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ABSTRACT

There are strong indications that the history of design may have begun with the
concept of a meander. This paper explores the application of meanders to new classes of
meander and semi-meander knots, meander friezes, labyrinths and mazes. A combinato-
rial system is introduced to classify meander knots and labyrinths. Mazes are analyzed
with the use of graphs. Meanders are also created with the use of simple proto-tiles upon
which a series of lines are etched.
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1. Introduction

The meander motif got its name from the river Meander, a river with many twists

mentioned by Homer in the Iliad and by Albert Einstein in a classical paper on

meanders [1]. The motif is also known as the Greek key or Greek fret shown in

Fig. 1 with other Greek meander patterns. The meander symbol was often used in

Ancient Greece, symbolizing infinity or the eternal flow of things. Many temples

and objects were decorated with this motif. It is also possible to make a connection

of meanders with labyrinths since some labyrinths can be drawn using the Greek

key. We will refer to any set of twisting and turning lines shaped into a repeated

motif as a meander pattern where the turning often occurs at right angles [2].

For applications of meanders, the reader is referred to [3,5]. This paper is in large

measure, a reworking of an earlier paper by Jablan and Radovic [6,14].

1
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Fig. 1. Greek meanders Fig. 2. Prototiles

Perhaps the most fundamental meander pattern is the meander spiral which can

be found in very early art history. The prototile based on a set of diagonal stripes

drawn on a square and a second square in which black and white are reversed (see

Fig. 2) called op-tiles are used abundantly in ornamental art going back to Pale-

olithic times. From these two squares an infinite set of key patterns can be derived.

These patterns are commonly found in different cultures (Paleolithic, Neolithic,

Chinese, Celtic), and were independently discovered by these cultures. The oldest

examples of key-patterns are ornaments from Mezin (Ukraine) about 23 000 B.C.

The appearance of meander spirals in prehistoric ornamental art can be traced to

archeological findings from Moldavia, Romania, Hungary, Yugoslavia, and Greece,

and all of them can be derived as modular structures. In this paper we will study

the application of meanders to frieze patterns, labyrinths, mazes and knots.

2. Meander Friezes

To create a frieze pattern begin with a basic pattern and translate the pattern

along a line in both directions. There are seven classes of frieze patterns employing

reflections in a mirror along the line, mirrors perpendicular to the line, and half

turns at points along the line. One each of the seven frieze pattern is shown in Fig.

3. To create a meander frieze pattern we use some meander pattern. A subclass of

meander friezes can be formed from the initiating pattern formed within a p × q

rectangular grid of points as shown in Fig. 4. A continuous set of line segments is

placed in the grid touching each point with no self-intersections. If the grid points

are considered to be vertices and the line segments are edges of a graph, then such

path through the graph is referred to as a Hamilton path. In this way the pattern

has numerous twists and turns inducing a meander configuration resulting in what

we refer to as a meander frieze. The pattern has one edge that enters the grid and

another leaving the grid at the same level in order to connect to the next translated

pattern.

The number of frieze patterns corresponding to each square tends to be quite

large. Even a 5 × 5 grid gives (up to symmetries) 19 different cases as shown in

Fig. 5 and the 7 × 7 grid gives more than 2800 possibilities. The variety of mean-
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Fig. 3. Examples of the seven frieze patterns Fig. 4. Pattern for a meander frieze

der friezes can be further enriched by inserting some additional internal elements

(intersections), for example, a rosette with a swastika motif as shown in Fig. 6a.

It is clear that Ancient Greeks and other cultures created friezes using only a very

small portion of the possibilities, restricted only to grids of small dimensions. Hence

meander friezes originating from grids of dimension 7 × 7 , such as the pattern in

Fig. 6b were probably not used at all.

