CHAPTER 11

LINKS AND 0(n)~-MANIFOLDS

The first two sections of this chapter deal with invariants of
finks in the three sphere, We show that the Seifert pairing may be
computed from a projection of the link and relate this to the Murasugi
signature of the link. Then quadraTic forms for the link are discussed,
The symmetry group of a link is defined and computed for torus links.
Then we discuss the equivariant classification of O(n)-manifolds with

orbit space 04 and fixed point set corresponding to a link in BD4 = S

3
{("link-manifolds"), The equivariant classification of link manifolds
is related to the symmetry group of the link. Finally, we show how
+he diffeomorphism ciassification of a link manifold is determined by

invariants of the corresponding link, The chapter ends with some com-

putations and examples,

f. Invariants gi.Links i 3

Here we discuss the signature and quadratic form of a link and
show how These are related to the Seifert pairing and to invariants of
the double branched cover of 33 branching along the given link, These
invariants will be used in Section 4 to classify O(n)~manifolds,

let L S° be a link, L will also denote a given projection of
the fink onto 32 with only double-poinT intersections. Assume that
each component of L is given an orientation.

Assuming that the |link diagram (i.,e., the projection on Sz) is
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connected, Seifert's algorithm to form a spanning surface for the link
proceeds as follows. One divides S2 intfo regions bounded by various
circles obtained from the link diagram, Each circle is obtained by
choosing a point on the projection which is not a crossing point and
Traveling along the projection in the direction of ifs orientation

to a small neighborhood of a cross point. Suppose that the neighbor-
hood of Tthe cross point contains oriented |ine segments S| and Sy

crossing at P = 5, A s,. Thens, = sl'\J s[", S, = 52"J sz“,

', Then it wiil be possible o

Sj'rl si" = P, If you are on, say, s,

cross over to either 52"or sz" (not both) and continue your oriented

journey avoiding the cross point (see Fig. 1). Continue in this

fashion until returning to the starting point. This traces out one

of the circles.
TS

Call such a circle black if one of the two regions into which it
divides S2 does not contain any other circles, Non-black circles are
red. |f a region in 52 has boundary a black circle and contains no

other circles, color it black. 52 is now divided into white (uncolored)

and black disks and, less finely, info various regions bounded by red

circles (see Fig., 2).
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Figure 2

Now regard the black regions as disks. Attach disjoint disks to
the boundaries of the red circles. Complete by filling in twists at the

crossings to connect the disks (see Fig. 3).

-

The result is a compact surface F C;53 with boundary L. F is called

the Seifert surface for L corresponding to the given projection.

Lemma 2.i. F is orientable.

Proof. This is clear. Orient each disk according to its already
oriented boundary and note that con crossingva twist from one disk to an-
other the orientation changes appropriately.

Orienting F as above, let

ix = push off F in direction of the positive normal.

i* = push off F in direction of the negative normal.
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Then one has the Seifert pairing

8: Hl(F) x HI(F) + Z 0(x,y) = 2{x,i%y),

We wish to compute 6 in terms of information which can be read from a
link projection. The first task is to indicate a convenient set of

generators for H'(F).

A. Homology of F

) First suppose that the projection of L contains né red circles
{call such a link projection a special projection}, Then, except for
the twists, F lies on Sz. Hence, F has the homotopy type of SZ -~ {union
of white regions}, For each white region W there is a loop w on F en-
circling it (see Fig. 4). Hence, if the white regions are
wl,wz,...,w

nl with corresponding loops Wiseea,Woits then any n of these

foops will form a basis for HI(F)‘

iﬂjiﬂzl_baSis for ﬂ_(F)

2) Now suppose that the link projection contains some red circles,




Figure 5

Let the red circles divide 52 into regions EI’EZ""’Em‘ Thus, the
boundary of Ei consists of one or more red circles and Ei contains no
red circles in its interior.

