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XIX
SEINCULARITIES, EROTS AND BRIESKORN YARIETIES

A good reference for this section is Milnor's book
[H3]. Singular Points of Complex Hypersurfaces: alse the
original papers of Pham [PH] and Brieskorn [BK)] and the
notes by Hirzebruch and Zagier [HZ]. There 1s a large and
continuing literaturs om this toplie. Our intent heare is to
glve a survey of examples and constructions. Az we shall
ses, the subject of the topolegy of algebraic singularicties
is Iintimately related te knot theory and te the structure
of branched covering spaces. In the case of the Brieskorn
manifolds thess ideas come together, so that the link of a
RBrieskarn singularity may be described compleately In terms
of knotes and branched coverings [(Example 19.12 of this
chapter). In this sense many construcctions of high-disen-
slional topology. including exotic spheres, may be seen as
implicit in, or as generated from the desp thres-dimen=-
elonnl knot-work of Alexander and Saifert. Sinee this
early topological work owed much of its impetus to the
desire to understand the topology of algebrale varieties,
it s Fititing that wa and our tmle of knots and manifolds

in this realm.




Let '['ﬂ"l":] = I be m polynomial in ([m+l)
complex variables. We define the yarisgty of f by
V(f) = {z € t"‘llf[:] = 0}, The variety of f 1is its
losus of Teroes.

When f(0) = 0 we define the link of [ by the

eguation L{(f) = V[(f) N i:+1 wherea BE"+I is a sphere

m+l

abgut O € C of radius & » 0. Usually & 18 chosen

very small sc that the tepology of L({(f) and its embedding

2n+1
4

In the most general case the link L(f)} will depend upon

in B reflects the nature of the wariety ¥(l) at O,
the cholce of &. However, under special conditions (such
as an isolated singularity—ses below) L{F) will be
independent aof & for sufficiently small &.

A point =z € YW[(f)}) is said to be a singularity of f
if v.(z) vanishes. where v, = {ﬂi‘fﬂ:ﬂ.ﬂfﬂzz_-u.ﬂt;"ﬂ:n}
denoteas the complex gradient (pgt the Conway polynomiall).
A singularity is isolated 1f 1t has a neighborhood in Eu+1
containing no other singularities of §. The polynominls

- " "n

Ty By oreedomoo, {ln.ll.-*'.ln} an [n+l)-tuple of
positive imntegers greater than or egual te 2, form a
callection having iselated sfngularities at the arigin.
They will be referred to as Brieskorn polynomials. It is
these polynomials that will eccupy our attention im this
chapter. The Brieskorn polynomianle wera filirat studied by

FPham [PH] im relation to problems in particle physics.




Pham's calculations genermlized earlier key calculations
2 2

of Laefschetz [LF] for the behavier of M TR ALLL I o

*o
Brieskorn utilized Pham's calculations and recognized that
the links of thess polynomiamls comprised anmn extensive class

of manifolds, providing, in particular, realizations of

many sxotic spheres.

n n
0
DEFINITION 19.1. Let I(ag.=**.a ) = L{zy +++e+z ")

denote the link af the Brieskorn alngularity defilned by

& ] a
1] ... f
:u + tl + + In = O,

PROFOSITION 19.2. I[ln.llj C 53 is a torus link of type

[In.I]}1

Proaof: By definition, I[lu.ll} is the set of points in Ea

o, ™M 2 2
satisfying the eguations Zn * T, = a, |:1] * E:il = 1.

(Y& use a sphere of radius one fer this demonstration.
That the link Ils independent of the radius is ensy to
varify for Brieskorn manifolds.]) Let To = rtiﬂ.

z, = li". If r and s are real numbers satisiying

] [

r u+l ! = 0, rzfi= = 1, then we can obtain further

complex solutions via the comdition

This defines a torus link of type {nn.nl] on the torus




lﬂ.--i'}. That the whole |ink

paramatrized by (re
I{lu.il] arises in this form is left as an exercise [or

the reader.

Qur next result shows how the higher-dimensional
Brieskorn manifolds are cyclic branched coverings along
lower-dimensional Brieskorn manifolds. Before proving this
fact, we set up some ussful notatiom:

Let X = J{a) = I{ln.l *--.ln] denote the Brieskern

1
manifold obtained as the link of the singularicy

%o *1 *n

g Y E 4recrozo Here & is an abbreviation for the

(n+l)-tuple (& .~--.-1]. Let

E

IH - Ik[l] = I[-D.nl. ---,-n.h].

Thus I(a) € 82°*! Lhile I(a)c g2n+3
PROPOSITION 19.3. There s a map ¥ : I, — gl o hib-
Leting :k as a k-fold cyclic branched cover of $=n+1.

with branch set I

Remark: It follows from this proposition that all of the
Brieskorn manifolds are shtained by forming certain tovers

af branched coverings im the pattern




I(ag.a,.8,) C o
I(ag.a,) € 8
2n+l
So far, each embedding I(a,,---,a,) CS8 glves rise to

& branched covering manifold, which, by dint of our ele-
mentary algebraic geometery, is jtsel{ embedded in a sphere
so0 that the construction can continue. Im fact, there are
topological constructions for the embeddings as well. Wa
will discuss thess constructions ahortly. Constructions of
this type are mativated by the geometry amnd toepolagy of
algebrale singularities.

Vhile we are on the subject af the relation of knet
theory and singularities, It 18 worth remarking that any
knot can be regarded as the link of a "singularity”™
although this is not necessarily algebraic: Civen K C s"
we have the come on K, CK C Dn‘l. The cone is &
topological space with a singularity at the cone point
(CK = {rE €« D®!|XT € KCc 8, 05 r s 1}). The cone point
is, by definition, the origim in ﬂn'], This spparently
aimple remark is the key to amalgamating constructions in
knot theory with properties of algebraie singularities.

It alse is helpful to sketch immersions into l3 to

see the geometry of the singularity. View the following

figures.




