most one solution for z with positive imaginary
part. The solution exists provided that the discriminant 1 + 4/(w(w − 1))
is not positive real. Solutions are parameterized by the region of C shown
in Figure 5.14.

Notice that

z = w = 3
√
−1 =

1

2
+

√
3

2
i

is a solution to the equations. We will see that this gives a complete hyper-
bolic structure on the complement of the Figure–8 knot.
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2−1

2i

i

1

3i

0

Figure 5.14. Solutions to gluing equations for the Figure–8
knot complement are parametrized by the above region.

5.3. Completeness equations

Definition 5.10. LetM be a 3–manifold with torus boundary. Define a
cusp, or cusp neighborhood ofM to be a neighborhood of ∂M homeomorphic
to a torus cross an interval.

A hyperbolic structure onM induces an affine structure on the boundary
of any cusp of M .

Theorem 5.11. Let M be a 3–manifold with hyperbolic structure, i.e.
with (Isom(H3),H3)–structure. Then the structure on M is complete if and
only if for each cusp of M , the induced structure on the boundary of the
cusp is a Euclidean structure on the torus.

Proof. Exercise. �

Definition 5.12. If M has a topological ideal triangulation, then by
looking at truncated vertices of the corresponding ideal tetrahedra we obtain
a triangulation of each boundary torus. Call this a cusp triangulation.

Let M be a 3–manifold which admits a topological ideal triangulation
and a hyperbolic structure on each tetrahedron such that the structure sat-
isfies the gluing equations of Theorem 5.8. Let T be the boundary of a cusp
of M , and let α ∈ π1(T ). We may associate a complex number H(α) to α
as follows.

Algorithm 5.13. Lift the cusp triangulation to the universal cover.
Fix a directed edge e of the triangulation. Some covering transformation Tα
takes the directed edge to another directed edge. Two directed edges may
be connected by a path through the triangulation, where each step of the
path is rotation around some vertex of a triangle, taking the edge of the
triangle to the other edge of the triangle through that vertex, preserving the
given direction on the edge.

Now, each vertex of the cusp triangulation corresponds to an edge of the
triangulation, hence has an associated edge invariant. To obtain H(α), do
the following algorithm.
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w6

z1

z2

z3

z4

z5

z6

e Tα(e)

w1 w2 w3 w4 w5

Figure 5.15. Figure of Example 5.14.

Start with H = 1

• If the next step of the path is a counterclockwise rotation about a
vertex with associated edge invariant z, then replace H by zH.

• If instead the next step is clockwise rotation about a vertex with
associated edge invariant z, replace H by H/z.

At the end of the path, if the direction on the edge obtained by the path of
rotations does not match the direction of Tα(e), then replace H with −H.

Set H(α) = H.

Example 5.14. If e and Tα(e) are as shown in Figure 5.15, then H(α)
is given by

H(α) = z1z
−1
2 z3z

−1
4 z5z

−1
6 .

Alternately, we have

H(α) = w−1
1 w−1

2 z−1
2 w−1

3 w−1
4 z−1

4 w−1
5 w−1

6 z−1
6 (−1).

You should check that these give the same complex number, using relation-
ships between edge invariants in a single triangle.

Proposition 5.15. Let T be the torus boundary of a cusp neighborhood
of M , where M admits a topological ideal triangulation, and the ideal tetra-
hedra admit hyperbolic structures that satisfy the gluing equations (Theorem
5.8). Let α and β generate π1(T ). If H(α) = H(β) = 1, then the ideal
triangulation is a geometric ideal triangulation.

In other words, the hyperbolic structure onM induced by the hyperbolic
structures on the tetrahedra will be a complete structure. The equations
H(α) = 1 and H(β) = 1 are called the completeness equations.

