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On the Links–Gould Invariant of Links

David De Wit∗, Louis H Kauffman† and Jon R Links∗

Abstract

We introduce and study in detail an invariant of (1, 1) tangles. This invariant, de-
rived from a family of four dimensional representations of the quantum superalgebra

Uq[gl(2|1)], will be referred to as the Links–Gould invariant. We find that our in-
variant is distinct from the Jones, HOMFLY and Kauffman polynomials (detecting

chirality of some links where these invariants fail), and that it does not distinguish
mutants or inverses. The method of evaluation is based on an abstract tensor state

model for the invariant that is quite useful for computation as well as theoretical
exploration.

1 Introduction

Since the discovery of the Jones polynomial [14], several new invariants of knots, links
and tangles have become available due to the development of sophisticated mathematical
techniques. Among these, the quantum algebras as defined by Drinfeld [9] and Jimbo [13],
being examples of quasi-triangular Hopf algebras, provide a systematic means of solving
the Yang–Baxter equation and in turn may be employed to construct representations of
the braid group. From each of these representations, a prescription exists to compute
invariants of oriented knots and links [34, 39, 41], from which the Jones polynomial is
recoverable using the simplest quantum algebra Uq [sl(2)] in its minimal (2-dimensional)
representation.
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From such a large class of available invariants, it is natural to ask if generalisations exist,
with the view to gaining a classification. One possibility is to look to multiparametric
extensions in order to see which invariants occur as special cases. A notable example is the
HOMFLY invariant [10] which includes both the Jones and Alexander–Conway invariants
[2, 6] as particular cases as well as the invariants arising from minimal representations of
Uq [sl(n)] [39]. Another is the Kauffman polynomial which includes the Jones invariant
as well as those obtained from the quantum algebras Uq [o(n)] and Uq [sp(2n)] in the
q-deformations of the defining representations [39].

The work of Turaev and Reshetikhin [35] shows that the algebraic properties of quantum
algebras are such that an extension of this method to produce invariants of oriented tangles
is permissible. A tangle diagram is a link diagram with free ends. An associated invariant
takes the form of a tensor operator acting on a product of vector spaces. Zhang [40]
has extended this formalism to the case of quantum superalgebras which are Z2-graded
generalisations of quantum algebras.

Since quantum superalgebras give rise to nontrivial one-parameter families of irreducible
representations, it is possible to utilise them for the construction of two variable invari-
ants. This was first shown by Links and Gould [26] for the simplest case using the family
of four dimensional representations of Uq [gl(2|1)]. It was also made known that a one
variable reduction of this invariant coincides with a one variable reduction of the Kauff-
man polynomial by the use of the Birman–Wenzl–Murakami algebra. Extensions to more
general representations of quantum superalgebras are discussed in [12].

Thus far, little has been investigated with regard to the Links–Gould invariant. Here we re-
port on some properties and behaviour. The method of evaluating the invariant involves a
prior construction of the quantum R-matrix associated with a family of four dimensional
representations. Having obtained this matrix, the construction of the invariant follows
from properties of ribbon Hopf (super)algebras and their representations. Here we con-
sider the invariants of (1, 1) tangles for the following reason: for invariants derived from
representations of quantum superalgebras with zero q-superdimension, the corresponding
invariant is also zero. If the representation is irreducible, the quantum superalgebra sym-
metry of the procedure ensures that the invariant of (1, 1) tangles takes the form of some
scalar multiple of the identity matrix. (See [35] for a discussion of this symmetry.) We
take this scalar to be the invariant.

In this paper, we prove that the Links–Gould invariant is not able to distinguish between
mutant links (§4.8), nor is it able to distinguish a knot from its inverse (i.e. from the knot
obtained by reversing the orientation) (Proposition 3.2). However it is good at distin-
guishing some knots and links from their mirror images (see Propositions 2 and 4.1), and
it is distinguished from the HOMFLY and Jones polynomials by this behaviour (see §4.5
for specific examples). We provide many examples and a complete description of the state
model for the invariant in abstract tensor form. This description of the invariant directly
facilitates the construction of a computer program in Mathematica for calculation of
the invariant.
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2 Construction of the R Matrix

We consider the family of four dimensional representations of the quantum superalgebra
Uq [gl (2|1)], which depend on a free complex parameter α. This superalgebra has 7 simple
generators {E1

1, E
2
2, E

3
3, E

1
2, E

2
1, E

2
3, E

3
2} on which we define a Z2 grading in terms

of the natural grading on the indices [1] = [2] = 0, [3] = 1 by:

[
Ei

j

]
= [i] + [j] (mod 2) .

The Uq [gl (2|1)] generators satisfy the commutation relations:

[
E1

2, E
2

1

]
=

[
E1

1 − E2
2

]
q

{E2
3, E

3
2} =

[
E2

2 + E3
3

]
q[

Ei
i, E

j
k

]
= δj iE

i
k − δikEj

i, i, j, k = 1, 2, 3,

where [ , ] and { , } denote the usual commutator and anticommutator, respectively and
we have employed the q bracket, defined for a wide class of objects x by:

[x]q ,
qx − q−x
q − q−1

.

Let {|i〉}4
i=1 denote a basis for the four dimensional Uq [gl (2|1)] module V . Consistent

with the Z2 grading on Uq [gl (2|1)], we grade the basis states by:

[|1〉] = [|4〉] = 0, [|2〉] = [|3〉] = 1.

We define a dual basis {〈i|}4
i=1; in component form, these are represented by the transpose

complex conjugates of the original basis: 〈i| = |i〉t ≡ |i〉†. Then: 〈i||j〉 ≡ 〈i|j〉 = δij. In
terms of these dual bases, we define a representation π of the Uq [gl (2|1)] generators; their
action on the basis vectors is given by:

π
(
E1

1

)
= −|2〉〈2| − |4〉〈4|

π
(
E2

2

)
= −|3〉〈3| − |4〉〈4|

π
(
E3

3

)
= α|1〉〈1| + (α+ 1) (|2〉〈2| + |3〉〈3|) + (α+ 2)|4〉〈4|

π
(
E1

2

)
= −|3〉〈2|

π
(
E2

1

)
= −|2〉〈3|

π
(
E2

3

)
= [α]1/2q |1〉〈3| − [α+ 1]1/2q |2〉〈4|

π
(
E3

2

)
= [α]1/2q |3〉〈1| − [α+ 1]

1/2
q |4〉〈2|.
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Associated with Uq [gl(2|1)] there is a co-product structure (Z2-graded algebra homomor-
phism) ∆ : Uq [gl(2|1)]→ Uq [gl(2|1)]⊗ Uq [gl(2|1)] given by:

∆(Ei
i) = I ⊗ Ei

i + Ei
i ⊗ I, i = 1, 2, 3,

∆(E1
2) = E1

2 ⊗ q−
1
2

(E1
1−E2

2) + q
1
2

(E1
1−E2

2) ⊗ E1
2

∆(E2
1) = E2

1 ⊗ q−
1
2

(E1
1−E2

2) + q
1
2

(E1
1−E2

2) ⊗ E2
1

∆(E2
3) = E2

3 ⊗ q−
1
2

(E2
2+E3

3) + q
1
2

(E2
2+E3

3) ⊗ E2
3

∆(E3
2) = E3

2 ⊗ q−
1
2

(E2
2+E3

3) + q
1
2

(E2
2+E3

3) ⊗ E3
2.