K

An Ismersion of CK in B

Froof of 19.3: Parametrize tn+2 = tn+1 = L as

{{zﬂ,zl.---.:u.ti = [z,x) | T, €C, x € C}. Let
A a A
ﬂﬂ + 11] e :n“, Then lat F : B“+2 -4 L he

the polynomial F(z.x) = r{:}+nk. Let V(F) dencte the

fiz) = 2

variety of F. Thus
“{Fj - {[I'rl] & :n+2|f[:]#uk - ﬂ}_

Define p @ V{F) — e+l by the formula p(z.x) = z. The

mapping p exhibits ¥(F) as a branchad covering of t"*i

n*lr ¥e wish to modify this

gontl

with branching set ¥({f) C €
mapping to obtain w : Ik —

Firat consider the restriction of p to =k H
Pelx| = 1), p i 3, — ¥

Since p(z,x) = 2 we ses that for

Y, o= ({2, [1(2)+x® = 0, |2

= pl(3) C g2n+l




2w ((z.0)} €2, p(2,0) wz and p(3) =3cC 1,

Thus
Icy¥, and I is a k-fold branched covering of ¥ with
branch locus X. It remains to show that ¥ 1s amblent
isotople to BE"] [ = t“'i-

To this end, define an operation of the nonnegative

real numbers, I*. an Bn+1 vinm

1/m 1/a 1dfm
pPHZ = [P 0 g P ! ol LY "oa

for p € Y, =z« t'*l. Hote that f(p¥z) = pf(z).

Hote also that O € ¥ since If p{z.x) = 0 then
z =0, whence f[ﬂ]+xk = 0 whence :k m= 0, hence x = 0.
But (0,0) € IH and Y = p{lh}. Therafore, define

Zn+1 nel

E : ¥ — 8§ = {z @ C

|z] = 1} by the fermula
E(z) = p¥z for that unigque p » 0 such that |pwz]| = 1.
We leave it a8 an exercise to show that E ! ¥ — ﬂ=u+1 is

a diffeomorphism. Thus wa have the diagram
:h
w
P
4 5

and we define ¥ = Eop, Since I is invariant under E,

we have ahown that ]I.h ism a k-fald branched covering of

E2:14-1 2n+l_

alang X C & That it is a eyelie branched
cover 1s also left as an exercise. This completes the

prooaf .




Remark: Proposition 18.3 can be consldearably general ized
by replacing the directly constructed map E : ¥ — EEn*l
by maps obtained through integrating vector flelds. See
[DK] end [EN]. In [DK] we show that the link L{f{:]ilil

in always a eyelic branched cover whanaver f(z) has anm

isalated singularity at the arigin.

Example 19.4: Propesition 19.3 tells us that I[(2.2,2) is
the 2Z-fold eycliec cover of 33 branched amlong Z(2.2) C 53.
The latter is the (2.2) torus lionk, also known as the

Heof Link A € s7,

AN

Here we have said “the” branched cover, by which we meoan
the branched cover that corresponds to the representation
(8 A)EzeZ — 7 12
{liuil_ll].l—lll

(0,1) P9——— 1 — 1

where (1.0) amd (0.1) correspond to meridinal gener-
antors oriented positively arcund respective link compon-
oents., The link is presented with linking number 1. We

leave it ms an exercise to show that this representatien




corresponds to the k-fold eycliec branched covering
3(2,.2.k) — 5°,
Returning te X(2,2,2), It is ssusing to reformulate
this in twe related ways:
l. I(2,2,2) 8 T where T denotes the tangent
circle bundle te the twoe-sphere HE.

X{2.,2,2) = Ill whera ll'3 denates real projee-

tive d-space.
And also

3. IIE E S0({3) the group of orthogonal, oriemtation
a

preserving linear transforsations of R™.

3

Thus T, EP°, SO0{3) and X(2,2,2) are all versions of

thea same spRCE.

1. ¥e use the amlgebralc geometry to ses that

(2.,2.2) =T as follows:
3(2,2.2) = {(zg.3,.2,) [z5eaiens = 0,1z, |Pelzy|®41241% = 1).

Let = ll+ i=-1 ti for 1 = 0,1,2. Then
:f - {:i‘-!fp 20=T X,¥,. Hence, lateing X = (Xy.X,.X,),

Ve (Y,Y and X7 = X_¥ X ¥ +X_Y IIF - :gqurxz

ry ofo*% 71t %gYs,
we have

2o+ 23+ 23 = (IXIP-IT0%) + 2057 (R-7).

Thua ,
3(2,2.2) = {(X.Y) € wta? | I7® - |ﬂ=,:.!r - 0,

151240702 = 1)

« ((X.T) e ntup? | iI%] - i- = [7]. X7 = 0).

o S e




This is precisely the set of pairs of points on EI

(X )X1 = %} coupled with tangent vectars T {T3T'= 0} of
fixed length. Thus X2(2,2,2) 2 the tangent circle bundle
to ﬂz-

2. To mes that I{(2,.2.2) = ll"3 it w111 suffice, by

19.3, to show that RP> 1s the 2-fold branched govering of

§> pranched along the Hepf Ligk. To this snd, let ©D°

denote the unit 3-ball: D> =« (R e r® | I¥] s 1}. Let

3 3

T : D= D 3

[1]
denote an 180 retation about an axis of D

(straight lina through the center).

¢ \D

Jor

Ler g denote this axis and b denote an eguatorial
circle on the boundary of Da-

Now IFE = ﬂafﬂ where x ~ x' if and only if
I5] = 15 =1 and %‘ = -Xx. That 1s, RP® 1s the 3-ball
with antipodal boundary poilnts identifled. Sinece 7
preserves antipodal palrs we obtaln 7T @ IF3 —_— HFa. a map
of order two that fixes pointwise i =auUf where a and

b are the images of the axis g and equator b imn !ra,




Note that both m and B are embedded circles in IFB.

We leave it as an exercise to show that Ifaf[p ~ Tp) is
the thres sphere 33 and that a U B projects to the Hopf
link in 8> This completes the prool that JX(2,2.2) = rp” .
3. One way to see that ll‘3 B S0(3) 1s to prove
ﬂiriﬂtT; that S0(3) is homeomorphic to Dafm- To see
this, represent elements of SO0(3) by pairs [8,v] where
0§ 0 § v and ¥ is o wunlt vecter In IJ. Then [8,v]
represents a rotation of O about the axis v (using the
right-hand rule). WNote that [v.¥] = [-v.¥], =and that
otharvise thers are no identifications. Then
BO(3) — n'j»- vian [0,v] == [Bv] shows that SO(3) 1is
homeomorphic to the ball of radius =, moduloe antipodal
identifications on the boundary.

This completes our tour of polnts of view on E(2,2,2).

Example 19.3: Propositions 19.2 and 19.3 takenm together
shaw that X{a.b.a) 1=a

(a) The a-fold branched cover along ZE(b,.c).
() Thae b-fold branched cover along ZX{(m,c).
[(e) The e-Ffold branched cover along Z(a,b).

Thus thess three spaces are difleomorphic.

