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Freeman Dyson has recently focused attention on a remarkable derivation of elec-
tromagnetism from apparently quantum mechanical assumptions about the motion
of a single particle. We present a new version of the Feynman-Dyson derivation in
a discrete context. In the course of our derivation, we have uncovered a useful and
elegant reformulation of the calculus of finite differences.

1. Introduction

In unpublished work circa 1948, Richard Feynman discovered that a quantum me-
chanical particle whose coordinates and momenta obeyed the simplest non-relativistic
commutation relations will admit a description of acceleration that is compatible
with Newton’s second law and with the action of a classical electromagnetic field.
This remarkable derivation was recently brought to the attention of the scientific
community by the elegant paper of Freeman Dyson (1990). In his editorial comment
on the reconstructed proof, Dyson remarks, ‘... here we find Galilean mechanics and
Maxwell equations coexisting peacefully. Perhaps it was lucky that Einstein had not
seen Feynman’s proof when he started to think about relativity.” The proof has been
generalized by Tanimura (1992) in a paper that embeds the Feynman argument into
the contexts of gravity and gauge theories.

There are many themes to consider in the project of understanding the Feynman-—
Dyson derivation. In this paper, we concentrate on the following consideration: Feyn-
man and Dyson assume commuting spatial coordinates X (t), Xo(t), X5(t), each a
differentiable function of the time ¢. This occurs in the context of commutation re-
lations of the form [X;, X;] = ké;; (k a constant) giving the formalism the outward
appearance of quantum mechanics. In the usual approaches to quantum mechanics,
one has the corresponding equation [g;, p;] = iho;;, where g; is the position operator
and p; is the momentum operator. These operators are not themselves functions of
time in the Schrodinger representation of quantum mechanics, but they are func-
tions of time in the Heisenberg formulation. As a consequence, the Feynman—Dyson
derivation does apply directly to quantum mechanics in the Heisenberg formulation.

The derivation is not classical mechanics with the commutator interpreted as
a Poisson bracket. As noted by Tanimura (1992), the Leibnitz rule needed in the
proof holds for Poisson brackets only if the dynamical variables are derived from a
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82 L. H. Kauffman and H. P. Noyes

Hamiltonian or a Lagrangian. One major reason for being interested in the proof
stems from the fact that this assumption is not made. We wish to point out that
in a context of discrete physics the derivation can still be carried out, and that in
this context there need not be any demand for simultaneous values of position and
momentum operators. In fact, this idea is simply meaningless in our discrete context.

Because the variables and fields in the Feynman—-Dyson derivation are non-
commutative, the question of Lorentz invariance requires a special analysis that we
shall not attempt in this paper, but comment on briefly in the Appendix. There is
nothing paradoxical about the Feynman-Dyson derivation as it stands: it is a piece
of mathematical physics asking for a good interpretation.

The purpose of this paper is to analyse the Feynman—Dyson derivation in a context
of discrete physics. In this context, a spatial variable X; has values X;, X/, X/, ...
at successive values of discrete time. A measurement of velocity depends upon the
difference of position values at two different (neighbouring) values of discrete time.
Thus, we may (by convention) identify the value of X; with Xj — X; and write
X, := X/ — X;. Since velocity depends upon two times and position on only one
time, the idea of simultaneous determination of position and velocity is meaningless
in the discrete context.

In order to achieve our aims, we have had to go to the roots of the calculus of
discrete differences and discover an ordered version of this calculus that just fits the
desired application. In this discrete ordered calculus (described in §2 and 3 of this
paper), the operation of differentiation acts also to shift a product to its left by
one time step. Thus, XX := X'(X’ — X), while XX := (X’ — X)X. In the discrete
ordered calculus, X and X do not commute and a specific commutation relation
such as XX — XX = k is regarded as a hypothesis about the structure of their
non-commutativity.

Furthermore, the discrete ordered calculus (DOC) obeys the rule for the differ-
entiation of the product, (AB) = AB + AB, precisely without any time shifting
(see §2). This makes DOC an appropriate vehicle to support the calculus and non-
commutative algebra that we need for our work.