There exists another possible co-product structure: ∆, defined by ∆ = T · ∆, where
T : Uq [gl (2|1)] ⊗ Uq [gl (2|1)] → Uq [gl (2|1)] ⊗ Uq [gl (2|1)] is the twist map, defined for
homogeneous elements a, b ∈ Uq [gl (2|1)]:

T (a⊗ b) = (−)[a][b] (b⊗ a) .

The tensor product module has the following decomposition with respect to the co-product
for generic values of α:

V ⊗ V = V1 ⊕ V2 ⊕ V3. (1)

We construct symmetry adapted bases {|Ψk
1〉}4

k=1 and {|Ψk
3〉}4

k=1, for the spaces V1 and V3

respectively in terms of the basis elements of V :

|Ψ1
1〉 = |1〉 ⊗ |1〉

|Ψ1
2〉 = (qα + q−α)

− 1
2
(
qα/2|1〉 ⊗ |2〉 + q−α/2|2〉 ⊗ |1〉

)

|Ψ1
3〉 = (qα + q−α)−

1
2

(
qα/2|1〉 ⊗ |3〉 + q−α/2|3〉 ⊗ |1〉

)

|Ψ1
4〉 =

(
qα + q−α

)− 1
2 [2α+ 1]−

1
2

q ×[
[α+ 1]

1
2
q

(
qα|1〉 ⊗ |4〉 + q−α|4〉 ⊗ |1〉

)
+ [α]

1
2
q

(
q

1
2 |2〉 ⊗ |3〉 − q− 1

2 |3〉 ⊗ |2〉
)]

|Ψ3
1〉 = (qα+1 + q−α−1)

− 1
2 [2α+ 1]−

1
2

q ×[
[α]

1
2
q

(
qα+1|4〉 ⊗ |1〉 + q−α−1|1〉 ⊗ |4〉

)
+ [α+ 1]

1
2
q

(
q−

1
2 |3〉 ⊗ |2〉 − q 1

2 |2〉 ⊗ |3〉
)]

|Ψ3
2〉 = (qα+1 + q−α−1)

− 1
2
(
q(α+1)/2|4〉 ⊗ |2〉+ q−(α+1)/2|2〉 ⊗ |4〉

)

|Ψ3
3〉 = (qα+1 + q−α−1)

− 1
2
(
q(α+1)/2|4〉 ⊗ |3〉+ q−(α+1)/2|3〉 ⊗ |4〉

)

|Ψ3
4〉 = |4〉 ⊗ |4〉.

Dual bases {〈Ψk
1|}4

k=1 and {〈Ψk
3|}4

k=1, are found from the definitions:

〈Ψk
j | = |Ψk

j 〉†, k = 1, 3, j = 1, . . . , 4, (2)

(|i〉 ⊗ |j〉)† = (−)[|i〉][|j〉] (〈i| ⊗ 〈j|) , i, j = 1, . . . , 4. (3)
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Now, the general form of the basis vectors |Ψk
j 〉 is:

|Ψk
j 〉 =

∑

m

θkjm
(
|xkjm 〉 ⊗ |ykjm 〉

)
,

where the θkjm are in general complex scalar functions of q and α. From (2) and (3), and
choosing the parameters q and α to be real and positive, the duals of these vectors are
given by:

〈Ψk
j | =

∑

m

(−)[
|xkjm 〉][|ykjm 〉]θkjm

(
〈xkjm | ⊗ 〈ykjm |

)
.

As the R matrix is unique, analytic continuation makes our final results valid for any
complex q and α. For the duals, we obtain:

〈Ψ1
1| = 〈1| ⊗ 〈1|

〈Ψ1
2| = (qα + q−α)−

1
2

(
q

1
2
α〈1| ⊗ 〈2|+ q−

1
2
α〈2| ⊗ 〈1|

)

〈Ψ1
3| = (qα + q−α)−

1
2

(
q

1
2
α〈1| ⊗ 〈3|+ q−

1
2
α〈3| ⊗ 〈1|

)

〈Ψ1
4| =

(
qα + q−α

)− 1
2 [2α+ 1]

− 1
2

q ×[
[α+ 1]

1
2
q

(
qα〈1| ⊗ 〈4| + q−α〈4| ⊗ 〈1|

)
− [α]

1
2
q

(
q

1
2 〈2| ⊗ 〈3| − q− 1

2 〈3| ⊗ 〈2|
)]

〈Ψ3
1| = (qα+1 + q−α−1)−

1
2 [2α+ 1]

− 1
2

q ×[
[α]

1
2
q

(
qα+1〈4| ⊗ 〈1| + q−α−1〈1| ⊗ 〈4|

)
− [α+ 1]

1
2
q

(
q−

1
2 〈3| ⊗ 〈2| − q 1

2 〈2| ⊗ 〈3|
)]

〈Ψ3
2| =

(
qα+1 + q−α−1

)− 1
2

(
q

1
2

(α+1)〈4| ⊗ 〈2| + q−
1
2

(α+1)〈2| ⊗ 〈4|
)

〈Ψ3
3| = (qα+1 + q−α−1)−

1
2

(
q

1
2

(α+1)〈4| ⊗ 〈3| + q−
1
2

(α+1)〈3| ⊗ 〈4|
)

〈Ψ3
4| = 〈4| ⊗ 〈4|.

From the basis vectors |Ψk
j 〉 and their duals 〈Ψk

j | for V1 and V3, we construct projectors
P1 and P3, defined by:

P1 =
4∑

k=1

|Ψk
1〉〈Ψk

1|, P3 =
4∑

k=1

|Ψk
3〉〈Ψk

3|.

Note that the multiplication operation on the graded space V ⊗ V is given by:

(|i〉 ⊗ |j〉) (〈k| ⊗ 〈l|) = (−)
[|j〉][〈k|]

(|i〉〈k| ⊗ |j〉〈l|) , i, j, k, l = 1, 2, 3, 4. (4)

Now let I be the identity operator on V ⊗ V , viz: I =
∑4

ij=1 e
i
i ⊗ ejj, where ekl = |k〉〈l|

is an elementary rank 2 tensor. As we have P1 + P2 + P3 = I, we thus do not need to
explicitly construct P2 (or even a basis for V2); we simply set:

P2 = I − P1 − P3. (5)
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Where g is a classical Lie superalgebra, the corresponding quantum superalgebra Uq[g]
admits a universal R matrix R ∈ Uq[g]⊗ Uq[g] satisfying (among other relations):

R∆ (a) = ∆ (a)R, ∀a ∈ Uq [g] ,

R12R13R23 = R23R13R12, in Uq [g]⊗ Uq [g]⊗ Uq [g] , (6)

where the subscripts refer to the embedding of R acting on the triple tensor product space.
From any representation of Uq [g], one may obtain a tensor solution of (6) by replacing the
superalgebra elements with their matrix representatives. Similarly to (4), multiplication
of tensor products of matrices a, b, c, d is governed by:

(a⊗ b) (c⊗ d) = (−)[b][c] (ac⊗ bd) , homogeneous b, c.