Example 19.6: The Dodecohedral Space. The purpose of this

2 .3 .5

example is to give proof thar X(2,3.5) = L{Z,+Z)+Z,) 1=




the dodecahedral apace ®. 9 is a compact orlentable
three=dimensional manifold whose lundamental group

G = '1[’] is the bipary dodecahedral group. That is, G
is a subgroup of SU[(2) (which double covers the retation
group S0{3)). Let = : SU(Z) n*-ﬂﬁ[3} ba this doubla
covering. Then E - r-l[E] where ©C C S0{3) Is the
dodecahedral subgroup of S0{3). That is, G 1is the group
of rotational symmetries of an lcosahedron or a dodecahe-
dral (they are dual) in Euclidean thres-dimensional space.

The dodecahedral space is an important example in
topology. Its history goes all the way back to Polncaré.
In facet, it I8 the first counterexample Lo a precursor Lo
the Poincaré conjecture. The precurser would state that m
three-manifold N with Hl[l] = {0} is the 3-sphere.
Dodecahedral space 8 has a perfect but nontrivial funda-
mental group. Thus w (9) » {1}, |Tu: Hl('] = (0}.
Recall that the Polpcaré copieciure im dimension three
states: A gompact connected thres-manifold N wxith
*,(M) = (1) 1s homeomorshic to the three-sphers S°. It
remanins unproved te this day.

The texthbook [S5T] by Seifert and Threlfall contains an
excal lent account of the combinatorial topology of %. We
shall show that X(2.3.5) = lafE with ma natural covering

space action of € on 8. See also the book [DV] by

Pu¥al, and the papers [M1] by Miloor and [OW] by Orlik and

Wangrelch.




Firat recall the definition of the Lie graup SU[(2).
As  space, SU(2) is diffeomorphic to S . In faet, it
can be defined as the group of unit=length quaternions. We
give the definition Iin terms of complex valusd 2x=2
matricen:
z w

sua) « {5 3]} | 2w c e 121%001? - 1}

i im a 2x2 complex matrix, lnd}
AA™ = I, Det(A) =1

.7, SU(2) = {u

Herw A' denotes the conjugate transpose, and [ denotes

the identity matrix.

Since §° = {(z.w) € C=C |l|2*|I|= = 1}, 1t 1is

manifest that SU(2) & §°,

Row let ¢+ denote the one-point compactification af

C. Thus et = 51- We may also deseribe 5= as t!l via

homogensous coordinaces:
8 = cp! = (tz,w)|(z.¥) € €*-{0)}).

Here (z,w}) denotes the equivalence class of (z.w) where

{(z.w) =~ (hz,.hw) for any nonzero complex numbsr M. :r‘

i the set of complex lines through the origin In tz.

Let ¥ denote the set of lipear fractional transfor- i

{

mations of C°. Thus
2 = (T : € — €' |T(a) = (za+w)/(-wa+z)}.

T W
Here [_; ;] is an element of SU(2). The linear




fractional transformations derive from the natural action

of SU[(2) on cPl:

b
[: d] € BU(2), ix.y) € trl —

b
[: d]d:.rl = (ax+by, ex+dy). The latter Is equal
to (ax+by)/(ex+dy) in € where 1/0 = ® =« the

extra polnt in the sne-point compactificaction.

Note that a € € corresponds te (a,l} € ' for a .,
and that = € ¢’ cn:rilpﬂﬁd: to 41,00 € Efl.

Since A and -A in SU[(Z2) give rise to the
same element of ¥, 1t 18 easy to seé that the map
v i BU[Z) — ¥ is 2 to 1 and onte. Im fact, ¥ is
lsomorphic with S0{3). The isomorphism can be made
explicit through a specific cholce of stereographic
projection 8t : 82 — €* where
8% = {(x).%,.%,) € x Ixj = 1}.

If G C ¥ 43 a subgreup, let E C BU[Z) denote
e e).

¥ith these preliminaries completed, we now turn to the
action of SU{2)}) on the ring R = C[X.Y] of polynomials
over € imn two variables. It Is through this action that

we shall prove that 3(2,3,6) & §°/G. BU(2) amcts on R

a b
ne follows: Let o = [-E ;] € BU[2), and let

FI(X.Y) € R. Then F will denote the result of applying

v ta F. Fa is defined by the formula:




FP(X.Y) = F{aX+bY, -BEX+a¥).

,i..
Civen a Finite subgroup G C BU[Z), we assak

ln = (F TR | F =« F Vo € E}. the ring of polynomimls
invariant under the action of c. ¥e shall see that for
the binary dodecahedral group E there are three genera-
tors for R : H ,H, H, satisfying the relation

2 a3 b

2 w3 en’ = €[2,.2,.2,]/(Z5+2]+23) and from

G
Hliﬂziﬂa

m 0, Thus R

this 1t will follow that 3(2,3,5) & §°/G. The detatls
follow as balow.

First we look at the action of SU{2) omn R. Note
that 1f F 1is a homogensous polynomial, then so is F°.
[(The polynomial F is homogensous if mll single terms have
the same total degree d = §i+#j.) Since any polynomial is a
sum of homogeneous polynomiamls, 1t suffices to determine

which homogeneous polynomials are invariant under G.

Now obzerve that If F € R 18 a homogeneous polynom-

k
ial, then F = ‘IT-:-,xwln where a b, € €. Let this
iml

correspond to the following “polynomial® with “roota®™ inmn

¢t = ol

k
F corresponds to f -T]]'{:—tut.bin,
]

Call § the formal polypomial corresponding to the homo-

geneous polynomial F. Let ¥ denote the collection of

these formal polynomimls, and note that ® Is in one-to-one

et vy —




correspondence with the set
{homogeneous polynomials in R)/~
where F ~ AF for any nonzero coaplex number A.
: mcte on X by!: Civem g € G, let o € E C BU[Z)
boe an slement projecting te g. Than fif = 7 where @7

is the forsal polynomial corresponding to Y (F corre=

sponds to f). MWore specifically: If F = ![nlI+blY) and

e (3 Y. e

FP(X.Y) = I(a, (aX+b¥) + b, (-BEX+aY))
FO(X.Y) = O((aa -Bb )X + (a beb a)¥)
Consequently, F® corresponds to f° where

o
£ = l[:—lbn1+-51. -t.ibel]}

6 o)

¥ = B(z-0"'tb ,-a))

(f = T(z=(b,,-a,)))

Conclusion: % 1s obtained from f by transforming the
“roote™ of [ win the inverse of the linear fractional

transformation corresponding te wo.

Hera is o summary of what we have done ma far:

oy

1. If F 1s homogeneous and invariant uwader G,

then the corresponding formal polynomial f§ € &




The Moral:

R, firse

is invariant under @,

If f€® is invariant under & and F € R
corresponds to f, then for any o € E, F7 = AF
for someé mnonzero complex nusber A (depending
upan &). Since we apsume C finite, this
implies that A js a root of unity whose prder
divides the gprder of o.