Fig. 5. The nineteen 5× 5 frieze patterns Fig. 6. (a) A meander frieze pattern with a
swastika motif, (b) A 7× 7 meander frieze pat-
tern



January 26, 2016 2:5 WSPC/INSTRUCTION FILE Jay25012016

4 Jay Kappraff, Ljiljana Radović, Slavik Jablan

3. Meanders represented by the intersection of two lines

The creation of meander patterns is based on the notion of an open meander [13].

Definition 3.1. An open meander is a configuration consisting of an oriented sim-

ple curve, and a line in the plane, the axis of the meander, in which the simple curve

crosses the axis a finite number of times and intersects only transversally [2]. In this

way, open meanders can be represented by systems formed by the intersections of

two curves in the plane. Two meanders are equivalent if one can be deformed to the

other by redrawing it without changing the number and sequencing of the inter-

sections. In this case the two meanders are said to be homeomorphic. They occur

in the physics of polymers, algebraic geometry, mathematical theory of mazes, and

planar algebras, in particular, the Temperly-Lieb algebra. One such open meander

is shown in Fig.7a. As the main source of the theory of meanders we used the paper

[2]. For applications of the theory of meanders, the reader is referred to [2,3,5].

The order of a meander is the number of crossings between the meander curve and

the meander axis. For example, in Fig.7a there are ten crossings so the order is

10. Since a line and a simple curve are homeomorphic, their roles can be reversed.

However, in the enumeration of meanders we will always distinguish the meander

curve from the meander line, the axis. Usually, meanders are classified according

to their order. One of the main problems in the mathematical theory of meanders

is their enumeration.

Fig. 7. (a) Open meander given by meander permutation (1, 10, 9, 4, 3, 2, 5, 8, 7, 6); (b) non-
realizable sequence (1, 4, 3, 6, 5, 2); (c) piecewise-linear upper arch configuration given by Dyck
word (()(()(()))).
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An open meander curve and meander axis have two loose ends each. Depending

on the number of crossings, the loose ends of the meander curve belong to different

half-planes defined by the axis for open meanders with an odd order, and to the

same half-plane when the meanders have an even order. For example, in Fig.7a,

the loose ends are in the same half-plane since it has an even order. In this case

we are able to make a closure of the meander: to join each of the loose ends. We

will find that an odd number of crossings results in a knot whereas an even number

of crossing results in a link. Knots consist of a single strand whereas links are

characterized by the interlocking of multiple strands. We will discuss knots in next

section. We will use arch configurations to represent meanders.

Definition 3.2. An arch configuration is a planar configuration consisting of pair-

wise non-intersecting semicircular arches lying on the same side of an oriented line,

arranged such that the feet of the arches are a piecewise linear set equally spaced

along the line as shown in Fig.7a.

Arch configurations play an essential role in the enumeration of meanders. A mean-

dric system is obtained from the superposition of an ordered pair of arch configura-

tions of the same order, with the first configuration as the upper and the second as

the lower configuration. The modern study of this problem was inspired by [3]. If

the intersections along the axis are enumerated by 1, 2, 3, ..., n every open meander

can be described by a meander permutation of order n: the sequence of n numbers

describing the path of the meander curve. For example, the open meander (Fig.

7a) is coded by the meander permutation 1, 10, 9, 2, 3, 2, 5, 8, 7, 6. Enumeration of

open meanders is based on the derivation of meander permutations. Meander per-

mutations play an important role in the mathematical theory of labyrinths [8]. In

every meander permutation odd and even numbers alternate, i.e, parity alternates

in the upper and lower configurations. However, this condition does not completely

characterize meander permutations. For example, the permutation: 1, 4, 3, 6, 5, 2 ex-

hibits two crossing arches, (1,4) and (3,6) as shown in Fig. 7b. Therefore, the most

important property of meander permutations is that all arches must be nested in

order not to produce crossing lines. Among different techniques to achieve this, the

fastest algorithms for deriving meanders are based on encoding each configuration

as words in the Dyck language [11,12] and the Mathematica program Open me-

anders by David Bevan (http://demonstrations.wolfram.com/OpenMeanders/)

[13]. The upper and lower arches are represented by nested parentheses with the

loose ends represented by 1. As a result, the upper and lower arches in Fig. 7a are

coded by {(()((()))), 1(())1()()}. The nested curves can also be squared off as shown

in Fig. 7c.