In §4 we work out the derivation of electromagnetism in this discrete context. We
begin with the assumption of the commutation relations for X; (i =1,2,3):

1. [XL,Xj] - 0

2. [XZ,Xy] = R(Sij.

Here the dot (-) is the discrete derivative and « is a commuting scalar in DOC. We
discuss reformulations of these equations in §4.
With Fi = Xz' and
H, = Q%ij@[xj’ Xk], Fj = .Ej + G_jk;ngHg, (F =F+uvX H),
we show that

(i) div H = 0,

(ii) 0H/0t + V x E = 0.

This is the desired result. Note that ¢;;; is the alternating symbol, and that F' =
E +v x H defines E.

In order to interpret these equations as electromagnetism, we need the other two

Maxwell equations:

)
div E = 47p, d——f—VXHzllTrj

0
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Discrete non-commutative electromagnetism 83

In our context, following Dyson, we take these equations as definitions of p and j.
With these conventions we have a non-commutative electromagnetic formalism. It re-
mains to be understood how this formalism is related to standard electromagnetism,
and how the considerations of special relativity enter into this non-commutative con-
text. It is our purpose, in this first paper, to put the derivation on a firm footing in
order to provide a platform for consideration of these problems in subsequent work.

We have taken great care to perform this derivation in the discrete ordered cal-
culus. This involves taking the following definitions for partial derivatives of a func-

tion f(X):

i K 0t de
(The Einstein summation convention is in effect.) These definitions are discussed
in §4.

We wish to close this introduction with a remark about the commutativity of X
and X’. X' is regarded as the indicator of X after one discrete time step. Formally,
we can write both X X’ and X’X. However, in our convention, X X’ means [measure
X', then measure X] and this would require the observer to step backwards in time!
For this reason we do not assume that XX’ = X’X, and this gives us the formal
freedom to postulate (in §4) a set of commutation relations among {X;, X} that
can be regarded as the basis of our derivations. In a sequel to this paper, we shall
discuss actual numerical solutions to these relationships.

Obviously, much more work remains to be done in this domain. We shall discuss
gravity /quantum formalism in a sequel to this paper.

2. Motivating a discrete calculus

In one-dimensional standard quantum mechanics in the Heisenberg formulation
(Dirac 1947) the uncertainty principle takes the form of a commutation relation

QP — PQ = hi
where @ and P denote, respectively, the position and momentum operators for the
quantum mechanical particle, and A is Planck’s constant divided by 27 (i* = —1).

There are many interpretations of this formalism. In the Schrodinger picture of
quantum mechanics, the system is represented by a wavefunction i = ¥¢(z,t), where
x denotes the spatial coordinate and ¢ denotes the temporal coordinate. The opera-
tors Q and P are defined by the equations

Qu=ay, Pp="00
i0x
Thus,
_ hoy h O i
(QP—PQW—xi—%— Tc‘?—x(xw) = (hi)y.

Hence, QP — PQ = hi.

The Heisenberg picture is not tied to this particular interpretation. It simply as-
serts that the order of application of the position and momentum operators matters—
and that the difference of these orders is described by the commutation relations.

We can find an almost identical commutation relation by thinking about position
and momentum in a classical but discrete context. In a discrete universe, time goes
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forward in measured ticks, and space occurs only in discrete intervals. We can imagine
position determined at an instant, but to find velocity or momentum the clock must
advance one tick to allow computation of the ratio of change of position to change
of time. In measuring position first and then momentum, we advance the clock after
determining position. If momentum is measured before position, the clock advances
before the measurement of position and the position is determined at a later time.
In this way, PQ and QP differ due to the intervening time step.

Let us quantify these last remarks by working with discrete position X and discrete
velocity X. Let X, X', X”, ... denote the sequence of values for X at successive times
to,t1, ta, . . .. Define the value of X to be X’ — X and write X := X’ — X to indicate
this evaluation. We regard X as a discrete velocity with the time step normalized to
unity by convention. .