In order to study E-invlrinnl polynomials in

study ©C-invariant formal polynomials in #. The

latter correspond {(via the roots) to collections of points
in g2 for in E*l that are invariant under the mction

af G.

Let

Bvertices = V = 12
Hedges = E = 20

#Hfaces = FA = 30

G be the symeeactry group of the icosahedron,

Then {view the figure abeve) the icosahedron has ¥V = 12




varticea, E = 20 edges, and FA = 30 faces. Let ¥
denote the set of vertices, & the set of midpoints of
edges, and ¥ the set of midpoints of faces of the leosa-
hedron. Them ¥, § and ¥ are OC-invariant subsets (of
32 via radial outward projection from ths rectilinesar
icosahedral form)}. Any other G invariant subset moncon—
gruent to T, £, or ¥F will be a full orbit of &0 pointas.
Let f, denote the polynomial in X whose roots are
the set 7, f, the polynomial with roots &, and

F

3

the polynomial with roots ¥. Let F g FS be any

ll
three corresponding polynomimls in E.

Claim: F,. F, and Fy; are sach G invariant.

Proaf af Clailm: We prove the claim for Tl and leave the
rest for the reader. Bince the roots of '1 are the
twelve vertices, 1t is possible that o € G may multiply
factors of F by a lﬂth root of unity K. However, a look
at the geometry of the situation shows that 10 roots must
then be permuted among themsalves by o and twe left
fixed. This means that F (s sultiplied by hlu, hence
it is lefet invariant. Similar considerations hold for the
other divisers of 120.

¥e now make the following

G

latm: If F 1is any homogensous polynomial im R of




degres 80, then F = IIFE + I=P: for somes constants

1
K, Ky € C.

Proof: Let ¥ correspond to the (formal) polynomiml [.
Then we may choose p € 2 -7US U, a point in the
complement of the special {nvariant sets, and constants

Hl. IE such that

£(p) = K 13(p) + Kofa(p).
Heémece (by invariance)

{r-ulrf - Kyf3)(op) = 0

for mll 60 points {ople € €). Therefore [ = Il’? + Hlfg.
B
1

Thus F = K, F. =+ EEF: at least up to A constamnt., This is

1
sufficient te prove the claim.

As a resulet of this claim, we may choose constants

El.ln.ia such that 4F H: - Ilrl‘ H! = K:FE. Hy = K4F,,
then
& 3 2
l]1 + ]El= + H3 = 0
Furtharmore, we have shown that IG is genaranted by “1
and H!'

THEOREN 19.7. Let ¥ = €[A.B,C1/(A%+8%+C?) be the

gquotlent ring of the ring of polynomials in three variables

[eith complex coefflclents) by the relation h5+33+ﬂz,




G

Define a map & ¢ ¥ — R by extending +[(A) = H

1
¥[B) = Hg. #[(C) = Hy. Then < (s an isomorphism of rings.

Froof: + 18 onto, and we know that dllt l'r':I = 2 ([since
there is no relation betweasn Hl and HII' Therefore the
ideal [ﬁ5+l3*ﬂa} must inm fmct be the kernel of .
Otherwise the dimensions would not compare. =
(Compare with [KL].)

Row ler V¥ = ?{I?+1§+1§} c ¢3 be the Brieskeran Vari-
ety (5.3,2). And define ¢4 ° Ez-* ¥ by the map

#(z) = {ﬂl{lj lﬂzt'] ..Hj_{ﬂ'-]] .

PROPOSITION 19.8,
(1) # 1is surjective,
(2) If w €Y%, then i-itr] is an orbit under the
action of G on EE.

(3) V& /.
(4) 3(5.3.2) = 8°/6.

Proaf: Using

¥ ¢ C[A.B,C1/(AP+R%4c?) — [x.77°

’ I¢

i
nnd the inclusian .G CR. it suffices te prove that the

induced map on ring spectra Spec B —+ Spesc & ia




sur jective (for 1}). (See [SH] for algebralc geomatary

background.) However, it Is easy to see that R is a

finitely generated integral ring extension of IG- Hence

.Y

Spec({R) — Sp&:{lu] is finite to one. Therefore
2 = djqc R = dlqc Hn. Eince the dimension of ¥ is also

2, and o : ¥ —s Rn is an isomorphism, we ses that

LY

Spec B —= Spec IG e Spec ¥

g0 that Spec E — Speec ¥ 18 surjective. This translates
via the Nullstellensatz [S8H] te the statement that
# ¢ L = Y is surjective.

For the second part it I8 necessary to show that
#fa) = #fa") = a’ = ;n for some ; € E. Since we may
assume that a,2’ are not zero, let a,a’ denote the
corresponding slements of Ez = tfl, Bimilarly, let g bes

the alement of S0(3) corresponding te g. Then from
o 2 v we obtain # @ cr! — [?-{ﬂ}}fﬁ" {E- = the
nonzere complex numbers). Now #(z) = #(2’) implies that

all noenzeras formsal polynemials In I.‘[:.'_I'= take the asame

values on & and a’. Let £(z) = |](z-ga). Then
EEG

f(a) = 0 and hence f{a‘) = 0. Thus a’ = ga for some
g € G. Transferring to G we conclude that AEu = a' far
some A € € . Hence #(ha) = #(a) for some A € c”,

Thus we are reduced to showing that #{ka) = #{a)

implies that Xa = ha for some h € €. Now #(ha) = #(a)




means that

3

Hy(a) = Hy(ha) = A27H, (a)

Hy(a) = Hy(ra) = A2%H,(a)

Hy(a) = Hy(ha) = hlzﬂa{n].

Consider the various cases!

Case 1: Hl[n]. Hz[n] and Ha{uj all nonzero. Then

a0 20 12 2

A L m 1. Hemee A = 1. Thus i = %£1. Since

= M

=1 15 an slement of G, we conclude that #(a) = [-;]:,

as desired,

Case 2: If Hl[n] = 0, whila Hz{a] amd “3{¢} are bath

10

nonzers, then X = hIz = 1., hence h* = 1. Howevar,

Hlia} =0 implies that a s a midpoint of an edge of the
lcosahedron. There is an order two sysmetiry g (:’ = 1]
that rotates by 180" about an axis passing through the
midpoints of opposite edges. Therefore ;1 = =1 and ;
has order four. (That is. ; exista.)] Consequently, we
can realize the Fourth reot of unity with ; € C as

desired.

The other cases follow by simllar geometry. This
proves part (2). Part (3) follows from plrll-{l] and [(2).