4. Meander Knots

First we say a few words about knots [4]. A knot can be thought as a knotted loop

of string having no thickness. It is a closed curve in space that does not intersect
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itself. We can deform this curve without permitting it to pass through itself, i.e., no

cutting. Although these deformations appear quite different, as shown in Fig.8 , they

are considered to be the same knot. If a deformation of the curve results in a simple

loop it is referred to as an unknot. To create the shadow of a knot, draw a scribble

of lines, with the restriction that at any point of intersection only two lines of the

scribble intersect as shown in Fig. 9a. Notice that at each point of intersection of the

scribble four edges intersect. By introducing the over/under relation in crossings of

the shadow, we get a knot diagram. An alternating knot can be constructed from

its shadow by drawing a path through the scribble, entering a point of intersection

and taking the middle segment of the three exit choices and then proceeding along

the path in an over-under-over-under- pattern as shown in Fig. 9b. Notice that

some crossings, such as the crossing at point P can be eliminated by simple twists

or movements without cutting. These moves are referred to as Reidemeister moves

of which there are three such unknotting rules [4]. After all such movements are

made the resulting knot can be reduced to its minimum number of crossings as

shown in Fig. 9b. A minimal projection of a knot is one that minimizes the number

of crossings. This is called the crossing number, defined to be the least number

of crossings that occur in any projection of the knot. It is uniquely defined for

any knot. Meander diagrams that have a minimal number of crossings are called

minimal meander diagrams.

Fig. 8. A knot and its deformations.

As we described in Sec. 3, because when making a closure of meander dia-

grams we have two possibilities, we choose the one producing a meander knot

shadow without crossing lines (loops). After that by introducing under-crossings

and over-crossings along the meander knot shadow axis, we can turn it into a knot

diagram. When the crossings alternate: under-over-under-over - the knot is said to

be alternating. Given a knot, it can be transformed without cutting to eliminate

certain crossings. However unless the knot is a loop or unknot there will always

remain crossings, specified by the crossing number. Each knot can be classified by

its crossing number.

Definition 4.1. An alternating knot that has a minimal diagram in the form of a

minimal meander diagram is called a meander knot.
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Fig. 9. (a) The shadow of a knot resulting in a knot with one extraneous crossing at P; (b) the
knot redrawn with the crossing at P removed.

Another problem is the derivation of meander knots first introduced by S. Jablan.

Several meander knots are represented here by their Gauss codes and Conway

symbols [9,10,7]. All computations were obtained by Jablan using the program

LinKnot [7]. Gauss codes of alternating meander knot diagrams can be obtained if

to the sequence 1, 2, . . . n we add a meander permutation of order n where n is an

odd number and in the obtained sequence alternate the signs of successive numbers,

e.g., from meander permutation (1, 8, 5, 6, 7, 4, 3, 2, 9) we obtain Gauss code

{−1, 2,−3, 4,−5, 6,−7, 8,−9, 1,−8, 5,−6, 7,−4, 3,−2, 9}

which corresponds to rational alternating knot with nine crossings referred to by 97
and also given by the Conway symbol 3 4 2. The same knot can be obtained from

meander permutations (1, 8, 7, 6, 5, 2, 3, 4, 9) and (1, 8, 7, 4, 5, 6, 3, 2, 9), giving Gauss

codes

{−1, 2,−3, 4,−5, 6,−7, 8,−9, 1,−8, 7,−6, 5,−2, 3,−4, 9}

and

{−1, 2,−3, 4,−5, 6,−7, 8,−9, 1,−8, 7,−4, 5,−6, 3,−2, 9}.