Proof sketch. By Theorem 5.11, it suffices to show that the induced
structure on T is Euclidean. To show this, we need to show that Tα and
Tβ are pure translations. Since H(α) = 1, the edge e is not rotated by Tα,
nor is its length scaled. Thus Tα is a pure translation, so an isometry of
E2. Similarly for Tβ. Then the holonomy group of T is generated by pure
translations, hence the induced structure on T is Euclidean. �

Example 5.16. The figure–8 knot complement has a complete hyper-
bolic structure if and only if triangulation extends to give a Euclidean struc-
ture on the torus at infinity. Thurston finds the triangulation of the cusp
on page 53 of [19]. He shows how to obtain completeness equations on page
54.
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Figure 5.16. Finding the cusp triangulation of the Figure–8
knot complement, from page 53 of [19].

We include his figures here.
First, finding the cusp triangulation, in Figure 5.16. Note we draw

a small triangle around each ideal vertex of the tetrahedra, then follow
through the gluing of the faces of the tetrahedra to determine how these
smaller triangles glue up.

Next, we find the completeness equations. This is done in Figure 5.17.
We use generators x and y shown in that figure, and the algorithm given
above.

Following that figure, we find that

H(x) = z21(w2w3)
2 =

( z
w

)2

(3) H(y) =
w1

z3
= w(1 − z).

If the hyperbolic structure is complete, then by Proposition 5.15, H(x) =
H(y) = 1, so z = w. From equation (2), (z(z−1))2 = 1. From equation (3),
z(z − 1) = −1. Hence the only possibility is z = w = 3

√
−1.

5.4. Exercises

Exercise 5.1. Write down the gluing equations (not completeness equa-
tions) for the 61 knot, using the ideal tetrahedra of the handwritten example
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4.12

Figure 5.17. Finding the completeness equations for the
Figure–8 knot, from page 54 of [19].

5.1.1. Make appropriate substitutions such that your equations contain ex-
actly one variable per tetrahedron.

Exercise 5.2. Notice that for both the figure–8 knot complement and
for the 61 knot, we had exactly the same number of edges as tetrahedra in
the ideal triangulation.

(a) Prove that this will always be true. That is, prove that if M is any
3–manifold with (possibly empty) boundary consisting of tori, then
for any topological ideal triangulation of M , the number of edges
of the triangulation will always equal the number of tetrahedra.

(b) Since we have one unknown per ideal tetrahedra, part (a) implies
that the number of gluing equations will equal the number of un-
knowns. However, in fact the gluing equations are always redun-
dant. Prove this fact.

Exercise 5.3. In notes 1, we found a polyhedral decomposition of the
52 knot complement (without bigons).

(a) By adding edges and faces, split this into a topological ideal trian-
gulation of the knot complement.

(b) Write down all edge parameters and all gluing equations, one vari-
able per tetrahedron.

Exercise 5.4. Find a topological ideal triangulation of the 63 knot, edge
parameters, and gluing equations.

Exercise 5.5. For the topological triangulation of the 52 knot of exercise
5.3:

(a) Find the triangulation of the cusp. Label a fundamental domain,
and meridian and longitude.
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(b) Write down completeness equations.

Exercise 5.6. Find the cusp triangulation for the complement of the
61 knot from Example 5.1.1.

Exercise 5.7. Find completeness equations for the 61 knot.

Exercise 5.8. Find completeness equations for the 63 knot.

Exercise 5.9. Prove Theorem 5.11.

Exercise 5.10. What breaks down when you try to follow this procedure
for non-hyperbolic knots and links, such as the trefoil or the (2, 4)–torus link?



CHAPTER 6

Completion and Dehn filling

In this chapter, we examine completions of incomplete hyperbolic struc-
tures.

6.1. Mostow–Prasad rigidity

In Chapter 4 in the exercises, we found 2–parameter families of complete
hyperbolic structures on the punctured torus and on the 4–punctured sphere.
This flexibility is only possible in two dimensions. In higher dimensions,
there is only one complete structure on a finite volume hyperbolic manifold,
up to isometry. This result is known as Mostow–Prasad rigidity.

Theorem 6.1 (Mostow–Prasad rigidity, algebraic version). Suppose Γ1

and Γ2 are two discrete subgroups of the group of isometries of Hn, n ≥ 3,
such that Hn/Γi has finite volume, and suppose φ : Γ1 → Γ2 is a group
isomorphism. Then Γ1 and Γ2 are conjugate subgroups.