Finally, to see part (3) use the same argument as in the




proaof af 18.3 to slide polintes onte the standard spharae.

This completes the proof. -

FHote that it follows from our discussion that the
dodecahedral space is obtained ms the 2-fold branched

covering N of 33

with branch set a ([3.5) torus knet.
It 18 & good exercise te show thae rl{[] = E, and A more
challengling exercise to shew directly that 12[1315} and
33."‘5 are homeomorphic (even diffeomerphic) manifolds!
Exercise. To prove that E is perfect:

(1) Lar € be the symmetry group of the leoaa-
hedron, G C S50(3). Show that C is isomor-
phiec to ﬁﬁ. the group of even permutations on

five letters. (HINT: HRepresent the [ive
letters n,b.ec,d,a as collections of four

faces such that no tws faces Iin any collecstion

el

[11) Show that Au in parfect. ([Show that avery

element of A is & product of 3-cycles, and

that every 3-cyecle is & commutataor. )




{(iit) Show that i EJ = unilt guaternions and {f

u,¥ € 33 such that HE - 12 = =1 =m0 that

u and % are unlt vectors in 53 C IJ =

[(ni¢bjsck} (a,b,e € B) with u L w

(L denctes suclidean perpendicularity],

then — g

3

= =1. Thus =1 1is a commutator

in 8§ Show that =1 {is a commutater in G.

(Hint: This corresponds to finding two lﬂilﬂlﬂI
rotations of the ifcosahedron having perpendic-

ular axes. )

A few comments about the guaternions are germanes to

this last exercise. We regard
pY - {t+aisbisck | t.a,b,c € R}.

Quaternioniec multiplication om l‘l iz generated by the

2 2 2

identities 1" = J° = k" = {jk = =1. (Plus associativity

and disctributivicey.) The pure guaternlons ‘3 = {mi+bji+ck})

oconstitute suclidean three-space, and the unit sphers

ﬁa = (mi+bj+ck = u | l=+b=+== = 1} has the property that

u € 53 if and enly if n2 = =1. Thus any gquatarnion

g € EJ can be written as g = -"’ = con(8) + usin(@)

whara O § @ § 2 and u € BE. ¥e define = : 53 —s BO(3)

by the map w(f)(v) = gvg where g = o

It {8 not hard
to see that w(g) 1s a rotation about the axis w by the
pogle 28. This is the gquaternionlc version of the doubls

rovering of S0[{3) by SU[Z).




Example 19.9. The Nilnor Fibration: In [N3], Milner

proves the following theorem.

FIBRATION THEOREW, Let § ¢ En*l =+ L be a complex poly=

nomial mapping with an isolated singularity at the origin.
2n+1

Leg K = ¥W(f) N 5‘ denote the link of the singularity.
Then # 1 ﬂfn+l = K — Bl iz a smooth Ffibratien, where the

mapping ¢ Ls defined by #(z) = f(2)/1f(2)| = arg(f(=z)).

Thus, links of isolated singularities have [ibered comple-
ments. At this stage it is worth generalizing the term
kngt to demote any codimension t¥o smeoth submanifold of o
Epherg. Thus Wilner's theorem is that links of isoclated
singularities are fibered knots.

In particular, the flbratlion theosrem states that the

§> - I(a,b) 24 !
i[:ﬂ.:t} = nr;[=3+:?]

glves the Fiber structure for the (a.b) torus koot {(or
link if gecd{m,b) * 1). Recall that we have explained the
geometry of a {iber structure for Ea'lil.h} in Exerclse
13.17.

In this example we see how the Fibration Theorem works
in the case of the Brieskorn varleties. The reader ia

referred to Wilnor's book for the full thearem.




n, " n
Let f(z) = Ty *+ By #ecce T and view this poly=-

nominl as a mapping f @ ™! — €. Let €" denote c-{0})
and let W = E_]{t'] [ = tn+l. Our first assertion is

LENNA 19.10. ¥ == €™ (s a smooth fiber bundle.

Proof: Im order to prove this lemma we must examine how to

locally trivialize the mapping. Recall that we have

lfln lfll lfln
dafined pwz = [p 2ol Zyatap 1"1 for positive
real numbers p. Note that [F({p®z) = pf(z). For

0 i 8 5 2¢ we define h.{:} by the formula

h.{l} = [ugzu.ultl.*'-.unln}

Ifl“

where W = o . We see that pwh, : l-l{:j - E-I{plla

z).
Thus these maps oan be used te produce the local triviali-
gation.

¥& now restrict the bundle of Lemma 19.10 to produce
anather bundle that is relevant to Fibering the cosplemant
1§ Eiuﬂ.ll.---.-n]. Lat Iﬁ_‘ dencte the set defined

below:

Ey o = (z €€ | If(2)] = 8, |z] 5 e).




If wa choose @O « & ¢« &, then it is easy to see that

e ™ 5;. g — f(z) 1am Ch-rlh-p bundle. Since

2n+2
nl

gite inside the bmll of radius & we sew

its boundary is the boundary of a tubular nelghbarhood

2n+1

= It'ﬂ"l'--"'n} iC HE

In face, Eﬁ.a defores i

ve m [ibar structurs on the complement of this tubular

borhood. The deformation involves expanding points uf
via z —+ pez for p such that |pwz]| = &. This

es a fiber structure E:n*l - H{(X) 4, ﬂl wim

= arg(f(z)). Here BN(3) = E, N nf"”- This give

of Milnor's theorem for this special case. He manag

ber the full complement by more careful analysis,

It is worth understanding the gecomstery of this [flbra
in more detail. We may take & = 1 and note that thi

2n+l

sof % : 8§ = N[(I) — 31 are deformation rurnntli




of {z € €™|r(z) = 1) = F.
: a a

Now F = [:EI!"” |1:°+:Il #reny :“"'-II-. and F
has as deformation retract a wedge of [ln—l]{ll—l]-=-{l=—l]
spheres of dimension n. This occurs as follows:

LY n n
(1) F 23 {F ¢ l"'llruu+ rll LT A N
- A,

{2) F is invariant under multiplication of the ith

coordinate by an llll'h root of unity.
(3) Thus F 2 {r ¢ l]'[ﬂlu “ Oa, = ++= = ﬂnn] where
ﬂ-l = group of ll1h roots of unity. That s,

F I3 ((rgugesssorpw,) | TES o €0a} =2
It im good exercise to show

(n) this last set ¥ is & deformation retract of F.

(b} 9 & ﬂ-ﬂ L] DII LR ﬂln (whare ™= denates jein)

# (8% ceev8?) veroy (8%veeevg?)
{uu—lj {nn—l]

=Y/ s"

(ag=1)(m;=1)++*+(a_~1)

Bes [BK] for more detmils.