It is clear that L may be writften as the union of {ink projections
Lyyees,ly where L. = (L Ei)\,aEi (see Fig. 5). Notation:
L=1L, = Ly ® woo ® Lo Each L; is the projection of a well defined

link. Furthermore, each L, is a special projection (see Fig., 5 and 6).



Figure 6

Number the white regions Wij where the subscript j indicates that

wij CEJ' Let wij be a loop on F encircling WU. Denote the white re-

gions in Ej Qy WU,...,W

Proposition 2.2, {wijll Sisn

n‘j+l ’J..

| £ j £ m} is a basis for HI(F)'

Proof. Regard L = LI * L2 ¥ oaeu ¥ Lm., Let Fi = Seifert surface

-
for F.. By the above discussion, Fi&_‘e Fand (a)x: H(F) > H (F) is

an injection, Fi N Fj = Li s Lj BEi g BEJ. = union of red circles.

0 : v
HI(Fin Fj).—;Hl(Fi)@H‘(Fj) '*HI(FiU Fj) + 0, F = FI\J coe UFm.

. Hence, by induction,

H'(F) = HI(FI) @H|(F2)® ...@H’(Fm).

This implies the proposition,

Thus, a basis for HI(F) is the result of choosing all but one white

region from each Ei and taking the corresponding foops.




B. Seifert Pairing for F

I) Again suppose that the link has a special projection (no red
circles).

Note that in order for the projection of L to contain no red cir-
cles, the segments on the boundary of each white region must alternate

in orientation (see Fig., 7).
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aJ+¢vnx¥bw.
no sed civele.
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causes wed cinle.

Figure 7

Thus, each crossing on the boundary of a white region is one of the two

types illustrated in Figure 8.

72 ////

7 W

- Choose an orientation for the Seifert surface as follows: Each

black region lies on 52 and has an oriented boundary corresponding to
the orientation of the link. Let this boundary orientation determine
the orientation of the black region, Determine a positive normail to

the surface by the right-hand rule (see Fig. 9.
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Now orient each of the loops W, so that whenever W, passes through

Figure 9

a black region with "outward normal" (j.e., its normal agrees with the
standard outward normal to Sz), it shares the orientation of the boundary

of that region (see Fig. 10),

Figure 10

Notation. ’;zf/,

Figure |1

Crossings will be denoted by the "double-dot" notation of Figure 11,
Cailculation of 6 now amounts to some case checking as illustrated
.in Figure 12, The result may be summarized as follows: Let c be a
crossing common to two white regions W and W',
Define dww,(c) =+, -1, 0, 0, according as the crossing is of
types i), i1), iii), iv) in Figure 12, Thus,

d () = 0 if there is no dot at ¢ iﬂ.ﬂ
Ww! x|l as in Figure T3,
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Examples. See Figures i3a, 13b, l3c.

Figure !3a

Figure 13b

Figure |3c
k—_\ZCovﬁ'é]k‘d"M 3
) ~ 0
P
al e(wi,w )

W, V= )= el

Thus, V = [é "é] for the trefoil knot in 13a. Note that the inter-

section matrix for F is A = V = V! = [? Dé].
isT=a"lv= [_? :].

The matrix I' of Chapter |
Since Fk - (T - I)k is a relation matrix for

Hl(Mk)’ it is easy to see;the six-fold periodicity and calculate these
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groups.

by V =} | =l 0 c) vV = [-2]

2) Now suppose that the link projection contains some red circles.

Using the notation of (2) of Section A write L = LI * L2 * oeeu ¥ Lm,

Lic: Ei’ efc.

Lemma 2.3. Restricted fo {w|W < E.} fhe Seifert pairing is the

pairing for the link Li'

Proof., Suppose W,W' < Ei' Then the crossings which they have in
common are crossings for the link Li. Hence, if c ¢ aW M3W' is such a
crossing, then, since Li is special, dww,(c) is well defined and

Blw,w') = z d .., (c).

ceaW/ oW
Note that if ¢ is a crossing on 3W, W C.Ei and ¢ is not a crossing

Ww'

for any other W' < E,, thenc does not contribute to 8{w,w) since w will
not pass through this twisfT. Hence,

Blw,w) = =~ {ci.

d 1
WICE,  ceannaw' W

This proves the {emma.

