Annals of Mathematics

On Manifolds Homeomorphic to the 7-Sphere Author(s): John Milnor Source: The Annals of Mathematics, Second Series, Vol. 64, No. 2 (Sep., 1956), pp. 399-405 Published by: Annals of Mathematics Stable URL: <u>http://www.jstor.org/stable/1969983</u> Accessed: 22/04/2011 04:15

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics.

ON MANIFOLDS HOMEOMORPHIC TO THE 7-SPHERE

By John Milnor¹

(Received June 14, 1956)

The object of this note will be to show that the 7-sphere possesses several distinct differentiable structures.

In §1 an invariant λ is constructed for oriented, differentiable 7-manifolds M^7 satisfying the hypothesis (*) $H^3(M^7) = H^4(M^7) = 0$. (Integer coefficients are to be understood.) In §2 a general criterion is given for proving that an *n*-manifold is homeomorphic to the sphere S^n . Some examples of 7-manifolds are studied in §3 (namely 3-sphere bundles over the 4-sphere). The results of the preceding two sections are used to show that certain of these manifolds are topological 7-spheres, but not differentiable 7-spheres. Several related problems are studied in §4.

All manifolds considered, with or without boundary, are to be differentiable, orientable and compact. The word *differentiable* will mean differentiable of class C^{∞} . A closed manifold M^n is *oriented* if one generator $\mu \in H_n(M^n)$ is distinguished.

§1. The invariant $\lambda(M^{7})$

For every closed, oriented 7-manifold satisfying (*) we will define a residue class $\lambda(M^7)$ modulo 7. According to Thom [5] every closed 7-manifold M^7 is the boundary of an 8-manifold B^8 . The invariant $\lambda(M^7)$ will be defined as a function of the index τ and the Pontrjagin class p_1 of B^8 .

An orientation $\nu \epsilon H_8(B^8, M^7)$ is determined by the relation $\partial \nu = \mu$. Define a quadratic form over the group $H^4(B^8, M^7)/(\text{torsion})$ by the formula $\alpha \to \langle \nu, \alpha^2 \rangle$. Let $\tau(B^8)$ be the index of this form (the number of positive terms minus the number of negative terms, when the form is diagonalized over the real numbers).

Let $p_1 \epsilon H^4(B^3)$ be the first Pontrjagin class of the tangent bundle of B^3 . (For the definition of Pontrjagin classes see [2] or [6].) The hypothesis (*) implies that the inclusion homomorphism

$$i: H^4(B^8, M^7) \to H^4(B^8)$$

is an isomorphism. Therefore we can define a "Pontrjagin number"

$$q(B^{8}) = \langle \nu, (i^{-1}p_{1})^{2} \rangle.$$

THEOREM 1. The residue class of $2q(B^8) - \tau(B^8)$ modulo 7 does not depend on the choice of the manifold B^8 .

Define $\lambda(M^7)$ as this residue class.² As an immediate consequence we have:

COROLLARY 1. If $\lambda(M^7) \neq 0$ then M^7 is not the boundary of any 8-manifold having fourth Betti number zero.

¹ The author holds an Alfred P. Sloan fellowship.

Let B_1^8 , B_2^8 be two manifolds with boundary M^7 . (We may assume they are disjoint.) Then $C^8 = B_1^8 \cup B_2^8$ is a closed 8-manifold which possesses a differentiable structure compatible with that of B_1^8 and B_2^8 . Choose that orientation ν for C^8 which is consistent with the orientation ν_1 of B_1^8 (and therefore consistent with $-\nu_2$). Let $q(C^8)$ denote the Pontrjagin number $\langle \nu, p_1^2(C^8) \rangle$.