View Hn as the universal cover of Mi = Hn/Γi, with Γi the fundamental
group of Mi. Then if Γ1 and Γ2 are conjugate, then the manifolds Hn/Γ1

and Hn/Γ2 are isometric.

Theorem 6.2 (Mostow–Prasad rigidity, geometric version). If Mn
1 and

Mn
2 are complete hyperbolic manifolds with finite volume, any isomorphism

of fundamental groups φ : π1(M1) → π1(M2) is realized by a unique isome-
try.

We aren’t going to cover the proof of this theorem in this class. Thurston
sketches a proof in section 5.9 in his notes [19]. A more complete proof is
contained in the book by Benedetti and Petronio [3], Chapter C.

The theorem says that any complete hyperbolic structure we find on a
knot or link complement, or any n–manifold with finite volume, is the only
complete structure, provided n is at least 3. This is one reason hyperbolic
geometry makes nice knot invariants.

6.2. Completion of incomplete structures on hyperbolic

manifolds

Good references for this section again include Benedetti and Petronio
[3, Chapter E]. Cooper, Hodgson, and Kerckhoff also have a nice book that
describes carefully different behavior of the completion of various incomplete
manifolds [4]. Ratcliffe also works through this in detail [15, Section 10.5].

55
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...

0 1

BA

Figure 6.1. Incomplete structure on a 2–manifold.

What about incomplete structures on a manifold with torus boundary?
There are lots of these. For the figure–8 knot complement, for example, we
found a 1–complex parameter family of incomplete structures, parameterized
by w ∈ C with Im(w) > 0. If we take the completion of a hyperbolic
structure on a 3–manifold, we obtain surprising topological results.

6.2.1. 2–manifolds. As a warm up, let’s consider completions of in-
complete structure on 2–manifolds. In Chapter 4, we saw an example of
an incomplete structure on a hyperbolic 3–punctured sphere. Recall that in
the developing map for an incomplete structure, ideal polygons approached
a limiting line. By selecting a point on a horocycle about infinity, approach-
ing this line, we obtained a Cauchy sequence that did not converge. See
Figure 4.12.

Now take the completion of this hyperbolic structure. We will need to
adjoin a point on a horocycle, so that this Cauchy sequence will converge.
Note we will need to adjoin a single point for each distinct horocycle. Recall
also the invariant d(v) — the distance between a horocycle and its translate
under the holonomy of the curve going around the ideal vertex. Notice
that horocycles of distance d(v) apart will be identified, and so to form the
completion of the manifold, we adjoin a single point for all of these.

In total: we will adjoin a segment of the limiting line of length d(v)
to our manifold to form the completion. This attaches a geodesic. Ideal
triangles spiral around the geodesic, never quite reaching it, but horocycles
run straight into the geodesic, meeting it and edges of ideal triangles at right
angles along the way. See Figure 6.2.

6.2.2. 3–manifolds. We learned in Chapter 5 that if a hyperbolic
structure on a triangulated 3–manifold with torus boundary is not com-
plete, then for an ideal vertex v, the holonomy of link(v) acts on a horo-
sphere by affine, not Euclidean transformations. Thus link(v) inherits an
affine, but not Euclidean, structure in the incomplete case. (Recall link(v)
is the boundary of a neighborhood about v. In Exercise 6.7 you will show
link(v) is always a torus.)
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Figure 6.2. An example of the completion of a hyperbolic
2–manifold. This figure is from [19].

Let α and β generate π1(link(v)) ∼= Z × Z. Corresponding to α and β
are two holonomy isometries. We will abuse notation slightly and refer to
these isometries as α and β. Assume the action of α and β does not induce
a Euclidean structure on link(v), so the hyperbolic structure on M is not
complete. To form its completion, we remove a small neighborhood N(v)
of v, take the completion of N(v), and then reattach it to M . We need to
analyze what this neighborhood looks like.