Hara ia o visualizaction for the itvo-variable case:
M .
The Ffiber 18 F : 2, *+ 2, = 1. Define w : F =€ by
itl“.:lj = 2,. Then w isa branched covering of the

#emplex plane branched along the I]“ roots of unity. We







CRn see F by creating a cut-and-paste ploture afl the
branched coverimg. This is obtmined by slitting the

complex plane along rays emansting from each root of unity.

For cxmample, taka F :E +* :T = 1.

miruction is f{llustrated in the figure on p. 354. HNote

This surface con-

thae ﬂz - n1 appears as the form

S N
Fz e

Note also hew a projecilen of the (2,3) torus knot

appears in the boundary of this representation:

Ihesn same patternse hold true for the more general case of




L} n
0 1
Iy + 2, 0= 1.

" R A "
If wea replace :nu * :]l = 1 by lnu * lll w 8§ then,
as & mappromches O, the ﬂnn L] ﬂll part shrinks to a

point, until at O, F has degenerated to the comne on the

[ln.tlj knot.

2n-1 1

The structure of the fibratien & ! 8

is given by the monodromy h : F —+ F where F 1is the

fiber. It is easy to see from our discussion that this

- N(Z) — 8

monodromy consists im multiplying each cooardinace by
the corrasponding rooat of umity. Thus

. Er;fa’
h[lu.ll.*".ln] - {-u:u.---.vn:n} whers o= .

This means that EEH*I - N{X) is diffeomorphic te
Fx I/(kf{x).0) =~ (x,1}). From this description it is

possible to compute many things—including the Alexander

polynomiml of X C !2“':-

Exerciss. Show that 1f K C 87 1s a fibared knot with
fiber F and monodromy b ! F — F, then l[{t} -

Det{H-tl) where H = the matrix of h, Hl[F] — H]{F]

fi

for some basis of this homology group. Use this descrip-
tion and our discussion of Brieskern manifelds to r-cu-puti

tha Alsxandar polynomials of torus knots and links.

Example 19.11: The Eapiy Knot. The simplest Brieskorn
1

[
polynomial is I{zu] = =nﬂ_ Here [ : S5

*o o
is the Milmer fibration. The "knot" 1[|u] is the empty

— 51, —




sat! Nevertheless, this knot has a fiber, and it has a

Seifert pairing with respect to this fiber. We caloulate

the pairing.

Let F[lu} bs the fiber of the Milner fibration for

this smpty knot. Then

r{-u].i‘u]

a

s (wesl |o? =1}
F(ag) = Ma,, the set of luth roots of unity.
LFE
AT
w = e i/s

i

W

F(3) = 0y = {1.0.6%)

The Milpor Fiber for the Empty Kpot of Desree Three

Eiif-u

By letting w = a denata an lnth roat of

a -1
unlty, we have that ﬂiu = {l.u.uz,-",u } repressnts

Ik “"spanning surface”™ for the empty knot of degrees 8-

e Seifert pairing is defined in reduced homology:




Ba, : ﬂa{“‘n} . “n{“‘n} —

We may take the push-off in the normal diresction to ﬂlu

to ba generated by a small counter-clockwise rotation of

S]. Let :" denote the result of so pushing a chain x=x.
Hote that the generators [ar Eu{ﬂnu] aFE
a_.=-2 a -1
{l=-w}, Iu—uzi. ﬁu:—u]}.--'.ﬂu v =u 0 y. These form m

baniwm. If wa let
k 'I|:4|~1:l

. = o —w

L (l=wb, . = [u-uil and genermlly

where k is taken modulo then

-ﬂ' i
|

El[ﬂnu] has basis {Iﬂ.ll."‘. Also e, = ukun in

lln_ﬂ}.

the sense of the multiplicative action of the roots of

H
unity on “ﬂ' f
i

The Seifert pairing is defined by the formula i

8(a,b) = Gk(a".b). Here we see that

. |

€ 1

r

E

{ (e .e,) = ik[n:.iI] - +1

HI'I"!*I} = lk[!:.!l*l} = =]




nnd othervwise E{ni,aJ] = O,

This means that for the emptv knot of degrees a Lhe
Beifert pairing has satrix

1 =]

¥lih respect to the basis iin.l].*'*pil_a} = &

Ve have already encountered this matrix in Chapter 12
where the intersection on the a-fold cycliec branched
savering of D' along & pushed-in Setfert surface for a

knot K has the form @ @ l. + HT @ II (T denotes trans-

pose), and O 1is the given Seifert pairing for K C 33.
Thia connection with the forsalism of the empty knot is not
Bpurious. It 18 in fact, the first instance of a unified
arenn of constructions which happen both Iin studying singu-
Iarities and in studying knot theory. Most of the rest of

ihim chapter will be deveated to an outline of theses

#onniructions, which we have elsevhere called the gyclic

puspenzion ([N]) and the knot product ([KEN].[E&]).

Iiullpll.- 19.12: The Cyclic Buspenslon. In this example we

saplaln how the smpity knot of degres = I8 related to the




a=fold eyelic branched covering. Note that any knot [cedi-
mension two embedding in a sphere) can be regarded as the
link of a singularity that is not necessarily algebraiec.

Firat viliew the figure omn p. 371l. Here we have indicated a

aingularity associanted with a khet K :'33

forming the cone CKE C D‘. The cone is illustrated as a

obtained by

projection inte three-dimensional space.
If we really want to think of CK C p4 as analogous
to an algebraic singularity, them there should be a func-

tioen & : n* — EE such that F-itﬂ} = CK. This is

analogous o a mapping from " ¢ in the complex case,
Such a mapping can always be obtained. The construction i

as follows: Let K C 8" be a smooth codimension two sub-
2

manifold with trivial normsal bundle N(K) = K = D — §".

Then an obstruction theory argument shows that there is a

mapping a : 8 -IntN{K) — 5!

restricts te pr Iuﬂl — E]. the projection on the

that is smooth and that

boundary of the tubular neighborhood. The mapping o
represents & generator of HI{H“-l} when K & connecte
and an oriented sum of generators Iin the case of a link.
Im the case of a knot im the thres—-sphere, this mapping m
be visuwalized by first constructing a spanning surface fo
K, then splitting 53 along the spanning surface, thinl
writing a Norse function to [0,1] Ffrom the split
manifeld. In any case, a may be chosen smooth, so that
u-I{p] is a smooth spanning surface for K, for a dense

1

set of p € & (via the Morse lemma [M]). When K is m |




fibared knot, a {8 a smoeoth [ibratien. By lts construc-

tion, @& mway be extended to a 8" — by taking its

wnion with the projection K = D7 — n’- Finally, let

2

n+#l

r: D —+ D be the cons on @. That is, f{ru) = ra(u)

where u € 8° and © i ri 1. We shall eall
2

o+l __n

f : D a generator of the knot K € 87, See [KEN]
for discussion of the details of construction and unigque-
ness of generators.