Definition. A crossing c belongs to a region E if it is common to

two distinct white regions < E. See Figure 14,

i

E’ interior of red circle
E2 = exterior of red circle
1,C, belong to El
C3,Cy belong to E2

Figure 14

Remark, Always assume that the link projection contains no cros-
sings of the type pictured in Figure I5. These can obviously always be

eliminated.
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Figure 15

Next we must take care of the case 8(w,w') where W <k, W' Ej'
and i # j. First define an index n{c) = %] according as a crossing is

a left or a right overpass (see Fig. i6).

~. -

Figure 16

Detfine sww,(c) = I if W is teft of W' with respect to the
orientation of the red circle shared by
AW, awW'.
0 otherwise.
¢ww,(c) =+l if W has a dot, W' no dot at ¢
-1 if W and W' have a dof
0 if W has no dot at c.
Aww,(c) = n(c)eww,(c)¢ww,(c).
Claim, 06(w,w') = L AWW,(C)
ceaW Naw!'
cz‘Ei

As in part 1), this is verified by case-checking the local contribu=-
tions to linking numbers at the crossings. The relevant cases are illus-

trated in Figure |7, Figure I8 is a summary of the aigorithm for finding 6.




contribution = 0

Note: [f W <E, W< EY, then c ¢ E',
c' e E,

LH z'*w ‘/
7 -

contribution = -|

nic) = +1,

eyt (S = H1, () =

'AWW,(C) = =]

Figure 17
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Figure I18--Recipe for Calicuiating Seifert Pairing

I) White Regions in Same Domain E

/ /.
. W [l w
b 1] ole = +

W " dyyr () = I
+ :;L or 0 if no dot in W.
1 =
8(w,w') D L Gy €©)
ce(aW AW I NE

dww,(c)

]

0(w,w) = - )
WYEW ce(aWABWINE

II) White Regions in Different Domains

Zog:-l .Z=*  [ndex Crossing

(c) = [ W left of W' with respect
to red circle

0 otherwise,

dyyr (€)= (+1 W has dof, W' has no dot
-1 both W and W' have dots
0 W has no dot.
Aww,(c) = n(c)sww,(c)¢ww,(c)
1) =
Bw,w') = ) ' ,Aww,(c)
ce(3W AW NE

C(WEE,W'CE")
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Torus Link Example
((3,5) torus knot)
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Remarks. Thus, we have an algorithm which computes Tﬁe—SeiferT
matrix V from a link projection,

Comparison with Murasugi [27] shows that our procedure obtaining
V qives a matrix identical fo his "Link-Matrix." Although he does not
mention the Seifert pairing in his paper, it does seem likely that
This.was his method for arriving at the matrix.

Murasugi lets M = V + V' and asks how M éhanges under elementary
deformations of the link projection [see 30, page 7]. He finds that
M undergoes only transformations of the following type:

M <«—s @M0', Q unimodular
M 0
0 [? (')]

Since the projections of any two equivalent |inks may be related by a

M <

sequence of elementary ftransformations, this shows that the bilfnear
form determined by M is an invariant of link type as long as two forms
are considered equivalent up to direct sums with U = [? é].

Since the signature o(U) = 0, we see that o(M) is an invariant of
link type. This leads to the definition:

Definition, Let L C133 be a link., Let V be the Seifert matrix
of L computed from a connected projection of L. letting M = vV + V',
define the signature of L as
' a(l) = o(M),

Corollary. If F is the Seifert surface used in the above defini-
tion and NZ’MZ are constructed as in Chapter I, (M2 = 2-fold branched

cover of S3 along L) then

oll) = U(Mz).

Proof. c(MZ) =0V + V') since V + V! = intersection form for M2'