Consider the developing map for the affine torus link(v). The image will
miss single point, and will look something like the developing image of the
affine torus shown in Figure 4.2 in Chapter 4. This image is obtained by
considering the action of α and β restricted to a horosphere. More precisely,
if M has an ideal polyhedral decomposition, then we build its developing
image by starting with an ideal polyhedron in H3, lifting so that ∞ projects
to v. Intersect the polyhedron with a horosphere about infinity. This gives
a Euclidean polygon on the horosphere. Now the gluing map (developing
map) tells us exactly how to glue polyhedra to the original polyhedron.
The horosphere intersects these attached polyhedra in new polygons, glued
to the first. Just by intersecting polyhedra with polygons, we obtain the
developing image of link(v). Notice that the holonomy for this restriction to
the selected horosphere is generated by α and β alone: only the gluing maps
about the cusp come into play. Others move us away from the horosphere
about infinity.

If we shift the original choice of horosphere up, we will see the same
image of the developing map on polyhedra. In particular, the developing
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map will still miss a single point, with the same complex value for each
choice of horosphere. These missed points form a vertical geodesic in H3.
We may apply an isometry so that this vertical geodesic runs from 0 to ∞
in H3. Let N(v) denote a neighborhood of the ideal vertex v. By shrinking
N(v), if necessary, the above shows that the developing image of N(v) misses
the single geodesic from 0 to ∞ in H3.

Clearly the completion of N(v) is obtained by adjoining (some portion
of) this geodesic. As in the case of incomplete 2–manifolds, the length of
the adjoined geodesic will be determined by considering the action of the
holonomy. Note α and β act on the geodesic from 0 to ∞. Since points
in our completion should be identified to their images under the holonomy
action, we should identify each point z on the geodesic from 0 to ∞ with
〈α, β〉 · z. There are two cases.

Case 1. The image of z under the action of α and β is dense in the line
from 0 to ∞. In this case, the completion is the one–point compactification.
It is not a manifold. (Exercise.)

Case 2. The image of z is a discrete set of points on the line, each of
some distance d(v) apart. Then the completion is obtained by adjoining a
geodesic circle of length d(v) to N(v). Denote the completion by ¯N(v). We
wish to understand the topology and geometry of ¯N(v).

Let ζ ∈ π1(link(v)) generate the kernel of the action of π1(link(v)) on the
line from 0 to ∞. The isometry ζ will be a rotation about this line by some
angle θ. Now a perpendicular cross section of the circle added to ¯N(v) to
form the completion will be a hyperbolic cone, of cone angle θ. This makes
sense even when θ > 2π.

When we attach ¯N(v) back to M , the result M̄ is called a hyperbolic
cone manifold . Its cone angle is θ. The added geodesic circle in M̄ is the
singular locus of M̄ . Note the hyperbolic metric on M̄ is smooth everywhere
except at points on the singular locus.

When θ = 2π, the hyperbolic metric on M̄ is now actually smooth
everywhere. Thus M̄ is some hyperbolic manifold. However, M̄ will not be
homeomorphic to M .

We may obtain a manifold homeomorphic to M by removing a small,
closed tubular neighborhood of the singular locus in M̄ . Notice that a
tubular neighborhood of a circle is a solid torus. Since the singular locus in
M̄ is a circle, a tubular neighborhood of it is homeomorphic to a solid torus.
Thus we obtain a manifold homeomorphic to M̄ by attaching a solid torus
to a torus boundary component of M .

Definition 6.3. Let M be a manifold with torus boundary component
T . Let s be an isotopy class of simple closed curves on T . The manifold
obtained from M by attaching a solid torus to T so that s bounds a disk in
the resulting manifold is called the Dehn filling of M along s and is denoted
M(s).
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Conclusion: when the holonomy ρ(π1(link(v))) acts on the geodesic omit-
ted from its developing image by a fixed translation, and when the generator
ζ ∈ π1(link(v)) of the kernel is a rotation by 2π, then the completion ofM is
a complete hyperbolic manifold, homeomorphic to the Dehn filled manifold
M(ζ).