We introduce the graded permutation operator P on the tensor product space V ⊗ V ,
defined for graded basis vectors vk, vl ∈ V by:

P (vk ⊗ vl) = (−)[k][l](vl ⊗ vk),

and extended by linearity. (We use the shorthand
[
vk
]
≡ [k].) With this, we define:

σ = PR,

which can be shown to satisfy the equation:

(σ ⊗ I) (I ⊗ σ) (σ ⊗ I) = (I ⊗ σ) (σ ⊗ I) (I ⊗ σ) . (7)

From [26], we have (with a slight change of notation and a convenient choice of normali-
sation):

σ = q−2αP1 − P2 + q2α+2P3.

Using (5), this simplifies to:

σ =
(
1 + q−2α

)
P1 +

(
1 + q2α+2

)
P3 − I.

From the above form of σ, it is straightforward to deduce that σ satisfies the polynomial
identity:

q−1σ3 +
(
q−1 − q−2α−1 − q2α+1

)
σ2 +

(
q − q−2α−1 − q2α+1

)
σ + qI = 0.

The above skein relation may be used to evaluate the invariant in some cases, but not all
since it is of third order. The invariant may also be directly evaluated for a class of links
using quantum superalgebra theoretic results [12].
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We will represent rank 2 tensors as matrices, that is, the elementary rank 2 tensor eik is
represented by the elementary (4 × 4) matrix ei,k. We adopt the (standard) convention
that the elementary rank 4 tensor eijkl = eik ⊗ ej l is constructed by insertion of a copy
of the elementary rank 2 tensor ej l at each location of eik (i.e. each element of eik is
multiplied by the whole of ej l). This means that eijkl is represented by the elementary
(16× 16) matrix e4(i−1)+j,4(k−1)+l.

Let A be an arbitrary graded rank 4 tensor acting on V ⊗ V , then for scalar coefficients
Aij

kl:

A =
∑

ijkl

Aij
kl

(
eik ⊗ ej l

)
.

Our convention then tells us that the coefficient Aij
kl is the (4(i− 1) + j, 4(k − 1) + l)

entry of A, written explicitly:

Aij
kl 7→ A4(i−1)+j,4(k−1)+l.

We wish to remove the grading on V , and convert the matrix representing σ to its ungraded
counterpart. Recall that basis vectors vk satisfy eijv

k = δkjv
i, hence the action of A on

V ⊗ V is:

A(vk ⊗ vl) =
∑

ijmn

Aij
mn

(
eim ⊗ ejn

)
(vk ⊗ vl)

=
∑

ijmn

Aij
mn(−)

[k]([j]+[n]) (
eimv

k ⊗ ejnvl
)

=
∑

ijmn

Aij
mn(−)

[k]([j]+[n]) (
δkmv

i ⊗ δlnvj
)

=
∑

ijmn

Aij
mn(−)

[k]([j]+[n])
δkmδ

l
n

(
vi ⊗ vj

)

=
∑

ij

Aij
kl(−)

[k]([j]+[l]) (
vi ⊗ vj

)
.

Now, in this sum, the parity factor is constructed from the degrees of vectors; in the
ungraded case, there would be no such factor, indeed we would have:

A(vk ⊗ vl) =
∑

ij

A
ij
kl

(
vi ⊗ vj

)
.

This motivates us to set:

A
ij
kl = (−)[k]([j]+[l])Aij

kl.

Under these conventions, the explicit form of σ is presented (as a matrix!) in §4.
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3 Knot Theory

3.1 Link Examples

In Table 1, we list the links to be studied. (By the term ‘knot’, we intend a link of one
component.) We use the well-known notation of Alexander and Briggs (1926) [3], the data
being abstracted from [1], itself citing [36] and [8] (beware that the tables in this latter
article are presented in microfiche form only).

K w (K) Chiral? Invertible?

01 (Unknot) 0 No (trivial) Y es (trivial)

22
1 (Hopf Link) 2 No (trivial) Y es (trivial)

31 (Trefoil) 3 Y es [1, p 176] Y es (trivial)

41 (Figure Eight) 0 No ([1, p 14]; see
[17, p 198] for an
elegant graphical
proof)

Y es (as 817 is
the smallest non-
invertible knot)

52
1 (Whitehead Link) 1 Y es [16, pp 49-50] Y es

817 0 No [16, p 455] No [19, p 162]

942 1 Y es [18, p 218] Y es

1048 0 Y es [18, p 218] Y es

Table 1: Data for the links to be investigated, including their Alexander–Briggs (and com-
mon) names, their writhes w (K), and whether they are chiral and invertible. Diagrams
of the links are presented in Figures 9 to 13.

3.2 Reflection and Inversion – Chirality and Invertibility

Throughout, we shall write “=” to denote ambient isotopy of link diagrams, meaning
that they are equivalent under the Reidemeister moves (original: [33], but see, e.g. [18]).
We shall use the following definitions, but the reader must be aware that conflicting
terminology appears in the literature.
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Reflection: We shall denote by K∗ the mirror image (or reflection) of a knot K. A knot
is chiral if it is distinct from its mirror image; i.e. there are actually two distinct
knots with the same name, K∗ 6= K, e.g. the trefoil knot is chiral: (31)∗ 6= 31. Note
that this definition doesn’t require an orientation. A knot is amphichiral if it is
ambient isotopic to its mirror image, i.e. K∗ = K.

The HOMFLY1 (and hence the Jones) polynomial and the Kauffman polynomial
can distinguish many (but not all) knots from their reflections. The first chiral knot
that neither the HOMFLY nor the Kauffman polynomial can distinguish is 942, i.e.
9∗42 6= 942, but the polynomials are equal. Similarly, the knot 1048 is chiral, but the
HOMFLY polynomial fails to detect this, although the Kauffman does detect it [18,
p 218] (wrongly labeled 1079).

Inversion: Assign an orientation to a knot. Denote the inverse of a knot K by K−1,
obtained by reversing the orientation. Whilst this is a simple concept for a knot,
there are of course many possibilities for the reversal of only some components of
oriented, multi-component links; we shall not go into these here.

Commonly, K = K−1, and we say that K is invertible. For example, the trefoil
knot is invertible (31)

−1
= 31. Less commonly, K 6= K−1, and we say that K is

noninvertible. The first example of a noninvertible (prime) knot is 817.

Both the reflection and the inverse are automorphisms of order two, i.e. (K∗)∗ = K and
(K−1)

−1
= K. The notions may of course be combined, we obtain: (K∗)−1 = (K−1)

∗
.

To illustrate, using the Trefoil Knot 31 (see Figure 9). We have two equivalence classes:

31 = (31)−1 and (31)∗ = ((31)−1)
∗

= ((31)∗)
−1

.