Let XX denote the process—measure X then measure X. Thus, on evaluating,
we find

XX = X' (X' - X)
since measuring X requires stepping forward in time to the position X'.
~ On the other hand, X X denotes the process—measure X then measure X. Thus,
XX =X -X)X.
We conclude that

XX -XX:=X'(X'-X)— (X' - X)X.

This difference is not zero, and if it turns out to be a constant (x) then we have
the equation XX — XX := k: a discrete analogue to the Heisenberg commutation
relation.

In order to take the derivations of Dyson (1990) and Tanimura (1992) and place
them on a discrete foundation, we shall develop a time-ordered calculus that gener-
alizes the ideas that have been presented in this section. We end this section with
an informal discussion of some of the issues that are involved.

One issue that must be faced is the question of the commutativity of X and X’. We
can formally write both X’X and X X'. The first (X’X) means—measure X, take a
time step, measure X after the time step. However, X X’ does not have operational
meaning in this same sense, since X’ demands a time step while X asks for the value
at a previous time. We therefore assume that X'X and X X' are distinct without
yet making any explicit assumption about the value of their difference.

The second issue involves evaluation. We have been careful to write X := X’ — X
rather than X = X’ — X, since the dot in X is a special instruction to shift time
to its left in the ordered calculus. The directed equals sign (:=) is used to indicate
evaluation. Thus, we can write AB := A'(B’ — B) and

ABC = (AB)'(C' - C) (2.1)
= A'B'(C'-C) (2.2)
— A"(B' - B)(C' - C) (2.3)
= A"(B" — B')(C' - C). (2.4)

(We assume that (XY) = X'Y".) Each step in evaluation must perform all the time
shifts for any dot that is eliminated. We shall return to this issue in the next section.
Returning to XX and X X, we evaluate and find

XX - XX :=X'(X'-X)— (X' - X)X (2.5)
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=X(X'-X)- XX -X)+ X(X' -X)- (X' - X)X (2.6)
=(X'-X)(X' - X)+ XX - X?-X'X+X? (2.7)
= (X' - X)?+[X,X]. (2.8)
Thus,
XX - XX = (X' - X)?+[X, X,
where [A, B] = AB — BA. (In general, we will not assume that [X, X'] = 0.)
If X and X' commute, then [X, X] := (X’ — X)?. In this context one might assume
that (X’ — X)? = x is constant and declare that XX — XX = «.
If X and X’ do not commute then the formula above shows how their commutator
is related to [X, X]. .
To summarize, the dot in X is an instruction to take a time step. A product AB

means do B, then do A. Therefore, XX := X'(X' — X), since measuring X after one
time step yields X'.

3. A discrete ordered calculus—DOC

By a variable X we mean a collection of algebraic entities X, X', X", X" ... called
‘the values of X at successive steps of discrete time’. No assumptions of commutativ-
ity are made for these variables, but we do assume that multiplication is associative
and that multiplication distributes over addition and that there is a unit element, 1,
such that 1X = X1 for all X. Furthermore, we assume that 1’ = 1. Similarly, there
is a 0 such that 0 + X = X for all X and 0’ = 0.

At this point the reader will see that we are assuming that a non-commutative
ring R has been given, and that X, X’,...,Y,Y’ ... belong to R. (Note that this
means that we assume that X’ +Y = Y + X’.) Thus, we can speak concisely by
saying that we assume as a given a (non-commutative) ring R with unit (1) equipped
with a unary operator ' : R — R, such that 1’ =1 and 0' =0 and (a +b)' = a' + ¥’
for all @ and b in R, and (ab)’ = &' for all a,b in R. In the context of the ring R,
we shall define a discrete ordered calculus by first adjoining to R a special element
J the sole purpose of which is to keep track of the time shifting. We assume that J
has the properties:

1. J = J;

2. AJ = JA' for all A € R; (of course JJ' = JJ so this works for J as well).

We let R be the ring obtained from R by formally adjoining J to R with these
properties. Since R is, by definition, a ring with unit, this means that

(X+Y)J=XJ+YJ, JX+Y)=JX+JY, J0O=0, Jl=1, etc.