Note that it follows from the discussion that a gener-
atar f ¢ Dn+l-¢ DE for a fibered knot, jtself gives rise
te a fibration f : D™! - cx — Dz—[ﬂ}, This is sxaccly

analogous te the fibration €° - V() — c” discussed In

Lemma 19.10 for the Brisskorn polynomimls. In general, If

[ : D"*I — I:h‘IE ig a generatoer then E-itp] will generi-
oally be a codimension two submanifold of D"'l with
boundary ambient lsotopie ta K.
=4
50
=N
() £
n+l . Te
o 7 + I




¥e now obhearve how to use a generator [ nﬂ — DE
to construct eyclie branched covers:
[1}). Ler @& : flll2 — Il2 denote the mapping a(z)
= 2 for a fixed positive integer a. HNote
that a 1s a gensratoer of the empty knat of

degree &a. [In this context, the cone aver the

empty set is a single poinc. |

(i1} Given any generatar § ! Dn'] e Da let [-
denote a slight displacement of [ that is

obtained by compasing f with a diffeomoarphiss

2 2

g : 07 — ¥ that moves 0 to a paint p

with !_I(p} a smooth submanifeld. We ruqn:rq

Y|
that ilﬂIl2 im tha identity.

&

€f0)=p

=]
=
L)

Thus t"-l[ﬂ} e p®*! 12 & smeoth spanning

manifoald for K C un“'l.

(111) Fors the pull-back diagras
] D

DanI I 2




Then W = {(x,z) ¢ D!

the a-fold gyclic branched coevering of p™*1  branched
aleng £7'(0) - F.

This topologlical comstructieon for the branched cover-

« b2 | f"{l} = z%) is (manifestly)

ing makes W the precise analog of a varlety & = :'-l[:]
({where f([x)}+e corresponds te l-[x}J. Again ses [KN] for
the precise comparison theorems. By creating branched
coveringas in this fashlen, we get much more than just a
ralmtion with the case of mlgebraic varieties. We also gat

the embedding W C Dn+1 = I.‘l2 and hence an embedding

ow ¢ 8(0"*'xD?) = 8"*2. Now Y is the =-fold gvelic
branched gever of S with branch set K. Let M (k) — 8"

denote this branched cover. Then we have proved the

THEOREN [KEN]. Let K C 8" be a knot [codimenslon two

anbedding) and Llet I.[I} —+ 8" denote the a-fold eycltc

o

covering of & with branch set K. Then there iz a

natural embedding of ll{H} in 33*2. Thus we have a

lower of embeddings and branched coverings:

|

M (M (K)) —— 5™

l

n+2
l.l'l{} —_— 5

l

Kcs”




These smbeddings are the topological analogs of the
embaddingns already discussed for mlgebraiec varieties. Thac

is, the embedding Link(f(x)+z®) c s™*2

is obtained as
amblent isotopic to l'{Llnl{ffn}] C ﬂn*ﬂ where Link({f(x))
c 8",

In the particular case of the Briesskern manifolds,
everything actually begins with the eepty knots! For con-

sider the diagram

D; ————f DE
b
Thias describas the construction of a surfmca W C D= " II2 :

|

whose boundary aW C 53 is tha (a,b) terus knot [link).
If we let K ® [a] € 8™*2 denote the knot obtained

frem K C 8" by embedding the branched covering along K

inta ﬂ"". then we have
[ag] ® [a,] € 87 torus knot (ltnk)
and, generally. [ID] ] [n]] B === B [lh] c g2l 4,

amblient isetopiec to the Brieskorn manifold

2{"“'.1 L e _'n} C HEIH-I :

This result 15 not just formal. For by amalyzing the
construction of the eyclic suspension K & [a] € Hn*! o re
closely one can conclude information about the Saifert
palring for a surface F' c 5n+2 with ﬂFl = K & [a]. The

resule s 1




THEOREM [KN]. Let F € 8" be a spanning manifold for

K€ 8" with Setfert pairing @ : H (F) » H (F) — Z. Then
K® [a] C En*i has a spanning manifold F‘ with Selfert
pairing @ @ n- where il is the Belfert palring Ffor the

ermpty knot of degree a.

We indiecate briefly in the next example how this
result ia proved. PFlease note that this explains haw &
appaars in the formula for the interssction form om the

branched covering H'[F] of Chapter 12. In these terms

2

W (F) ——— D

b

L] —_—+ D

where § is8 a generator for K C 33. ¥e have Hl{I] =

BH“{F} c ﬂ{ﬂ*-ﬂzj - HE with Seifert pairing & @ l' far

P a Seifert pairing for K C Ea. We did not yet indicate

that H‘{F] itself embeds imn Sﬁ

with this Seifert
pairing G0 @ 1-. Hevertheless, this is the case and the

proofl is a generalizatien of eur argument that pushed

l -
fHrieskorn fibare 1:11 =& to Milnor fibers im the sphera.

The upshot is an embedding ll{F] C 55 with Seifert form
n e ﬂn‘ Hence it has intersectiom form @ @ la + (6 @ la}T
(sinee the intersection form s the sum of the Seifert form

miil 1ts transpose in this dimsnsion). This intersection

form was the result of direct calculation in Chapter 12.




As o apecifioc example, consider the dedecahedral =pace

i(2,3,8). MAccording te the above results, X(2.3.5)

5 and N(2,3,5) bhas

bounds a manifold N(2.3.5) C 8
intersection form & [EﬁIT} where 6 18 the Seifert form
for = (3,5) torus knot. HRelerence to ths table alter
Exercise 12.7 then shows that Sign N{2,3.5) = £#8. Thus
these results about Seifert forms and embeddings lead te
various aignature calculations, An exactly mnalogous
calculation shows that I(3,5,2,2.2) = I also bounds a
manifold of signature £8. This leads [M3], [BK]. to the
identification of Z{3,5,2,2.2) as an exotic sphere.
Thum, the WMilnor sphare is three cyclie suspensions of a

[3.5) torus knot. It Is obtained by classical branched

covaring constructions.