6.3. Hyperbolic Dehn surgery space

We re-interpret the above section in the language of complex lengths of
isometries of H3.

Anytime M admits a hyperbolic structure and a decomposition into
hyperbolic ideal polyhedra, we can show link(v) is a torus for each ideal
vertex v (exercise). The fundamental group of the torus is isomorphic to
Z × Z, generated by some α and β. (When M is a knot complement, it
is standard to choose α to be the meridian, i.e. a curve bounding a disk
in S3, and β to be the longitude, i.e. the curve homologous to 0 in M .)
Consider the holonomy elements of α and β. These are some isometries of
H3. As above, we will continue to abuse notation and denote the holonomy
isometries corresponding to α and β by α and β.

Recall the classification of isometries of H3. Any isometry is one of three
types:

(1) Parabolic, with a single fixed point on the boundary at infinity.
When we conjugate such that the fixed point is at infinity, these
are translations z 7→ z + a for some a ∈ C.

(2) Elliptic, fixing two points on the boundary at infinity. Conjugating
such that the two fixed points are 0 and ∞, this is a rotation about
the geodesic from 0 to ∞. The geodesic fixed by the rotation is
called the axis of the isometry.

(3) Loxodromic, or hyperbolic. Again there are two fixed points on the
boundary at infinity, but the isometry translates and rotates along
the geodesic between them. This geodesic is again called the axis
of the isometry.

Since α and β generate Z×Z, they must commute. This is possible only
if α and β are parabolic, fixing the same point at infinity, or if α and β share
the same axis (exercise).

If α and β are parabolic, fixing a point at infinity, then they must fix an
entire horosphere about infinity. Conjugating to put their fixed point at ∞
in ∂H3, they are of the form α(z) = z+ a, β(z) = z+ b. Hence they restrict
to Euclidean isometries on the horosphere, and the hyperbolic structure is
complete.

Now consider incomplete structures. In this case, because α and β com-
mute but are not parabolic, they share an axis, and are both given by
rotation and/or translation along this axis. In particular, the axis must be
exactly the vertical geodesic whose points are omitted from the developing
image of link(v) for each horosphere.
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Definition 6.4. Fix a direction on the axis of α and β. Any element γ
of π1(link(v)) translates some signed distance d along the axis, and rotates
by total angle θ ∈ R, where the sign of θ is given by the right hand rule.
Let L(γ) = d + iθ. The value L(γ) is called the complex length of γ. This
defines a function L from π1(link(v)) = H1(link(v);Z) to C.

Notice that if γ = pα+ qβ, then L(γ) = pL(α) + qL(β), so L is a linear
map. We may extend it canonically to a linear map L : H1(link(v);R) → C.
The value L(c) for any c ∈ H1(link(v);R) ∼= R2 will be called the complex
length of c.

Suppose that the complex length of a simple closed curve γ on T =
link(v) equals 2πi. Then in the completion of M , γ will bound a smooth
hyperbolic disk. This implies that the completion ofM is a manifold homeo-
morphic to the Dehn filled manifoldM(γ), and thatM(γ) admits a complete
hyperbolic structure.

Suppose instead that the complex length of a closed curve γ on T equals
θi. Then in the completion of M , γ will bound a hyperbolic cone, with
cone angle θ. The completion of M is still homeomorphic to the Dehn
filled manifold M(γ) (since a hyperbolic cone is homeomorphic to a disk).
However, the metric on M(γ) inherited from the completion of M is not
smooth. The core of the added solid torus is the singular locus, with cone
angle θ.

Most generally, there will be a unique element c ∈ H1(T ;R) so that
L(c) = 2πi.

Definition 6.5. We say c ∈ H1(T ;R) such that L(c) = 2πi is the Dehn
surgery coefficient of the boundary component T = link(v).

When c is of the form (p, q), with p and q relatively prime integers, it
corresponds to a simple closed curve and the completion is smooth.

We have been looking at a fixed incomplete hyperbolic structure on
M , and examining possible completions for this fixed structure. Now we
turn our attention to a topological manifold X, homeomorphic to M , and
consider all possible hyperbolic structures on X.