Now note that any expression in R can be rewritten (using AJ = JA') in the form
of a sum of elements of the form J' k7, where there is no appearance of J in Z. We
can define an evaluation map F : R — R by the following equations:

(i) E(A+ B) = E(A) + E(B) for any A, B € R;

(ii) E(J*Z) = Z whenever Z € R.
E is defined on R by writing A € R as a sum of elements of the form J*Z and then
applying (i) and (ii) above. For example,

E(AJ+ BJ(CJ)) = E(JA + J*B"'C") = A"+ B"C’
(assuming that A, B,C' € R). It follows from our assumptions that F : R — Ris well
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defined. Note that, by definition, E(F (X)) = E(X), where we regard R C R as the

set of expressions in R without any J. In fact, we note that R @, J"R, where
J'R={J"|reR}, and (J'r)(J"s)=J""rms,

where 7,5, € R and (™ = ¢/ with m ‘primes’. With this reformulation, the eval-

uation map is obviously well defined. Now we are prepared to define differentiation
in R and therefore initiate the discrete ordered calculus (DOC).

Definition 3.1. Define D : R — R by the equation D(X) = J(X' — X). The pres-
ence of J in DX makes it a time shifter for expressions on its left. (Compare this
approach with (Etter & Kauffman 1994). That approach arose from discussions about
an early version of the present paper.)

Proposition 3.2. Let A, B € R. Then
D(AB) = D(A)B+ AD(B).

Proof.

D(AB) = J((AB)' — AB)
— J(AB' — A'B+ A'B — AB)
= J(A(B' - B) + (A"~ A)B)
=JA(——)+ﬂA—AB
— AJ(B' - B)+ J(A' — A)B
= AD(B) + D(A)B.

|
We see from the proof of this proposition how the ordering convention in the

discrete calculus has saved the product rule for differentiation.

In a standard commutative time-discrete calculus, one of the terms in the expan-
sion of the derivative of a product must be time shifted. The same phenomenon
occurs in the infinitesimal calculus, but there an infinitesimal shift is neglected in
the limit:

) = i JCH D) = (000
i LRI R) — f{E+R)g(E) + f(E+R)g(t) — f()g(t)
h—0 h
:ggf@+m<ﬂtﬂ%:ﬂﬁ>+(ﬁtﬂ%;ﬂﬁ)g@

df
= [tim f(t+m)] 52
i 7(e+1)] 0+ () at0
It is interesting to see how the evaluations work in specific examples. In writing
examples it is convenient to write A for D(A). Thus, A = J(A' — A). For example,

(XY)=J((XY) = XY))
—ﬂ((V—YW—XﬂV Y))
— J(X'T(Y" =Y = XJ(Y' —Y))
= JUIX"(Y" —Y ) JX'(Y' —Y))
= (XY~ X"Y' — X'Y' + X'Y).
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Thus, E(XY)) = X"Y” — X"Y' — X'Y’ + X'Y. On the other hand,
XY =J(X' - X)J(Y' -Y)
= JA(X" - XY -Y).

XY =XJY' -Y)
=XJJY' -Y)-JY -Y))
=XJ2Y" Y —Y' +Y))
=J2X"(Y" -2V +Y).

XY + XY = (X" - X)Y' =Y)+ X"(Y" —2Y' +Y)]

— JQ[X//Y/ _ X//Y _ X/y/ _I__X/Y +X//y// _ 2X//y/ ‘I"X“Y]

_ JQ[_Xllyl _ X/y/ + X/Y + X//y//]

= (XY).
This is a working instance of our formula D(AB) = D(A)B + AD(B). In the re-
mainder of the paper it will be useful to write A := B to mean that E(A) = E(B).
In particular, we will often use this to mean that B has been obtained from A by
expanding some derivatives and throwing away some or all of the left-most J. This
means that while it is true that E(A) = F(B), A and B cannot be substituted for one

another in larger expressions, since they contain different time-shifting instructions.
An example of this usage is

XY :=X'(Y' -Y).
Note that
XY =XJ(Y' -Y)=JX'"(Y' -Y).
Thus,
E(XY)=E(X' (Y -Y)).
In calculating, the := notation allows us to ‘do the Js in our heads’.