Fig. 10. Non-isomorphic minimal meander diagrams of the knot 97 = 34 2.
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These three representatives of the knot 3 4 2 are shown in Fig.10. It should also

be pointed out that if an alternating knot has an alternating minimal meander

diagram, all of its minimal diagrams need not be meander diagrams.

The natural question which arises is to find all alternating meander knots with

n crossings, where n is an odd number. Alternating meander knots with at most

n = 9 crossings are illustrated in Fig.11

Fig. 11. Alternating meander knots with at most n = 9 crossings.

Which knots can be represented by non-minimal meander diagrams? For ex-

ample the figure-eight knot 41, in Conway notation 2 2 with four crossings cannot

be represented by a meander diagram but can be represented by the non-minimal

meander diagram given by the Gauss code {−1, 2,−3,−4, 5, 3,−2, 1, 4,−5} with

n = 5 crossings. Knot 2 2 and five additional non-minimal diagrams are shown in

Fig. 12. You will also note that the knot is not alternating.
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For every knot which is not a meander knot (does not have a minimal meander

diagram) but which can be represented by some meander diagram (which is reduced,

but has more crossing than the minimal diagram of that knot, i.e., more crossing

than the crossing number of that knot ), we can define its meander number, the

minimum number of crossings of its meander diagrams where the minimum is taken

over over all its meander diagrams. How to find knots which have meander diagram?

Alternating meander knots have it, but also non-alternating knots with the same

shadows as alternating meander knots also have the meander diagram, with some

crossings change from overcrossing to undercrossing and vice versa. The next step is

to make all possible crossing changes in alternating minimal meander diagrams, i.e.,

in Gauss codes of alternating meander knots and see which knots will be obtained.

Fig. 12. Non-minimal meander diagrams of knots 41, 61, 62, 63, 76, and 77.

5. Two component meander links

Open meanders with an even number of crossings offer the interesting possibility of

joining pairs of loose ends of the meander axis, and loose ends of the meander curve.

As a result, we obtain the shadow of a 2-component link with one component in the

form of a circle and the other component meandering around it. A natural question

is which alternating links can be obtained from these shadows, and in general,

which 2-component links have meander diagrams. It is clear that components do

not self-intersect so the set of 2-component meander links coincides with the set

of alternating 2-component links with non-self-intersecting components, and all of

their minimum diagrams preserve this property.

As for knots, we pose for 2-component links the natural question as to which

2-component links have meander diagrams. From the definition of meander links

it is clear that the answer will be links in which both components will be knots
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and which components are not self-crossing, i.e., it will be the shadow of a cir-

cle. In the case of alternating minimal meander diagrams, all such diagrams of

2-component links will have this property. However, in the case of non-minimal

meander diagrams, some links with an odd number of crossings are represented by

meander diagrams. Moreover, their minimal diagrams have components with self-

intersections, but in their non-minimal meander diagrams none of the components

have self-intersections. Meander links up to n = 10 crossings are shown in Fig. 13.

Fig. 13. Meander links up to n = 10 crossings.

6. Sum of meander knots and links

For two open meander sequences we can define a sum or concatenation: the oper-

ation of joining their Dyck words and connecting the second loose end of the first

with the first loose end of the second and making a closure in order to obtain a me-

ander knot or link diagram (see Fig. 14). The same definition extends to meander

knots and links where we concatenate the meander parts of their Gauss codes. For

parity reasons, the sum of two meander knot diagrams or the sum of two meander

link diagrams is a meander link diagram, and the sum of a meander knot diagram

and meander link diagram or vice versa is a meander knot diagram. The sum of a

meander knot diagram and its mirror image is a 2-component unlink.
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Fig. 14. Sum of a 39-crossing meander knot and 48-crossing meander link giving the 87-crossing
meander knot.