According to Thom [5] or Hirzebruch [2] we have

$$\tau(C^{8}) = \langle \nu, \frac{1}{45} (7p_{2}(C^{8}) - p_{1}^{2}(C^{8}) \rangle;$$

and therefore

$$45\tau(C^8) + q(C^8) = 7\langle \nu, p_2(C^8) \rangle \equiv 0 \pmod{7}.$$

This implies

(1)
$$2q(C^8) - \tau(C^8) \equiv 0 \pmod{7}.$$

LEMMA 1. Under the above conditions we have

(2)
$$\tau(C^8) = \tau(B_1^8) - \tau(B_2^8)$$

and

(3)
$$q(C^8) = q(B_1^8) - q(B_2^8)$$

Formulas 1, 2, 3 clearly imply that

$$2q(B_1^8) - \tau(B_1^8) \equiv 2q(B_2^8) - \tau(B_2^8) \pmod{7};$$

which is just the assertion of Theorem 1.

PROOF OF LEMMA 1. Consider the diagram

Note that for n = 4, these homomorphisms are all isomorphisms. If $\alpha = jh^{-1}(\alpha_1 \oplus \alpha_2) \epsilon H^4(C)$, then

(4)
$$\langle \nu, \alpha^2 \rangle = \langle \nu, jh^{-1}(\alpha_1^2 \oplus \alpha_2^2) \rangle = \langle \nu_1 \oplus (-\nu_2), \alpha_1^2 \oplus \alpha_2^2 \rangle = \langle \nu_1, \alpha_1^2 \rangle - \langle \nu_2, \alpha_2^2 \rangle.$$

Thus the quadratic form of C^8 is the "direct sum" of the quadratic form of B_1^8 and the negative of the quadratic form of B_2^8 . This clearly implies formula (2).

Define $\alpha_1 = i_1^{-1} p_1(B_1)$ and $\alpha_2 = i_2^{-1} p_1(B_2)$. Then the relation

$$k(p_1(C)) = p_1(B_1) \oplus p_1(B_2)$$

implies that

² Similarly for n = 4k - 1 a residue class $\lambda(M^n)$ modulo $s_k\mu(L_k)$ could be defined. (See [2] page 14.) For k = 1, 2, 3, 4 we have $s_k\mu(L_k) = 1, 7, 62, 381$ respectively.

$$jh^{-1}(\alpha_1 \oplus \alpha_2) = p_1(C).$$

The computation (4) now shows that

$$\langle
u, \, p_1^2(C)
angle \, = \, \langle
u_1 \, , \, lpha_1^2
angle \, - \, \langle
u_2 \, , \, lpha_2^2
angle,$$

which is just formula (3). This completes the proof of Theorem 1.

The following property of the invariant λ is clear.

LEMMA 2. If the orientation of M^7 is reversed then $\lambda(M^7)$ is multiplied by -1. As a consequence we have

COROLLARY 2. If $\lambda(M^7) \neq 0$ then M^7 possesses no orientation reversing diffeomorphism³ onto itself.

§2. A partial characterization of the n-sphere

Consider the following hypothesis concerning a closed manifold M^n (where R denotes the real numbers).

(H) There exists a differentiable function $f: M^n \to R$ having only two critical points x_0, x_1 . Furthermore these critical points are non-degenerate.

(That is if u_1, \dots, u_n are local coordinates in a neighborhood of x_0 (or x_1) then the matrix $(\partial^2 f / \partial u_i \partial u_j)$ is non-singular at x_0 (or x_1).)

THEOREM 2. If M^n satisfies the hypothesis (H) then these exists a homeomorphism of M^n onto S^n which is a diffeomorphism except possibly at a single point.

Added in proof. This result is essentially due to Reeb [7].

The proof will be based on the orthogonal trajectories of the manifolds f = constant.

Normalize the function f so that $f(x_0) = 0$, $f(x_1) = 1$. According to Morse ([3] Lemma 4) there exist local coordinates v_1, \dots, v_n in a neighborhood V of x_0 so that $f(x) = v_1^2 + \dots + v_n^2$ for $x \in V$. (Morse assumes that f is of class C^3 , and constructs coordinates of class C^1 ; but the same proof works in the C^{∞} case.) The expression $ds^2 = dv_1^2 + \dots + dv_n^2$ defines a Riemannian metric in the neighborhood V. Choose a differentiable Riemannian metric for M^n which coincides with this one in some neighborhood⁴ V' of x_0 . Now the gradien of f can be considered as a contravariant vector field.