Discussion.  With the DOC formalized we can return to the structure of the com-
mutator [X,Y] = XY — Y X. We have

(X, Y]:=X'(Y -Y)- (Y -Y)X
=XV -Y) - XY -YV)+ XY -Y)- (Y -Y)X
= (X = X)(Y -Y)+ XY - XY - YV'X+YX
=X - X)(Y YY)+ (XY -Y'X) - (XY - YX)

X, Y] = (X = X)(Y = Y) + [X,Y] - [X,Y]

This formula will be of use to us in the next section. .
Note how, in this formalism, we cannot arbitrarily substitute X for X’ — X since
the definition of the dot (‘-’) as a time shifter can change the value of an expression.

Thus, (X' — X)(Y' —Y) # XVY. It may be useful to write X’ — X = || X||, where
IIX] is, by definition, the d.ifference, stripped of its time-shifting properties. Then,
(X' = X)(Y'=Y)=|X] ||Y| and we can write

(X, Y] = | XY )+ (X, Y] - [X. Y],

Proc. R. Soc. Lond. A (1996)
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Since [A, B] = AB — BA, these commutators satisfy the Jacobi identity. That is,
we have

[[A, B],C] + [[C, A]. B] + [[B, C], A] = 0.
The proof is by direct calculation.

4. Electromagnetism

In this section we give a discrete version of the Feynman-Dyson (Dyson 1990)
derivation of the source-free Maxwell equations from a quantum mechanical for-
malism. We shall work in the discrete ordered calculus (DOC) of §3. We assume
time-series variables X, X, and X3 and the commutation relations

(i) (X, X51 =0, Vi,
(i) [Xi’ X7] = Kbij,
where & is a constant and x commutes with all expressions in DOC. B
We further assume that there are functions F;(X X) (i = 1,2, 3) such that X; =
F;(X, X). (Here writing F'(X) means that F' is a function of X;, X,, X3.) It is the
purpose of this section to show that F; takes on the pattern of the electromagnetic
field in vacuum. Our first task will be to rewrite the above relations in terms of the
discrete ordered calculus.
Proposition 4.1. Given that [X;, X;] = 0 for all i,j = 1,2,3, and letting A; =
X! — X, the equations [X;, X;] = k6;; imply the equations

Proof. First assume [X;, X;] = wé;;. Then [X;, X;] := [|X,]| | X;] + Xy, X7 —
[X;, X;] by the calculation at the end of §2. Here, || X;|| = X — X; = A, and
[X;, X;] = 0. Thus,

[Xi,Xj] = A,A} + [Xl,X;]
|
Discussion. This proposition shows how the Heisenberg-type relations Xin —
X; X, = r0;; translate into the time-series commutation relations XiX; — X.;-Xi =
k6;; — A;A;. From the point of view of discrete physics, it is these relations that
will implicate electromagnetism. Since there is no a priori reason for the elements
of time series to commute with one another, we can regard the equations

XlXJ = Xin, XlX; - X;Xl = li(s\ij — Al‘Aj, (Az = Xz/ - Xz)
as setting the context for the discussion of the physics of a discrete particle. It is in
this context that the patterns of electromagnetism will appear.

Derivation. We shall need to interpret certain derivatives in terms of our discrete
formalism. First of all, we have

OX; _ S
aX] oo
Therefore,
) 00X,
X, X =K =,
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Consequently, we make the following definition.
Definition 4.2. Let G be a function of X, then we define 0G/0X; by the equation
oG
0xX;,

We also wish to define dG/0t. This time derivative is distinct from G. It should
satisfy the usual relationship for multivariable calculus:

k1 {G,Xl} .