7. Semi-meander or ordered Gauss code knots

In the case of meanders the axis of a meander is infinite. If the axis is finite, we obtain

semi-meanders, where a meander curve can pass from one side of the axis to the

other in a region beyond the end(s) of the axis without crossing the axis. Gauss code

depends on the choice of the initial (basic) point belonging to some arc and from the

orientation of the knot. This means that every rotation or reversal of a sequence of

length 2n representing the Gauss code of a knot with n crossings represents the same

(non-oriented) knot. A Gauss code will be said to be ordered if the absolute value

of the first part of its Gauss code is the sequence 1, 2, . . . n. An alternating knot will

be called an ordered Gauss code (OCG) or semi-meander knot if it has at least one

minimal diagram with an ordered Gauss code. The name semi-meander knot follows

from the fact that the shadow of such a knot represents a meander or semi-meander.

It is clear that every meander knot is OGC, and that meander knots represent the

proper subset of OGC knots. For OGC knots there is no parity restriction to the

number of crossings, so there exist OGC knots which are not meander knots, i.e.,

OGC knots with an even number of crossings. Moreover, some OGC knots with an

odd number of crossings are not meander knots, e.g., knot 76 = 2 2 1 2 which has

two minimal diagrams, and among them only one is OGC diagram with ordered

Gauss code {1,−2, 3,−4, 5,−6, 7,−5, 4,−1, 2,−7, 6,−3}. Every OGC diagram is

completely determined by the second half of its ordered Gauss code, which will be

called short Gauss code. Fig. 15 shows all semi-meander knots with n ≤ 7 crossings
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which are not meander knots.

Fig. 15. Semi-meander knots with n ≤ 7 crossings which are not meander knots.

8. Labyrinths

According to the Greek myths, the skillful craftsman Daedalus created the

Labyrinth. The purpose of this special architectural structure was to imprison the

Minotaur, the son of Pasiphae, the wife of the Cretan King Minos. The myth of the

Cretan Labyrinth has been a subject of speculation and archaeological, historical,

and anthropological research for a long time just as the visual representations of

labyrinthine structures concern not only art historians, but also mathematicians.

Karl Kerenyi (1897-1973), the internationally renowned scholar of religion col-

league of Carl Jung, and friend and advisor of Thomas Mann, returned time after

time to the mythological research of labyrinths and interpreted them both as cul-

tural symbols and specific geometrical structures. Right from the beginning of his

labyrinth studies, Kerenyi introduced the labyrinth from three closely interrelated

main aspects: 1) as a mythical construction; 2) as a spiral path that was followed

by dancers of a specific ritual; and 3) as a structure that was represented by a spiral

line. In his 1941 essay series [15], he summarized the most important concepts of

previous studies and made several original observations and comparisons, which

are still widely quoted and referred to in Labyrinth Studies. With the comparative

mythological and morphological analysis of the Babylonian, Indonesian, Australian,

Norman, Roman, Scandinavian, Finnish, English, German and medieval and Greek

labyrinth tradition, he has proven the global presence of labyrinthine structures and

revealed the artistic and architectural impulse behind the creation of them to ritu-

als and cultic dances where participants followed aspiral line and made meandering

gestures and dance-movements. In 1963, Kerenyi devoted a lengthy essay to Greek

folk dance [16] and pointed out how the movements of the ancient labyrinth dances
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were transformed into the main components of the Syrtos, a dance that is still per-

formed in Greece today. And in his last book written in 1969 [17], where he explored

the Cretan roots of the cult of Dionysis, he discussedin depth the labyrinthine and

meander-like patterns of Knossos in dance, art, and architecture. When a dancer

follows a spiral whose angular equivalent is precisely the meander, he returns to his

starting point, wrote Kerenyi, quoting Socrates from Platos dialogue The Euthyde-

mus. Socrates speaks there of the labyrinth and describes it as a figure whose most