Example 19.13: Producis of Enote. The eyclic suspension

generalizes to a product comnstruction that corresponds to

] T S ——

. ), (R it i

the link of the sum of two singularities. This is ebrtained

by replacing (in the oyelic suspension) the empty knot

2 2

genaratar g ' D — D 2

by any geperator » ¢ D™ —p
for a [ibered knot L C 8™, The pull-back diagram then

becomes:

o e N i




We define K @ L = av c a(0"1ap™ ) & ™™ Thue, given
8 knot K € 8" and a fibered knot L C 8™ (fibered is
pendad to make the construetion well-defined) there is a
haw composite or product knot K & L C gl

The construction is bullt to be o straightensd version
#f the link of the sum of two singularities. In fact 1t is
kFius that 1f f(x) amd g(y) are polynomial singularities

With separate sets of variables x and ¥, then
Link(f+g) & Link(Ff) & Link(g)

Whares ® denotes ambient isotopy of the corresponding

| LTICH
In terms of the econstructisn, the generatars
[ D“+l = Dz and A ﬂ-+1 — Ei glve rise to a new

ﬂn+: = ﬂ'+1 et I.'I2 that is essentially the

Bénerater ¢
Hifferonce map f(x)=A(¥). One can show thar a nonsingular
fiber of ¢ has the homotopy type of the join af non-
Bingular fibers of f and A individually. Furthermore,
'ﬁll Joeim structure is presarved via a deformation of the
‘.rll nonsingular fiber into the join sphere

I'*." =- #[Dnﬁlxﬂ'*ij. From this one shows that K & L
baunds & manifold ¥ c s™*™*1
| TTTIAY “H L HL of respective Seifert forms for K and

L individually.

with Saifert form the tensor

I'he product construction has useful corallaries. We

#uneliile by mentioning just one. Let A : @ = El

n+d

dehais the Hopf Link. Then KC 8" —m K@ ACS takes




spherical knots to spherical knots, and it generates the
isomorphism of Levine knoet concordance groups Eh . Cn+q-
See [KN], [L1].

A good deal more cam be sald about the knot preduct.

Other geometric interpretations are available, and there :

are connections with spinning and twist-spinning as well. |

4n+]1

{an odd number of 2's). Lot E denote the Brisskorn
k

manifold I(k,2.2.2,+++,2) with ([2n+1l) 2'sa ([othar than

Example 19.14: The 8-fold Perlodlicity of :{h_:_:_:,---.:}i
i

4n+]
k). Ek bounds & handle-body whose structure is

analogous (see [E], [KT7] for details) to the spanning

surface for a (2,k) torus link. Furthermore, the spera=

tion of band sxchange

5$=2%

results in a diffecmorphism (vian handle-sliding) of this

e B it e, TR g o

Y

= di

handle-body and hence a diffeomorphism of 1ts boundary. As

a result, we obraim an 8-fold perjodicity im the list of

4+l
manifolds Ek , k=234, =, The periodicity follows




from a corresponding perlodicity In the band-exchange
clusses of the corresponding spanning surfaces. This is a
good example of how low dimensional knot theory can Iinflu-
snce the properties of high dimensional manifolds. The

(2.k) torus links have spanning surfaces in the pattern:

(2,2) = K

2

(2,3) = K

(2,4) = K,

(2,6) = Kg

EEE




Iopologlonl soript will be used to notate the pericdicity
[See Chapter ¥I, Sections 6.3 and 6.13 of thess notes.)

AW

are the corresponding seript repressntations.

How we note that we use for elther
% % saince theae are sxchange
equivalent. Also we have eguivalences

A
-

since these can be accomplished by ambient isotepy and

exchange on the corresponding bands. Thus







Let E-L'I denote m . Since HIIJ rapresents thes

triviml knot: X & !n w K,

Thus I_E."l,}‘Bﬂ*H!'

g ~ Fs ¥ 4,.




A AR

Thus Ky ~ K # K.

Continuing in this pattern, we find that:

= K

-

L]
i
-

EF

1 3
‘1 = EE ] ln “ﬁ - “3 i Eﬂ - 13
HE o HE -] l] HT = “E i “3
HE r “T - lu Hg - HT 1] Hﬂ e HT
Kig ~ Kg ® 4y
Thum Ilu - KT [ ] ﬁl - KE ] KJ " il - :3 L] 13 ] ilr

But wae




kmow (Sectiomn 6.3 af Chapter &) that Iﬂ i 'l:a - Hn. i H'D
~ (blank)}. Hence lm - 1: - Kﬂ' 1
This begins the S-{old perjodicicy’ Kj . ~ K;. The

basic list i=s

Ky ~ Kg !
;
Ky ~ K3 ® 4y |
ks ~ Kg
Kg ~ Ky ® A, ~H, # A ~ A, ;
E; ~ Ky & Ky ~ Hy 1
Kg = A ;
kg ~ Wy :
1
with Kg o~ K.

To go inte the precise details of the relationship |
between the corresponding manifolds and these links would E

i
take us too far afield. However, the list of manifolds 11

|

as followa:
i

Ky — pintl tangent sphere bundle to gin*l ;
la -_ I‘nﬂ' = Kervaire sphare 1
K, — Lintl o cZn+l | o2n ,
15 — yintl
Ky — rin+l
IT — gin+l
tﬂ _ 5Em-]. . sﬂn
kg — 81 (see [KT7], [DK]).




The Kervaire sphere is exotic in many dimensions (for
axample, In is axotlie). Under thess clrcumsimnces the
sexotleity is detected by the Arf invarlant, whieh in this
gontext corresponds to the Arf invariant of the correspond-
ing (2,k) torus knot. The conneccted sum of two Kervaire
ppharas s diffeomorphic to the standard sphere i‘“+].
The handle-slidimg geometry of this diffeomorphism (=
depictied via topological seript in the equivalence
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7 g 37 = g7

Ipilogue: This final chapter has been a sketch of rela-
ilenahips betwesan knot theory and manifolds in geometric
lopalogy. We have hardly touched on the beginnlngs of =any
teplics such as the work of Thurston, orf the Kirby Calculus
and its application to 4-msanifolds. The subject of knots
and algebralec varistiss could expand to another book. There-
furs 1t is time for this writing to stap. I hops thess

pages have given the reader a taste for the surprising




varlety, fascination and mathematical pleasurs that is the

theory of knots.

"Existence, by nothing bred,
Breada evervything.

Farent of the universe,

[t smooths rough edges,

Unties hard knots,

Tempers the sharp sun,

Lays blowing dusct,

Its Image Iin the well spring never faills.
But how was it conceived? - this
Imnge

O0f mo other sire.”

(From The Way of Life by Lao Teu, translated by Witter
Bynner; Capricorn Books, 1944.]