G — %_f + ng—)i, (summed over j = 1,2, 3).
Therefore, we define 9G/Jt by the equation
%g =G - X,k [G, XJ ,  (summed over j =1,2,3),

when [X,,,G] =0 for m = 1,2, 3.

The condition [X;,G] = 0 for ¢ = 1,2,3 implies that G has no dependence on
Xj (7 = 1,2,3) under mild hypotheses on G. For, if we assume that G is either a
polynomial or a (non-commutative) power series in X; and X 5, then the equations
[X;, X;] = rb;; and [X;, X;] = 0 show that (under these assumptions) G has no
occurrence of X;. It is necessary to define 9/9t since our discrete theory does not
carry the conventional time variable ¢.

With these definitions in hand, we can proceed to the consequences of the com-
mutation relations (i) and (ii).

Lemma 4.3.
X3, X;] = X5, Xi].
Proof.
XX, = X, X,
= (XiX;) = (X;X:)
= XX, + XX, = XX+ XX,
= XiX; - X; X = X;Xi - XiX;
= [Xi, X;] = [X;, XJ]

|

Lemma 4.4.

(X5, Xi] + (X5, Xi] = 0.
Proof.

X; X — XiX; = Kb (4.1)
= X; X + X, Xy - XX, - X X; =0 (4.2)
= [X;, Xp] + [X;, Xx] = 0 (4.3)
|
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Since X; = F;(X, X) we have the following lemma.
Lemma 4.5.
[Xj,Xk] + [Xj,Fk] =0.
Thus,
(X, (X, Fel] = =[Xe, [X;, X4 ])
= [X;, [X&, X)) + [X, [Xe, Xj]],  (by the Jacobi identity)
- [X]7 _6kf/{] + [tha K’(SZJ]
=0+0=0.
Note that
(X5, Fi] = =X, Xi] = +[ X, Xj] = —[ X, Fj].
Thus,
(X5, Fi] = = [ Xk, Fjl.
We now define the field H by the equation
—keeH = [X5, Fy),
where €1, is the alternating symbol for 123. That is, €123 = +1 and €., = sgn(abc) if
abe is a permutation of 123, where sgn(abc) is the sign of the permutation. Otherwise,
€abe = 0.
Note that [Xy, [X;, Fy|] = 0 implies that [X,, —€;xH;| = 0, which in turn implies
that X, Hs] = 0. This implies that Hs has no dependence upon X since X has a

non-trivial commutator with X. Under these circumstances we will regard H as a
function of X and compute OH /Ot according to the formula

Ly
as discussed above.
Definition 4.6.
E; = Fj — ;e X Hy.
With this definition of F, we have F' = E 4+ v x H, where v = X.
Lemma 4.7.
[Xm, EJ] =0.
Proof.
(X, Ej) = [Xons By — ejpe Xi He)
= [Xon, F}] = (X, €500 X1 HY
= —K€mjeH; — EjngkaHg + ejngngXm
= —KemjrHy — €j1e X Xp Hy 4 €30 Xp X Ho
= —KemjerHo — €30 Xom, Xi| Hy
= —K€mjeHy — €jrerbpmpHy
= (—K€mjr — K€jme) Hy
=0.
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Thus, E also has no dependence upon X.

Remark 4.8.

Hg = —21-l{_16jkg[Xj,Xk].

Proof.
—kejreHe = [ X, F]
and by lemmad.5,
(X5, Fi] = = (X5, Xy,
Thus,
€y = Kj—l[Xj,Xk].
From this it follows that
Hy, = é/{_le_]vu[Xj,Xk].

|
Lemma 4.9.
Proof.
0H, _1 :
i Hy, X
= k77 7kl[[X Xi], Xo]
=0, (by the Jacobi identity).
Thus, div H = 0. |
Lemma 4.10.
o, _ Ok
ot T okt (9Xk '
Proof.
Hy = 35 e X, Xi
OH . o .
8_te = Hy — Xk [He, X
(See the discussion of 9/0t given earlier in this section.)
Now