3.3 Abstract Tensor Conventions

By a ‘positive oriented’ or ‘right-handed’ crossing, we shall intend a crossing such that if
the thumb of the right hand points in the direction of one of the arrows, the fingers of
the right hand will point in the direction of the other arrow. The opposite situation is
naturally called a ‘negative oriented’ or ‘left-handed’ crossing.

If the two outward-pointing arrows of a positive oriented crossing are pointed upwards,
then we shall label the components of the crossing with indices a in top left, b in bottom
left, c in top right, and d in bottom right, and associate with the crossing the (rank 4)
tensor σa cb d , where the position of the indices in the tensor corresponds with the positioning
of the labels in the crossing. The inverse of σ will represent a negative oriented crossing,
with the convention on the indices being the same as that of σ. A diagram of σ and σ−1

is provided in Figure 1.

1 The HOMFLY polynomial is named by the conjunction of the initials of six of its discoverers [10],
omitting those (“P” and “T”) of two independent discoverers [32]. Przytycki, the omitted “P”, has
furthered the entymological spirit with the suggestion “FLYPMOTH” [31, p 256], which includes all the
discoverers and has a muted reference to the “flyping” operation of the Tait, Kirkwood and Little – the
original compilers of knot tables. (Another possibility is the letter sequence “HOMFLYPT”.) Bar-Natan
(Prasolov and Sossinsky [30, p 36] cite Bar-Natan [4], who cites “L Rudulph”) goes further, adding a “U”
for good measure, to account for any unknown discoverers, yielding the unpalatable “LYMPHTOFU”!

9



b

a c

d

a

b d

c

σa cb d (σ−1)
a c
b d

Figure 1: Definition of the tensors σ and σ−1 representing positive oriented and negative
oriented crossings with upward pointing arrows, respectively.

We shall also require four (rank 2) tensors (i.e. genuine matrices) to represent all possible
horizontally-oriented half-loops. We shall call these ‘cap’ and ‘cup’ matrices, and label
them with the suggestive Ω± and f±, e.g. Ω+ is the upper loop with arrow pointing right.
A diagram is provided in Figure 2.

a a

a a

b b

b b

(f−)
a b

(f+)
a b

(Ω+)a b (Ω−)a b

Figure 2: Definition of the tensors (matrices) Ω± and f±, representing all possibilities of
horizontally-aligned half-loops.

With these basic tensors σ, σ−1, Ω± and f±, we may evaluate an invariant for any par-
ticular link. However, this direct procedure tends to be computationally expensive, and
parts of the computation are often repeated, so in practice, we define auxiliary symbols.
We shall use the notation X to represent a rank 4 tensor such as σ or σ−1 with parallel
pointing arrows (i.e. a ‘channel’ crossing in the terminology of Kauffman [18, p 76].)

The primary auxiliary tensors used are listed below; secondary ones will be mentioned
where necessary. The Einstein summation convention is used throughout.

• The first auxiliary symbols are those of crossings that have been ‘twisted’ relative
to σ and σ−1. The left, right, and upside-down-twisted versions of X will be called
Xl, Xr and Xd respectively. They are defined in the following manner:

(Xl)
a c
b d , Xe a

d h ·
(
Ω−
)
b e
·
(
f−
)h c

(Xr)
a c
b d , Xc g

f b ·
(
f+
)a f ·

(
Ω+
)
g d

(8)

(Xd)
a c
b d , Xe g

f h ·
(
f+
)a h ·

(
Ω+
)
g b
·
(
f+
)c f ·

(
Ω+
)
e d
.

Observe that Xd is a ‘channel’ crossing, whilst Xl and Xr are ‘cross-channel’ cross-
ings. Diagrams are found in Figures 3 and 4.

• The next set of auxiliary symbols represent p copies of the same crossing X (for any
channel crossing X) atop one another (see Figure 5). They are defined recursively
in the following manner:

(
Xp+1

)a c

b d
, Xa c

e f · (Xp)
e f
b d , p = 1, 2, . . . .

10



Xe a
d h · (Ω−)b e · (f−)

h c

a

b

c

d

a

b

c

e

h

d

a

d

a

b

c

d
b

Xc g
f b · (f+)

a f · (Ω+)g d

g

f

c

c

db

a

X

XXr

(Xl)
a c
b d

(Xr)
a c
b d

Xl
=

=

Figure 3: The primary auxiliary tensors Xl and Xr, where X is one of σ or σ−1.
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a

b

c

d

e

h

Xe g
f h · (f+)

a h · (Ω+)g b · (f+)
c f · (Ω+)e d

b

ca

d

f

X

g

(Xd)
a c
b d

Xd
=

Figure 4: The primary auxiliary tensor Xd, where X is one of σ or σ−1.

c

f

a

Xa c
e f · (Xp)e fb d

e

db

a c

db

X

Xp

(Xp+1)
a c
b d

=Xp+1

Figure 5: The primary auxiliary tensors Xp+1 in terms of X and Xp; X is one of σ or
σ−1. If all arrows are reversed, then the definition also holds for X being σd or σ−1

d ; that
is, any channel crossing.
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• The third set of frequently-encountered patterns are where a crossing X is to the
left or right of its own ‘upside-downness’ Xd. That is, fix an X as either σ or σ−1,
and examine the patterns formed from juxtaposing X and Xd. They are defined in
the following manner:

(XdX)
a c
b d , (Xd)

a e
b f ·Xg c

h d ·
(
Ω−
)
e g
·
(
f+
)f h

(XXd)
a c
b d , Xa e

b f · (Xd)
g c
h d ·

(
Ω+
)
e g
·
(
f−
)f h

.

A diagram is found in Figure 6.

db

a c c

d

a

b f h

e g

X

a

b

c

d

a

b

e

f

g

h

c

d

X

(XXd)
a c
b d

(XdX)a c
b d (Xd)

a e
b f ·Xg c

h d · (Ω−)e g · (f+)
f h

Xd

Xd

Xa e
b f · (Xd)

g c
h d · (Ω+)e g · (f−)

f h

XXd

XdX

=

=

Figure 6: The primary auxiliary tensors XdX and XXd; X is one of σ or σ−1.

• The final set of frequently-encountered patterns are where a crossing Xl is placed
atop above a crossing Xr (or vice-versa). We obtain:

(XlXr)
a c
b d , (Xl)

a c
e f · (Xr)

e f
b d

(XrXl)
a c
b d , (Xr)

a c
e f · (Xl)

e f
b d .

A diagram is found in Figure 7. A moment’s thought demonstrates that the diagram
for XlXr is a right rotation of the diagram for XdX. In fact, we have the identity:

(XlXr)
a c
b d = (XdX)

e a
d h ·

(
f+
)h c ·

(
Ω+
)
b e
,

although in practice we shall not use it. (A diagram parallel to Figure 3 would
demonstrate this.)

13



c

f

a

e

db

a c

db

(XlXr)
a c
b d (Xl)

a c
e f · (Xr)

e f
b d

Xl

Xr

XlXr =

Figure 7: The primary auxiliary tensor XlXr; X is one of σ or σ−1. XrXl is obtained by
swapping every r and l in this diagram.