Definition 6.6. Let X be a 3–manifold with boundary component T .
The subset of H1(T ;R) consisting of Dehn surgery coefficients of hyperbolic
structures on X is called the hyperbolic Dehn surgery space for X.

If X admits a complete hyperbolic structure, then we let ∞ correspond
to the complete hyperbolic structure on X.

Theorem 6.7 (Thurston’s hyperbolic Dehn filling theorem). Suppose
X is a 3–manifold with boundary a single torus T , such that X admits a
complete hyperbolic structure. Then hyperbolic Dehn surgery space for X
always contains an open neighborhood of ∞.

More generally, if X has torus boundary components T1, . . . , Tn, and
admits a complete hyperbolic structure, then the hyperbolic Dehn surgery
space for X contains an open neighborhood of ∞ for each Ti.
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The proof of Theorem 6.7 is sketched in Thurston’s notes [19], and done
carefully in Benedetti and Petronio for triangulated 3–manifolds [3]. Precise,
universal bounds on the size of that open neighborhood of ∞ were given by
Hodgson and Kerckhoff [7], about 25 years after Theorem 6.7 was proved.
With the resolution of the geometrization conjecture, this result can also
be proved by using results of Agol and Lackenby [1, 9], and then applying
geometrization. (All the proofs require work.)

Corollary 6.8. Let X be a manifold with torus boundary that admits
a complete hyperbolic metric. Then there are at most finitely many Dehn
fillings of X which do not admit a complete hyperbolic metric.

Corollary 6.9. Let X be a manifold with torus boundary components
T1, . . . , Tn. For each Ti, exclude finitely many Dehn fillings. Remaining
Dehn fillings yield a manifold with a complete hyperbolic structure.

Notice that Corollary 6.9 does not rule out the fact that a manifold
may have infinitely many non-hyperbolic Dehn fillings. For example, the
Whitehead link complement admits a complete hyperbolic structure. The
trivial Dehn filling on one gives an unknotted circle in S3. Any Dehn filling
of this result will be a lens space, which is not hyperbolic (exercise). So
there are infinitely many non-hyperbolic Dehn fillings. However, Corollary
6.9 does imply that these non-hyperbolic Dehn fillings are more rare than
hyperbolic ones.

The following is sometimes called the Fundamental Theorem of Wallace
and Lickorish. It was proved independently by Wallace and Lickorish in the
early 1960’s. A nice, highly readable proof can be found in Rolfsen’s book
[16].

Theorem 6.10 (Fundamental theorem of Wallace and Lickorish). Let
M be a closed, orientable 3–manifold. Then M is obtained by Dehn filling
the complement of a link in S3.

Moreover, again work of Thurston implies we may actually take the
complement of the link in S3 of Theorem 6.10 to admit a complete hy-
perbolic structure. Thus Thurston’s theorem on Dehn fillings, along with
Wallace and Lickorish’s theorem implies that, in some sense, “almost all”
3–manifolds are hyperbolic.

Open Problem 6.11. What is the topology of hyperbolic Dehn surgery
space? For example, is it connected? Is it path connected? That is, if a
finite volume manifold M(s) admits a complete hyperbolic structure, and if
M also admits a complete hyperbolic structure, is there necessarily a smooth
deformation of the hyperbolic structure running from the complete structure
on M to the complete structure on M(s)? Is it star shaped? That is, if
M(s) admits a complete hyperbolic structure, and M admits a complete
hyperbolic structure, can we deform the hyperbolic structure on M through
cone manifolds with cone angles increasing monotonically from 0 (at the
complete structure on M) to 2π (at the complete structure on M(s))?
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Figure 6.3. Hyperbolic Dehn surgery space for the figure–
8 knot complement is known to include the lightly shaded
region, is conjectured to contain the darkly shaded regions,
and is conjectured to contain no other points.