H, = k™ Lejre[X, Xa]
=3k fjkz([Xy,Xk] + X5, X))
=K IEJM
=k tene

1

=K €re Ej + €]rsX'rHs>Xk]

E Xk] + I{_I[Xng,Xk] — l{_l[X(Hk,Xk].

l
=K €k

Proc. R. Soc. Lond. A (1996)



92 L. H. Kauffman and H. P. Noyes
And
(X He, Xi] — [XoHy, Xi] = X H Xy — X3 X He — XoHy Xy + Xp X Hy,
= Xy [Hy, Xi] = Xo[Hy, X3] + [ Xy, Xo|Hy,

. OH, . OH, .
= kXL - — kX X, Xo|Hy.
K ngk K éan + [ Xy, Xy Hy
Thus,
. . . OH, . OH, v v
H, = ke B X ]+ X, 20— x, 2k VX, X Hy.
=K € By Xy + Ang eanJr/”v (X, Xo|Hy,
Hence,
OH, : . OH, OF; . OH, e
— =H,—- X, S = L X, X, X, H,.
at T Rigx, T OMax, T Max, T X, XelHi

However, the second term on the right-hand side vanishes because div H = 0, and
the third term vanishes by symmetry. To see this, note that

Hy = kX, Xy
Hy, = —k7YX1, X3]
Hs = f(l[Xl,Xg].
Thus,
k[ Xy, X0 Hy, = [X1, X)[Xo, Xs) — [Xo, X[ X1, Xa] + [ X, X[ Xo, Xo].
This vanishes for £ = 1,2, 3. Therefore,

o, _ ., 9L
ot M oax,

|
This lemma completes the derivation of Maxwell’s equations. We have shown that
divH =0
and
OH
— +VxFE=0.
ot

As Dyson (1990) remarks, the other two Maxwell equations

oF : .

5 V x H =4y

can be taken to define the external charge and current densities p and j. However, it
is important to realize that our entire theory has applied only to a single trajectory.
We can regard this trajectory (and its ‘particle’) as defining an electromagnetic field,
or we can regard this particle as moving in an external field with these properties.
We cannot have it both ways. The analysis so far in no way takes into account the
self-interaction of this particle or its interactions with other particles and fields. Of
course, our talk at this stage about the ‘trajectory’ of a particle is an analogue of
a physical trajectory. The trajectory we talk about is in the space of A x A x A,
where A denotes the non-commutative operator algebra that underlies the theory.
An eventual interpretation of this theory in terms of trajectories in physical space is

div E = 47p,
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a possible consequence of further analysis of our formalism. It is beyond the scope
of this preliminary paper.

We feel that the foregoing analysis of the Feynman-Dyson derivation in a discrete
context lays bare much of the beautiful structure of the electromagnetic formalism
and its relation to a condition of discrete time. We hope to probe this structure more
deeply in subsequent papers.

L.H.K. was partially supported by the National Science Foundation under NSF Grant no. DMS-
9205277. H.P.N. was supported by the Department of Energy, contract DE-AC03-76SF00515.

Appendix A. Historical remarks

One of us (HPN) has already claimed that the Feynman proof is not paradoxical
(Noyes 1991) in the context of the finite and discrete reconciliation between quantum
mechanics and relativity (Noyes 1987) achieved by a new fundamental theory (Noyes
1989, 1992, 1994a; McGoveran 1989, 1991). Noting that the Feynman postulates,

Felz,;t) = miy, [v,x;] =0, mlz;,a;] =ik,

are independent of or linear in m, we can replace them by the scale-invariant pos-
tulates
fk(.’L, LT, t) = TIk, [LEZ', ‘Ll] = (), [37,,;, TIJ] = K,(Si]'./

where £ is any fixed constant with dimensions of area over time [L?/T] and f; has
the dimensions of acceleration [L/T?]. This step is suggested by Mach’s conclusion
(Mach 1875) that it is Newton’s third law which allows mass ratios to be measured,
while Newton’s second law is simply a definition of force. Hence, in a theory which
contains only ‘mass points’, the Newtonian scale invariance of classical MLT physics
reduces to the Galilean scale invariance of a purely kinematical LT theory. Breaking
scale invariance in such a theory requires not only some unique specification of a
particulate mass standard, but also the requirement that this particle have some
absolute significance.