3.4 The Effects of Reflection and Inversion on the Tensors

Reflection: Let K∗ be the reflection of a tangle K; and say that we have constructed
a tensor representing K. Every positive (respectively negative) crossing in K will
have been replaced by the equivalent negative (respectively positive) crossing in K ∗.
Thus, the tensor corresponding to K∗ will be that of K with every σ replaced by
σ−1, and every σ−1 replaced by σ. This carries through to the auxiliary tensors;
i.e. σdσ will be replaced with σ−1

d σ−1, etc. The caps Ω± and cups f± will remain
unchanged.

From the uniqueness [20] of the universal R matrix for any quantum superalgebra
the following relation holds (for appropriate normalisation):

R−1(q) = R(q−1),

which in turn leads to the relation

σ−1(q) = Pσ(q−1)P.

Thus, up to a basis transformation, σ and σ−1 are interchangeable by the change of
variable q 7→ q−1. It then follows that the invariant for K∗ is obtainable from that
of K by the same change of variable, which leads to the following:

Proposition 3.1
If K is amphichiral then the invariant LGK is palindromic.2

2We intend “palindromic” to mean that the polynomial is invariant under the mapping q 7→ q−1.
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Inversion: Again, if K−1 is the inverse of K, then every arrow in K will have been
replaced with an arrow in the opposite direction. The tensor corresponding to K−1

will thus have the following changes: For the crossings, where X is either σ or σ−1,
interchange X ⇐⇒ Xd and Xl ⇐⇒ Xr; and for the caps and cups, interchange
only the signs, i.e. Ω± ⇐⇒ Ω∓ and f± ⇐⇒ f∓.

This has the effect that the tensor representing K is replaced by the dual tensor
acting on the dual space [35]. Recalling that the tensors representing (1, 1) tangles
act as scalar multiples of the identity on V , then the dual tensor has exactly the
same form, from which we conclude:

Proposition 3.2
A knot invariant derived from an irreducible representation of a quantum
(super)algebra is unable to detect inversion.

3.5 Abstract Tensor Expressions for the Example Links

We list the abstract tensors (TK)yx that represent the (1, 1)-tangle (open diagram) forms
of the example links. In each case, the indices x and y are the lower and upper loose ends
of the tangle in question. The Links–Gould invariant is then formed by setting x and y
to be the same, i.e.

LGK (q, p = qα) , (TK)ii

(no sum on i), for any allowable index i. We typically choose i = 1. Our invariant does
not need to be writhe-normalised, due to the choice of normalisation of σ and the cap and
cup matrices Ω± and f±. Figure 8 depicts removal of a loop from a diagram.

c

x

y y

x

(Ω+)a c

(f−)
b c

y

x b

a

σy ax b

δyxσy ax b · (Ω+)a c · (f−)
b c

=

Figure 8: Removal of a Single, Positive Loop.

Braid presentations for the example knots are taken from [14, pp 109-110] and [15, pp 381-
386].
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01 (Unknot): A braid presentation is the trivial e ∈ B1. As the unclosed tangle repre-
senting the Unknot is rather meaningless, we use simply (T01)

y
x , δyx.

22
1 (Hopf Link): A braid presentation is σ1

2 ∈ B2. Diagrams pertaining to the Hopf
Link and Trefoil are found in Figure 9.

(T22
1
)y
x
,
(
σ2
)y a

x b
·
(
Ω+
)
a c
·
(
f−
)b c

.

31 (Trefoil): A braid presentation is σ1
3 ∈ B2. This knot has also been called the over-

hand knot (as that is how it is tied) and the cloverleaf knot [7, pp 3-4].

(T31)
y
x ,

(
σ3
)y a

x b
·
(
Ω+
)
a c
·
(
f−
)b c

.

b

x

y

cc

a

b

x

y

a

(f−)
b c

(f−)
b c

(σ2)
y a
x b (σ3)

y a
x b

(Ω+)a c

(Ω+)a c

Figure 9: Tangle form of 22
1 (the Hopf Link) and 31 (the positive Trefoil).
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41 (Figure Eight): A braid presentation is
(
σ1σ

−1
2

)2 ∈ B3, and a diagram is found in
Figure 10. This knot has also been called the Four-Knot (as it is the only 4 crossing
knot) and Listing’s Knot [7, p 4].

(T41)
y
x ,

(
σ−1
l σ−1

r

)y b

a c
· (σr)c ed f · σa d

x g ·
(
Ω−
)
b e
·
(
f−
)g f

.

y

b

d

c e

f

a

a

x

(Ω−)b e

g
(f−)

g f

σa d
x g

(σ−1
l σ−1

r )
y b

a c

(σr)
c e
d f

Figure 10: Tangle form of 41 (the Figure Eight Knot).

52
1 (Whitehead Link): A braid presentation is

(
σ1σ

−1
2

)2
σ−1

2 ∈ B3 and a diagram is
found in Figure 11. (This link is named after the topologist J H C Whitehead, not
the logician Alfred North Whitehead [17, p 200].)

Firstly, we define a temporary tensor to reduce computation:

(W )c ix d ,
(
σ−2
)c e
x f
· (σ2

d)
g i

h d ·
(
Ω+
)
e g
·
(
f−
)f h

,

where we have written σ−2 , (σ−1)
2
. With this, we have:

(T52
1
)y
x
, (W )c ix d · (σrσl)

a y
i b ·

(
Ω+
)
c a
·
(
f+
)d b

.
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f d

b

(f−)
f h

(Ω+)c a
y

h

(f+)
d b

c

x

e g

a

i

(Ω+)e g

(σ−2)
c e
x f (σ2

d)
g i
h d

(σrσl)
a y
i b

Figure 11: Tangle form of 52
1 (the Whitehead Link).

817: A braid presentation is
(
σ−1

1 σ2

)2
σ2

2σ
−2
1 σ2 ∈ B3, and a diagram is found in Figure 12.

Again, we define some temporary tensors to reduce computation:

(EA)y c e
b d f ,

(
σ−2
)c e
g f
·
(
σ2
)y g

b d

(EB)b d f
x i j ,

(
σ−1
)d f

k l
· σb km n ·

(
σ−1
)n l

o j
· σm o

x i .

With these, we have:

(T817)
y
x , (EA)y c e

b d f · (EB)b d f
x i j ·

(
Ω+
)
c r
·
(
f−
)i r ·

(
Ω+
)
e q
·
(
f−
)j q

.

To reduce computation, we may define even more auxiliary tensors:

(EB)
b d f
x i j = (EC)

b d f
m n l · (ED)

m n l
x i j ,

where:

(EC)b d fm n l ,
(
σ−1
)d f

k l
· σb km n

(ED)m n l
x i j ,

(
σ−1
)n l

o j
· σm o

x i .
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y

db

b
k

m n

m

(Ω+)e q

y

g

f

o

l

l

j

ji (f−)
j q

(EB)b d fx i j

(EA)y c e
b d f

q r

ec

f

(Ω+)c r

(f−)
i r

x

(σ2)
y g
b d

(σ−2)
c e
g f

σb km n

σm o
x i

(σ−1)
n l
o j

(σ−1)
d f
k l

Figure 12: Tangle form of 817.
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942: A braid presentation is σ3
1σ3σ

−1
2 σ3σ

−2
1 σ−1

2 ∈ B4, and a diagram is found in Figure 14.
Again, we define a temporary tensor to reduce computation:

(N)a y
b h , (σ2

d)
a c

b d ·
(
σ−3
)e y
f h
·
(
Ω−
)
c e
·
(
f+
)d f

.