easily recognizable feature is an endlessly repeated meander or spiral line: Then it

seemed like falling into a labyrinth; we thought we were at the finish, but our way

bent round and we found ourselves, as it were, back at the beginning, and just as far

from that which we were seeking at first [17].There resulted a classical picture of this

procession, which originally led by way of concentric circles and surprising turns to

the decisive turn in the center where one was obliged to rotate on one own axis in

order to continue the circuit [17]. The labyrinths surprising turns and the decisive

turn in their center is responsible for their symbolic meaning as well. Kerenyi sees

the labyrinth as a depiction of Hades, the underworld, and interprets the struc-

tures as narrative symbols which express the existential connection between life

and death, between the oblivion of the dead and the return of the eternal living.

From a morphological perspective, Kerenyi presupposes the transformation of the

spiral to the meander pattern because straight lines were easier to draw and so the

rounded form was early changed into the angular form. For Kerenyi the meander is

the figure of a labyrinth in linear form. In the third to second centuries BC, as he

explains, we find the figure and the word unmistakably related: in the Middle Ages

labyrinths were also called meanders [16]. We find a detailed connection between

meanders and labyrinths in Matthews’ book, Mazes and Labyrinths [18]. Although

both Matthews and Kerenyi made the connection between labyrinths and meanders

clear, the ornamental evolution of angular labyrinths were not discussed by any of

them in a way that could explain the geometrical development process underlying

them. Our approach seeks to remedy this. Before proceeding I would like to make

clear the difference between labyrinths and mazes since these words are often used

interchangeably. Both labyrinths and mazes can be described by graphs. However,

in the case of labyrinths, there is a single path leading from the entrance to the

center, whereas for mazes there are at various points bifurcations in the path, with

some choices of continuance leading to dead ends and others leading on to the cen-

ter. So in a sense labyrinths can be thought of as being subsets of mazes in which

there is a unicursal path through the graph.

9. Labyrinth studies and visual arts

We have found that the oldest examples of geometrical ornamentation in Paleolithic

art were from Mezin (Ukraine) dated to 23,000 B.C. (see Fig. 16).

Among the set of ornaments found at Mezin is the first known meander frieze

under the well-known name Greek key. Take a set of parallel lines, cut a square or
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Fig. 16. Ornaments from Mezin.

Fig. 17. (a,b) ”Cut and paste” construction; (c) Kufic tiles.

rectangular piece with the set of diagonal parallel lines incident to the first ones,

rotate by 90◦, and if necessary translate it in order to fit with the initial set (See

Fig. 17). More aesthetically pleasing results will be obtained by using the initial set

of black and white strips of equal thickness.

10. From meanders to labyrinths

The word labyrinth is derived from the Latin word labris, making a two-sided

axe, the motif related to the Minos palace in Knossos. The walls of the palace

were decorated by these ornaments while the interior featured actual bronze double

axes. This is the origin of the name labyrinth and the famous legend about Theseus,

Ariadne, and the Minotaur. The Cretan labyrinth is shown on the silver coin from

Knossos (400 B.C.) as shown in Fig. 18.

To create the Cretan labyrinth, first consider a Simple Alternating Transit

labyrinth, or SAT labyrinths [3,8]. An SAT labyrinth is laid out on a certain number

of concentric or parallel levels. The labyrinth is simple if the path makes essentially

a complete loop at each level, in particular, it travels on each level exactly once.

It is alternating if the labyrinth -path changes direction whenever it changes level,

and transit if the path progresses without bifurcation from the outside of the maze

to the center. Most SAT labyrinths occur in a spiral meander form with the path
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leading from the outside to the center. Each such labyrinth can be sliced down its

axis and unrolled into an open meander form. Now the path enters at the top of

the form and exits at the bottom: the top level (center) of the labyrinth becomes

the space below the open meander form. This process is illustrated in Fig.10 for

the Cretan labyrinth. The topology of an SAT labyrinth is entirely determined by

its level sequence, i.e., its open meander permutation as described in Sec. 3,for

example, the meander permutation 3,2,1,4,7,6,5. Hence the enumeration of open

meanders and their corresponding SAT labyrinths is based on the derivation of

meander permutations. For the derivation of open meanders one can use the Math-

ematica program open meanders by David Bevan [13] which we modified in order

to compute open meander permutations.