We don’t even know if hyperbolic Dehn filling space is connected for
the simplest of examples — the figure–8 knot complement. Thurston did
identify part of the boundary of the neighborhood about infinity separating
hyperbolic Dehn fillings from non-hyperbolic ones. This is done on pages 58
through 61 of his notes [19]. To determine these boundaries, he considers
what is happening to the two hyperbolic structures on the tetrahedra as
the values of their edge invariants approach the boundaries given by the
gluing equations (the boundaries of the region in Figure 5.14). When both
tetrahedra degenerate, the hyperbolic structure collapses and the limiting
manifold is not hyperbolic.

However, when only one tetrahedron degenerates, we still have a hyper-
bolic structure for a little while. In this case, we will be gluing a positively
oriented tetrahedron to a negatively oriented one. We can make sense of
this by cutting the negatively oriented tetrahedron into pieces and subtract-
ing them from the positively oriented one, leaving a polyhedron P . Faces
of P may then be identified to give a hyperbolic structure. No one knows
exactly where this stops working, although Hodgson’s 1986 PhD thesis [6]
gives evidence that the boundary should be as shown in Figure 6.3.

In Exercise 6.1, you are asked to study how tetrahedra degenerate in the
figure–8 knot complement.

Open Problem 6.12. Completely characterize hyperbolic Dehn surgery
space for the figure–8 knot complement. See Figure 6.3.

Dehn fillings that do not yield a hyperbolic manifold are called excep-
tional . There are still many open problems on exceptional Dehn fillings.

For example, no hyperbolic manifold can contain an embedded 2–sphere
that does not bound a 3–ball (exercise). A manifold that contains such
a 2–sphere is called reducible. If you start with a hyperbolic 3–manifold,
perform Dehn filling, and obtain a reducible manifold, the Dehn filling is
called reducible.
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Open Problem 6.13 (The cabling conjecture). No hyperbolic knot com-
plement admits a reducible Dehn filling.

The original wording of the cabling conjecture was that only cables of
knots admitted reducible Dehn fillings. The conjecture listed as Open Prob-
lem 6.13 is the only remaining case to prove. A solution of the problem will
probably involve hyperbolic geometry of knot complements, maybe includ-
ing an examination of the surfaces sitting inside the knot complement.

A related open problem concerns lens spaces. Note lens spaces are an-
other class of non-hyperbolic manifolds (exercise). There is no way to put
a complete hyperbolic metric on a lens space.

Open Problem 6.14 (The Berge conjecture). If Dehn filling on a knot
produces a lens space, then the knot is a Berge knot.

Berge knots were studied by John Berge. These knots can be charac-
terized as follows. Give S3 its standard genus–2 Heegaard splitting. That
is, a standardly embedded genus 2 surface in S3 splits S3 into two handle-
bodies. Let K be a curve on the genus 2 surface which is a generator of the
fundamental group of both handlebodies. Then K is a Berge knot.

Up until 2008, I could have put the Gordon conjecture on this list.
Gordon conjectured that the maximal number of exceptional Dehn fillings
on a hyperbolic 3–manifold with one cusp is exactly 10. This was proved,
by a computer assisted proof, by Lackenby and Meyerhoff [10]. However,
the following related conjecture still remains open:

Open Problem 6.15. The figure–8 knot is the only hyperbolic 3–manifold
which admits the maximal number of exceptional Dehn fillings. That is, there
is no hyperbolic 3–manifold besides the figure–8 knot complement which ad-
mits 10 exceptional Dehn fillings.

6.4. Exercises

Exercise 6.1 (Incomplete structures on the figure–8 knot). In Thurston’s
notes, page 52, a figure showing all parameterizations of hyperbolic struc-
tures on the figure–8 knot is given. For any w in this region, formula 4.3.2
in the notes gives us a corresponding z so that if two tetrahedra with edge
invariants z and w are glued, we obtain a (possibly incomplete) hyperbolic
structure on the figure–8 knot.

Analyze what happens to the tetrahedra corresponding to z and to w as
w approaches a point on the boundary of this region.

More specifically, if w approaches certain points on the boundary of this
region, tetrahedra corresponding to both z and w start to become degener-
ate. Which points are these? Prove that the two tetrahedra are becoming
degenerate in this case.