(T942)
y
x , (N)a y

b h ·
(
σ−1
d σ−1

)b h
i j
· (σσd)k i

x m ·
(
f+
)m j ·

(
Ω+
)
k a
.

1048: A braid presentation is σ−2
1 σ4

2σ
−3
1 σ2 ∈ B3, and a diagram is found in Figure 13.

(T1048)
y
x ,

(
σ−2
)a y

b f
·
(
σ4
)f g

d h
·
(
σ−3
)b d
c e
· (σ)e hx i ·

(
Ω−
)
j a
·
(
f+
)j c ·

(
Ω+
)
g k
·
(
f−
)i k

.

k

c

a

h

g

e

x i

h

y

y

b f

db

(Ω−)j a

(Ω+)g k

j

x

(f+)
j c

(f−)
i k

σ−2

σ−3

(σ)
e h
x i σ

(σ4)
f g
d hσ4

(σ−2)
a y
b f

(σ−3)
b d
c e

Figure 13: Tangle form of 1048.
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k i
j

(f+)
m j

b h

m

(Ω+)k a

a e

b f h

(Ω−)c e

d

c

(f+)
d f

y
Na y
b h

(σσd)
k i
x m

(σ−1
d σ−1)

b h

i j

(σ−3)
e y
f h(σ2

d)
a c
b d

y

x

Figure 14: Tangle form of 942.
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4 The Links–Gould Tangle Invariant

4.1 Crossing Matrices σ and σ−1

From the results of §2, we have the matrices σ and σ−1, using the substitution p , qα:

σ =




p−2 . . . . . . . . . . . . . . .
. . . . p−1 . . . . . . . . . . .
. . . . . . . . p−1 . . . . . . .
. . . . . . . . . . . . 1 . . .
. p−1 . . p−2−1 . . . . . . . . . . .
. . . . . −1 . . . . . . . . . .
. . . . . . q2−1 . . −q . . −qY . . .
. . . . . . . . . . . . . pq . .
. . p−1. . . . . p−2−1 . . . . . . .
. . . . . . −q . . . . . Y . . .
. . . . . . . . . . −1 . . . . .
. . . . . . . . . . . . . . pq .
. . . 1 . . −qY . . Y . . Y 2 . . .
. . . . . . . pq . . . . . p2q2−1 . .
. . . . . . . . . . . pq . . p2q2−1 .
. . . . . . . . . . . . . . . p2q2




,

σ−1 =




p2 . . . . . . . . . . . . . . .
. p2−1 . . p . . . . . . . . . . .
. . p2−1 . . . . . p . . . . . . .
. . . Y 2q−2 . . Y q−1 . .−Y q−2 . . 1 . . .
. p . . . . . . . . . . . . . .
. . . . .−1 . . . . . . . . . .
. . . Y q−1 . . . . . −q−1 . . . . . .
. . . . . . . p−2q−2−1 . . . . .p−1q−1 . .
. . p . . . . . . . . . . . . .
. . . −Y q−2 . . −q−1 . . q−2−1 . . . . . .
. . . . . . . . . . −1 . . . . .
. . . . . . . . . . . p−2q−2−1 . . p−1q−1 .
. . . 1 . . . . . . . . . . . .
. . . . . . . p−1q−1 . . . . . . . .
. . . . . . . . . . . p−1q−1 . . . .
. . . . . . . . . . . . . . . p−2q−2




,

where Y = (p−2 − q2 + p2q2 − 1)
1/2

.
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4.2 Caps and Cups Ω± and f±

Where f± = (Ω±)
−1

, we will use:

Ω− =




q−2α . . .
. −q−2(α+1) . .
. . −q−2α .
. . . q−2(α+1)


 ≡




p−2 . . .
. −p−2q−2 . .
. . −p−2 .
. . . p−2q−2


 ,

f− =




q2α . . .
. −q2(α+1) . .
. . −q2α .
. . . q2(α+1)


 ≡




p2 . . .
. −p2q2 . .
. . −p2 .
. . . p2q2


 ,

Ω+ = f+ = I4.

The choices for Ω± and f± are not unique.

• Ω+ and f+ may be chosen from consistency considerations in Figure 3. The simple
choices:

(
Ω+
)
a b

=
(
f+
)a b

= δa b

(i.e. Ω+ = f+ = I4), ensure that the definition (8), i.e.

(Xr)
a c
b d , Xc g

f b ·
(
f+
)a f ·

(
Ω+
)
g d

(where X is either σ or σ−1), simplifies to the elegant form:

(Xr)
a c
b d = Xc d

a b .

• For the choice of Ω− and f−, we invoke the following result from [27, Lemma 2, p 354]
(see also [26]):

(I ⊗ str) [(I ⊗ q−2hρ)σ] = kI,

for some constant k depending on the normalisation of σ. Note that str denotes the
supertrace, and that in this case:

π(q−2hρ) =




q−2α . . .
. q−2α−2 . .
. . q−2α .
. . . q−2α−2


 .
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From Figure 8, we require:

σyaxb ·
(
Ω+
)
ac
·
(
f−
)bc

= δyx,

which, along with the condition:

(
Ω−
)
ab
·
(
f−
)bc

= δca,

imposes the choice:

(
f−
)bc

= (−)[b]π(q−2hρ)
b

c,(
Ω−
)
bc

= (−)[b]π(q2hρ)
b

c.

For other references on the construction of the cap and cup matrices, see the papers by
Reshetikhin and Turaev [35], and particularly Zhang [40] for the superalgebra case.

4.3 Results

Some evaluations of the invariant are presented in Table 2. This Uq [gl (2|1)] oriented
invariant is an invariant of ambient isotopy.

K LGK (q, p)

01 1

22
1 −1 + p−2 − q2 + p2q2

31 1 + p−4 − p−2 + 2q2 − p−2q2 − p2q2 − p2q4 + p4q4

41 7 + (p−4q−2 + p4q2)− 3 (p−2 + p2)− 3 (p−2q−2 + p2q2) + 2 (q−2 + q2)

52
1

−10 + p−6q−2 − 3p−4 − 3p−4q−2 + 4p−2q−2 + 9p−2 − 2q−2

−8q2 + 2p−2q2 + 9p2q2 + 4p2 + 2p2q4 − 3p4q2 − 3p4q4 + p6q4

817 see §4.6

942, 1048 see §4.5

Table 2: The Links–Gould Uq [gl (2|1)] oriented polynomial invariant LGK (q, p), evaluated
using the open diagram form of various links K.
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4.4 Behaviour of the Invariant

Fix a knot K, and denote by K∗ the reflection of K and by K−1 the inverse of K. From
the polynomial for K, we may immediately write down the polynomials for K∗ and K−1.
For the reflection, we have:

LGK∗ (q, p) = LGK

(
q−1, p−1

)
. (9)

For the inverse, we have:

LGK−1 (q, p) = LGK

(
q, q−1p−1

)
.