Fig. 18. The Cretan labyrinth. Fig. 19. Meander permutation and the un-
rolling procedure to create the labyrinth.

How does one construct a unicursal path without knowledge of computer pro-

grams and topological transformations? The simplest natural labyrinth is a spiral

meander: a piecewise-linear equidistant spiral. It is defined by a simple algorithm:

central point and after every step turn by 90◦, and continue with the next step,

where the sequence of step distances is 1, 1, 2, 2, 3, 3, 4, 4 . . .. Tracing this sequence

we have a labyrinth path: a simple curve connecting the beginning point (the en-

trance) with the end point (Minotaur room) . Fig.20 shows an elegant way to

construct a Cretan maze. Draw a black spiral meander (Fig.20a), cut out several

rectangles or squares, rotate each of them around its center by 90◦, and place it back

to obtain a labyrinth (Fig.20b). Even very complex labyrinths can be constructed

in this way (Fig.21).

It is interesting to notice that even the Knossos dancing pattern, using the shape

of a double axe, can be reconstructed in a similar way (Fig.22). So, a simple pattern

(Fig 23), an optile [19], can be considered as the logo of a Paleolithic designer from

which Mezin ornaments can be created. These tiles were also discovered by Ben

Nicholson who referred to them as Versatiles.
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Fig. 20. Cut and paste construction of a spiral labyrinth.

Fig. 21. Cut and paste construction of a complex labyrinth.

Fig. 22. The Knossos dancing pattern.
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Fig. 23. Prototiles.

11. A Labyrinth Workshop

(1) From linoleum squares of the dimensions 40× 40 cm and self-adhesive tape of

two colors (e.g., black and silver) make basic tiles (Fig. 24);

(2) Make a meander spiral (Fig. 25, left);

(3) By rotating only two tiles by 90o you obtain Cretean labyrinth (Fig. 25, right)

as was done by S. Jablan at the Bridges Conference in Pecs 2010 (Fig. 26).

Notice that only tiles 5) and 6) are black Optiles, and the other Optiles are colored

by two colors in order to use them for the border art of the spiral and labyrinth.

1 2 3

4 5 6

7

Fig. 24. Basictiles.
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Fig. 25. Meander spiral and Cretean labyrinth.

Fig. 26. Modular labyrinth from Bridges conference in Pecs 2010 (photos by Norbert Horvath.).

12. Mazes

If the path from entrance to center is not unicursal then we have a maze. For

example, a fun house is pictured as a maze in Fig. 27. Paths from room to room

are denoted in the accompanying graph. You will notice that certain rooms have

access to several other rooms along the pathways. The Hampton Court maze was

commissioned around 1700 by William III. It covers a third of an acre, is trapezoidal

in shape, it is planted with high hedges, and is the oldest surviving hedge maze. Its

patterns shown in Fig. 28 along with its access graph whose vertices are the points
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at which the path bifurcates.

Fig. 27. (a) A fun house pictured as a maze. (b) Graph of the maze [N. Friedman, 2003].

Fig. 28. The Hampton Court maze and its graph [N. Friedman, 2003].

I invite you to draw the graph from entrance to center for the maze in Fig. 29.

Fig. 29. Example of another maze [N. Friedman, 2003].
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13. Conclusion

We have seen how a wide range of mathematics and design has emerged from the

concept of a meander. Knots, frieze patterns, labyrinths and mazes all owe their

existence to the concept of a meander. Future work in these fields must take this

provenance into account.
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