As w approaches other values on the boundary, only one of the tetrahe-
dra degenerates. Which points are these? Prove that only one tetrahedron
is degenerating in this case.
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Exercise 6.2. (a) Let g be a geodesic in H3, and let p be a point
on the boundary at infinity of H3, disjoint from the endpoints of g.
Prove there exists a unique geodesic running from p, perpendicular
to g.

(b) Let g1 and g2 be geodesics in H3 with disjoint endpoints on the
boundary at infinity of H3. Prove there exists a unique geodesic
perpendicular to both g1 and g2.

Exercise 6.3. Given an incomplete structure on a 3–punctured sphere,
find a decomposition of the completion of the structure into hyperbolic poly-
gons. Note the original decomposition of the 3–punctured sphere into two
ideal triangles will not work: it does not include any geodesics attached in
the completion.

Exercise 6.4. We have seen that the completion of an incomplete hy-
perbolic 3–manifold is no longer homeomorphic to the original hyperbolic
3–manifold. Is this true for completions of incomplete structures on the
3–punctured sphere? What surface do we obtain when we complete an in-
complete hyperbolic structure on a 3–punctured sphere? Prove it.

Exercise 6.5. Let A and B in PSL(2,C) be distinct from the identity.
Prove that the following are equivalent.

(a) A and B commute.
(b) Either A and B have the same fixed points, or A and B have order

2 and each interchanges the fixed points of the other.
(c) Either A and B are parabolic with the same fixed point at infinity,

or the axes of A and B coincide, or A and B have order 2 and their
axes intersect orthogonally in H3.

Exercise 6.6. Suppose M is a closed manifold with a complete hy-
perbolic structure. Prove that π1(M) cannot contain a Z × Z subgroup.
Conclude that M cannot contain an embedded torus T such that π1(T )
injects into M . [Such a torus is called incompressible. A Dehn filling result-
ing in a closed manifold with an embedded incompressible torus is another
example of an exceptional filling.]

Exercise 6.7. Let M be an orientable 3–manifold with a decomposi-
tion into ideal polyhedra, each with a hyperbolic structure, such that the
polyhedra induce a hyperbolic structure on M . Let v be an ideal vertex of
M , i.e. an equivalence class of ideal vertices of the polyhedra, where ver-
tices are equivalent if and only if they are identified under the gluing of the
polyhedra.

Recall that link(v) is defined to be the boundary of a neighborhood of
v in M .

(a) Prove link(v) always inherits a similarity structure from the hyper-
bolic structure onM . Here a similarity structure is a (Sim(E2),E2)–
structure, where Sim(E2) is a subgroup of the group of affine trans-
formations consisting of elements of the form x 7→ Ax + b, where
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A is a linear map that rotates and/or scales only. Thus Sim(E2) is
formed by rotations, scalings, and translations.

(b) Prove that the only closed, orientable surface which admits a simi-
larity structure is a torus. It follows that link(v) is always homeo-
morphic to a torus when M is an orientable manifold with hyper-
bolic structure (even incomplete).

Exercise 6.8. LetM be an orientable 3–manifold with a decomposition
into ideal polyhedra, each with a hyperbolic structure, such that the gluing
induces an incomplete hyperbolic structure on M , and the completion is
the one–point compactification of a neighborhood N(v) of an ideal vertex
v. Prove that the completion is not a manifold.

Exercise 6.9. Prove that a reducible manifold cannot be hyperbolic.
That is, it admits no complete hyperbolic structure.

Exercise 6.10. Prove that a lens space cannot admit a complete hy-
perbolic structure.

Exercise 6.11 (On complex length of A in PSL(2,C).). (a) Suppose
A ∈ PSL(2,C) has axis the geodesic from 0 to ∞. Then the matrix
of A may be parameterized by a single complex number λ. What
is the form of this matrix?

(b) Denote the trace of a matrix A by tr(A), and its complex length
by L(A). Prove that tr(A) = 2 cosh(L(A)/2).
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