(this follows from α 7→ − (α+ 1)).

Chirality: As we have:

K = K∗ → LGK (q, p) = LGK∗ (q, p) ,

then we have, conversely, that:

LGK (q, p) 6= LGK∗ (q, p) → K 6= K∗, (10)

i.e. if the polynomials corresponding to K and K∗ are distinct, then K must be
chiral. Using the identity (9), the test of (10) becomes:

LGK (q, p) 6= LGK

(
q−1, p−1

)
→ K 6= K∗,

i.e. if LGK (q, p) is not palindromic, then K is chiral.

Invertibility: We make the observation that the representation of Uq [gl (2|1)] acting
on the dual module V ∗ is given by the replacement α 7→ − (α + 1) (with an ap-
propriate redefinition of the Cartan elements). Thus for a given (1, 1) tangle K,
with invariant LGK (q, p), the tangle invariant LGK−1 of its inverse K−1 is obtained
as LGK−1 (q, p) = LGK (q, q−1p−1). However, in view of Proposition 3.2, such an
invariant is unable to detect inversion.

We summarise these results in a proposition:

Proposition 4.1
Let LGK (q, p) be the Links–Gould polynomial invariant for the knot K.

• If LGK (q, p) is not invariant under the transformation q 7→ q−1 (which implies
p 7→ p−1), then LG detects the chirality of K.

• LGK (q, p) enjoys the symmetry property:

LGK (q, p) = LGK

(
q, q−1p−1

)
. (11)
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4.5 The Chirality of 942 and 1048

The polynomials for 942 and 1048 are:

LG942 (q, p) =

3 + p−8q−6 − 2p−6q−6 − 2p−6q−4 + p−4q−6 + 3p−4q−4 + p−4q−2 + p−4 − p−2q−4

−p−2q−2 − 3p−2 − 3p−2q2 + 6q2 + 2q4 − p2q−2 − p2 − 3p2q2 − 3p2q4 + p4q−2

+3p4 + p4q2 + p4q4 − 2p6 − 2p6q2 + p8q2

LG1048 (q, p) =

165 + 5p−8 − 25p−6 + 68p−4 − 129p−2 − 132p2 + 67p4 − 22p6 + 4p8 + p−16q−8

−3p−14q−8 + 4p−12q−8 − 4p−10q−8 + 4p−8q−8 − 2p−6q−8 − 3p−14q−6 + 12p−12q−6

−21p−10q−6 + 24p−8q−6 − 22p−6q−6 + 13p−4q−6 − 3p−2q−6 + 16q−4 + 5p−12q−4

−23p−10q−4 + 50p−8q−4 − 69p−6q−4 + 67p−4q−4 − 43p−2q−4 − 3p2q−4 + 94q−2

−6p−10q−2 + 29p−8q−2 − 72p−6q−2 + 119p−4q−2 − 132p−2q−2 − 43p2q−2 + 13p4q−2

−2p6q−2 + 88q2 − 2p−6q2 + 12p−4q2 − 39p−2q2 − 129p2q2 + 119p4q2 − 69p6q2

+24p8q2 − 4p10q2 + 12q4 − 2p−2q4 − 39p2q4 + 68p4q4 − 72p6q4 + 50p8q4 − 21p10q4

+4p12q4 − 2p2q6 + 12p4q6 − 25p6q6 + 29p8q6 − 23p10q6 + 12p12q6 − 3p14q6 − 2p6q8

+5p8q8 − 6p10q8 + 5p12q8 − 3p14q8 + p16q8.

Neither of these polynomials are palindromic, hence LG does distinguish the chirality of
these knots.

4.6 The Noninvertibility of 817 is not Detected

Recall that 817 is the smallest noninvertible knot. We find its polynomial invariant to be
given by:

LG817 (q, p) =

139 + (p−12q−6 + p12q6)− 4 (p−10q−6 + p10q6)− 4 (p−10q−4 + p10q4)
+7 (p−8q−6 + p8q6) + 18 (p−8q−4 + p8q4) + 7 (p−8q−2 + p8q2)− 7 (p−6q−6 + p6q6)
−36 (p−6q−4 + p6q4)− 36 (p−6q−2 + p6q2) − 7 (p−6 + p6) + 3 (p−4q−6 + p4q6)
+40 (p−4q−4 + p4q4) + 82 (p−4q−2 + p4q2) + 40 (p−4 + p4) + 3 (p−4q2 + p4q−2)
−22 (p−2q−4 + p2q4)− 102 (p−2q−2 + p2q2)− 102 (p−2 + p2)− 22 (p−2q2 + p2q−2)
+4 (q−4 + q4) + 68 (q−2 + q2) .

As 817 is amphichiral, the polynomial invariant is palindromic, as predicted by Proposi-
tion 4.1. Furthermore, we may observe the invariance:

LG817 (q, p) = LG817

(
q, q−1p−1

)
,

which is consistent with our assertion that our polynomial invariant cannot detect the
noninvertibility of any knot. More experiments to illustrate this claim are supplied in
§4.7.
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4.7 A Class of Noninvertible Pretzel Knots

A class of noninvertible knots has been presented by Trotter [38]; this class provides an
easily-programmable set of examples to see if a knot invariant detects noninvertibility.
Trotter is of the opinion that the knots are chiral. These pretzel knots were in fact the
first noninvertible knots to be described [28, p 25].

The structure of the knots (p, q, r) in this family is depicted by its simplest example in
Figure 16. Note that p, q, and r must all be distinct, odd, and greater than 1. In Figure 16,
the notation XN

rlr refers to the 2-braid of N crossings formed by the placing of Xr atop
Xl, with Xr as the top and bottom crossings, for X being either σ or σ−1. The recursive
definition for such knots is provided in Figure 15.

a

e

d

c

b

a

b

c

f

d

(XN−2
rlr )

a c

e f · (XlXr)
e f
b d

XlXr

(XN
rlr)

a c

b d

XN−2
rlr

XN
rlr =

Figure 15: Recursive definition of the towers Xrlr used in the evaluation of the Links–
Gould link invariant for the Trotter pretzel knots; X is either σ or σ−1. The minimum is
the case N = 1, which corresponds to Xr, i.e. X1

rlr , Xr. A parallel definition of Xlrl

might be given.

The tensor associated with the pretzel is:

TTP (p,q,r)
y
x
,

(
σ−prlr
)a c

x d
·
(
σ−qrlr
)e g
f h
·
(
σ−rrlr
)i k
j l
·

(
Ω−
)
a k
·
(
Ω+
)
c e
·
(
Ω+
)
g i
·
(
f+
)d f ·

(
f+
)h j ·

(
f+
)l y

.