As has been remarked recently (Noyes 1994b). this aspect of scale invariance had
already been introduced into the subject by Bohr & Rosenfeld (1933). In their classic
paper, they point out that because QED depends only on the universal constants
h and ¢, the discussion of the measurability of the fields can to a large extent be
separated from any discussion of the atomic structure of matter (involving the mass
and charge of the electron). Consequently, they are able to derive from the non-
relativistic uncertainty relations the same restrictions on measurability (over finite
space-time volumes) of the electromagnetic fields that one obtains directly from the
second-quantized commutation relations of the fields themselves. Hence, to the extent
that one could ‘reverse engineer’ their argument, one might be able to get back to
the classical field equations and provide an alternative to the Feynman derivation
based on the same physical ideas.

Turning to the commutation relations themselves, we note that a velocity mea-
surement requires a knowledge of the space interval and the time interval between
two events in two well separated spacetime volumes. Further, to embed these two po-
sitions in laboratory space, we must (in a relativistic theory) know the time it takes
a light signal to go to one of these two positions and back to the other via a third
reference position with a standard clock. Thus, we need three rather than two refer-
ence events to discuss the connection between position and velocity measurements.
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We can then distinguish a measurement of position followed by a measurement of
velocity from a measurement of velocity followed by a measurement of position. The
minimum value of the difference between the product of position and velocity for
measurements performed in the two distinct orders then specifies the constant in the
basic ‘commutation relation’ needed in the Feynman derivation. So long as this value
is finite and fized, we need not know its metric value. This specifies what we mean
by discrete physics in the main body of the text.

Relativity need not change this situation. Specify c in a scale-invariant way as both
the maximum speed at which information can be transferred (limiting group velocity)
and the maximum distance for supraluminal correlation without information trans-
fer (maximum coherence length). If the unit of length is AL and the unit of time is
AT, then the equation (AL/cAT) = 1 has a scale-invariant significance. Further,
the interval I, specified by the equation c?AT? — AL? = I?, can be given a Lorentz-
tnvariant significance. We can extend this analysis to includes the scale-invariant
definition AE/cAP = 1 and the Lorentz-invariant interval in energy-momentum
space (AE?/c?)—AP? = Am? provided we require that APAL/Am = AEAT/Am.
Then, given any arbitrary particulate mass standard Am, mass ratios can be mea-
sured using a Lorentz-invariant and scale-invariant LT theory. We trust that this
dimensional analysis of the postulates used in the Feynman proof already removes
part of the mystery about why it works, and suggests how it can be made ‘Lorentz
invariant’ in a finite and discrete sense.

Appendix B. On the form of the derivative

In our discrete ordered calculus (see §3) we have defined the derivative X by
the formula X = J(X' — X), where J is a formal element satisfying J' = J and
XJ = JX' for all X. Thus, we have the equation

X=JX'-JX=XJ-JX =[X,J].

This suggests that the equation X = [X,J] is an analogue of the corresponding
equation in the Heisenberg formulation of quantum mechanics:

X = [X, U]
where U is the time-evolution operator.

Michael Peskin has pointed out to us (personal communication) that we could
accomplish the discretization of time in our theory by taking U = e~ "4 (formally),
where At denotes a discrete timestep. Then X = [X,U] and X' = U1 XU serves to
define the time step from X to X’. Our approach and Peskin’s meet if we identify J
and U! The physical interpretation of this identification deserves further investiga-
tion.

In any case, it is interesting to note that the differentiation formula (XY) =
XY + XY follows directly from the formula X = [X, J] without the necessity of
introducing the step X'. This relationship between the discrete ordered calculus and
the algebra of commutators will be used in the next installment of our work.
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