Experiments show that the Links–Gould invariant for this class of noninvertible knots
always displays the symmetry of (11), for all p, q, r 6 67. This amounts to 5456 knots,
the smallest being the (3, 5, 7) pretzel, a knot of 3 + 5 + 7 = 15 crossings, and the largest
being the (63, 65, 67) pretzel, a knot of 63 + 65 + 67 = 195 crossings. Incidentally, we find
that the invariant demonstrates that all those pretzels are chiral.
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x
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a c

x d (σ−3
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e g

f h (σ−5
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i k

j l

Figure 16: The (noninvertible) pretzel knots of Trotter, in tangle form. This illustration
is of the smallest possible one, with p = 7, q = 3, r = 5.
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4.8 The Kinoshita–Terasaka Pair of Mutant Knots

The Kinoshita–Terasaka pair is an example of a pair of 11 crossing mutant knots that are
known to be distinct. To be precise, more commonly, the first of the pair is usually known
as the “Kinoshita–Terasaka Knot”, and the second has been called the “Conway Knot”.
In the original source by Kinoshita and Terasaka [21, p 151], the knot involved is the one
labelled κ (2, 2) (reproduced in [28, p 53]). They had constructed this knot as an example
of a nontrivial 11 crossing knot with Alexander polynomial equal to 1. The source used to
draw our example is from [1, p 174]; note that these diagrams have 12 crossings, so they
are not minimal.

A number of proofs of their distinctness are at hand:

• Adams [1, p 106] states that Francis Bonahon and Lawrence Siebenmann first
showed this in 1981. Adams [1, p 174] goes on to state that in 1986 David Gabai
[11] showed that their minimal genus Seifert surfaces have different genera3.

• More recently, Morton and Cromwell [29] have constructed a Vassiliev invariant of
type4 11 which distinguishes them. This Vassiliev invariant is based on the HOMFLY
polynomial for framed links, and the authors compare it with another invariant, itself
coming from SUq (3), which does not distinguish them.

More specifically, they show that the ‘SUq (N) invariant’ for the module with Young

diagram
22
2 will distinguish at least some mutant pairs (in particular the KT pair),

for all N > 4, but will definitely not distinguish any for N = 2, 3.

More generally, it is known that neither the HOMFLY nor the Kauffman polynomial can
distinguish any pair of mutants [1, p 174]. In fact Lickorish [24] used skein theoretical
arguments to show this; and furthermore, Lickorish and Lipson [25] and, independently
Przytycki [31] again used skein theoretical arguments to show that two equally twisted
2-cables (definition in [1, p 118]) of a mutant pair would have the same HOMFLY poly-
nomial. Perhaps the strongest statement that can be made in this direction was provided
in 1994 by Chmutov, Duzhin and Lando [5], who proved that all Vassiliev invariants of
type less than 9 will agree on any pair of mutants.

The question of whether the Links–Gould invariant is able to distinguish mutants is
immediately answerable in the negative. Theorem 5 of [29] states that if the modules
occurring in the decomposition of V ⊗ V each have unit multiplicity, as indeed (1) shows
in our case, then the invariant is unable to detect mutations. Whilst this was proved in
[29] for the case of quantum algebras, the extension to the case of quantum superalgebras
is quite straightforward. As an example, we have explicitly evaluated the Links–Gould
invariant for the aforementioned pair of mutants.

3 If L is an oriented link in S3 (i.e. the 3-sphere), then a Seifert surface for L is an oriented surface
R embedded in S3 such that ∂R = L and no component is closed. [11, p 677]. That is, a Seifert surface
is a 2-manifold with boundary being the link in question; the genus of such a surface being a topological
classifying label [1, p 95-106]. The original reference for the Seifert algorithm is contained in [37].

4A Vassiliev invariant is defined [29, p 229] to be of type d if it is zero on any link diagram of d+ 1
nodes, and to be of degree d if it is of type d but not of type d− 1.
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We illustrate KT , the first of Kinoshita–Terasaka pair, in Figure 17, where the tensors
KTA and KTB are defined below, in Figures 19 and 18. From KT , we may build the
mutant KT ′ by replacing the component KTA with KTA′ (depicted in Figure 20), which
is formed by reflection of KTA about a horizontal line.

x

x

a b

c e k

jd

(f+)k y(f+)c e

(KTA)a b
x c

(Ω−)b d

(Ω+)a j

(KTC)d j
e k

y

Figure 17: KT , the first of the Kinoshita–Terasaka pair of mutant knots, where the sub-
diagrams KTA, KTA′ and KTC are found in Figures 19, 20 and 18 respectively. (The
mutant KT ′ of KT is obtained by exchanging KTA with KTA′.)

The tensors associated with KT and KT ′ are:

(TKT )
y
x , (KTA)

a b
x c · (KTC)

d j
e k ·

(
Ω−
)
b d
·
(
f+
)c e ·

(
Ω+
)
a j
·
(
f+
)k y

,

(TKT ′)
y
x , (KTA′)

a b
x c · (KTC)

d j
e k ·

(
Ω−
)
b d
·
(
f+
)c e ·

(
Ω+
)
a j
·
(
f+
)k y

,

where

(KTA)
a b
q c , (σσd)

a b
d e ·

(
σ−2
)d f

q g
·
(
σ−1
d

)h e

i c
·
(
Ω+
)
f h
·
(
f−
)g i

(KTA′)
a b
q c ,

(
σ−2
)a f

d g
·
(
σ−1
d

)h b

i e
· (σσd)d e

q c ·
(
Ω+
)
f h
·
(
f−
)g i

(KTC)d j
e k , (KTB)d fe g ·

(
σ−1
l σ−1

r

)h j

i k
·
(
Ω−
)
f h
·
(
f+
)g i

(KTB)d f
e g , σd ba c · (σ2

d)
l f

m n ·
(
σ−1σ−1

d

)a n

e g
·
(
Ω+
)
b l
·
(
f−
)c m

.
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Figure 18: The component KTC of the Kinoshita–Terasaka pair of mutant knots KT and
KT ′.
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Figure 19: The component KTA of KT , the first of the Kinoshita–Terasaka pair.
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Figure 20: The component KTA′ of KT ′, the second of the Kinoshita–Terasaka pair.

4.9 Links–Gould Polynomials of the K–T Mutants

We find the Links–Gould polynomials of both mutants to be:

LGKT (q, p) =

−23− p−6q−8 − p−6q−6 + 2p−6q−4 + p−6q−2 − p−6 + p−4q−8 + 6p−4q−6 − 3p−4q−4

−9p−4q−2 + 2p−4 + 3p−4q2 − 7p−2q−6 − 7p−2q−4 + 18p−2q−2 + 9p−2 − 11p−2q2

−2p−2q4 + 2q−6 + 14q−4 − 8q−2 + 6q2 + 10q4 − 7p2q−4 − 7p2q−2 + 18p2 + 9p2q2

−11p2q4 − 2p2q6 + p4q−4 + 6p4q−2 − 3p4 − 9p4q2 + 2p4q4 + 3p4q6 − p6q−2 − p6

+2p6q2 + p6q4 − p6q6,

hence the Links–Gould link invariant does not distinguish between these mutants.

As predicted by the theorem of [29], the tensors KTA and KTA′ are in fact identical,
which explains why the pair of mutants yield the same invariant.
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