Following Morse we consider the differential equation

$$\frac{dx}{dt} = \operatorname{grad} f / \parallel \operatorname{grad} f \parallel^2.$$

In the neighborhood V' this equation has solutions

$$(v_1(t), \cdots, v_n(t)) = (a_1(t)^{\frac{1}{2}}, \cdots, a_n(t)^{\frac{1}{2}})$$

for $0 \leq t < \varepsilon$, where $a = (a_1, \dots, a_n)$ is any *n*-tuple with $\sum a_i^2 = 1$. These can be extended uniquely to solutions $x_a(t)$ for $0 \leq t \leq 1$. Note that these solutions satisfy the identity

³ A diffeomorphism f is a homeomorphism onto, such that both f and f^{-1} are differentiable.

⁴ This is possible by [4] 6.7 and 12.2.

$$f(x_a(t)) = t.$$

Map the interior of the unit sphere of R^n into M^n by the map

$$(a_1(t)^{\frac{1}{2}}, \cdots, a_n(t)^{\frac{1}{2}}) \rightarrow x_a(t).$$

It is easily verified that this defines a diffeomorphism of the open *n*-cell onto $M^n - (x_1)$. The assertion of Theorem 2 now follows.

Given any diffeomorphism $g: S^{n-1} \to S^{n-1}$, an *n*-manifold can be obtained as follows.

CONSTRUCTION (C). Let $M^{n}(g)$ be the manifold obtained from two copies of \mathbb{R}^{n} by matching the subsets \mathbb{R}^{n} – (0) under the diffeomorphism

$$u \rightarrow v = rac{1}{\parallel u \parallel} g\left(rac{u}{\parallel u \parallel}\right).$$

(Such a manifold is clearly homeomorphic to S^n . If g is the identity map then $M^n(g)$ is diffeomorphic to S^n .)

COROLLARY 3. A manifold M^n can be obtained by the construction (C) if and only if it satisfies the hypothesis (H).

PROOF. If $M^{n}(g)$ is obtained by the construction (C) then the function

$$f(x) = || u ||^{2}/(1 + || u ||^{2}) = 1/(1 + || v ||^{2})$$

will satisfy the hypothesis (H). The converse can be established by a slight modification of the proof of Theorem 2.

§3. Examples of 7-manifolds

Consider 3-sphere bundles over the 4-sphere with the rotation group SO(4) as structural group. The equivalence classes of such bundles are in one-one correspondence⁵ with elements of the group $\pi_3(SO(4)) \approx Z + Z$. A specific isomorphism between these groups is obtained as follows. For each $(h, j) \in Z + Z$ let f_{hj} :S³ \rightarrow SO(4) be defined by $f_{hj}(u) \cdot v = u^h v u^j$, for $v \in \mathbb{R}^4$. Quaternion multiplication is understood on the right.

Let ι be the standard generator for $H^4(S^4)$. Let ξ_{hj} denote the sphere bundle corresponding to $(f_{hj}) \epsilon \pi_3(SO(4))$.

LEMMA 3. The Pontrjagin class $p_1(\xi_{hj})$ equals $\pm 2(h-j)\iota$.

(The proof will be given later. One can show that the characteristic class $\bar{c}(\xi_{hj})$ (see [4]) is equal to $(h + j)\iota$.)

For each odd integer k let M_k^7 be the total space of the bundle ξ_{hj} where h and j are determined by the equations h + j = 1, h - j = k. This manifold M_k^7 has a natural differentiable structure and orientation, which will be described later.

LEMMA 4. The invariant $\lambda(M_k^7)$ is the residue class modulo 7 of $k^2 - 1$.

LEMMA 5. The manifold M_k^7 satisfies the hypothesis (H).

Combining these we have:

⁵ See [4] §18.

THEOREM 3. For $k^2 \not\equiv 1 \mod 7$ the manifold M_k^7 is homeomorphic to S^7 but not diffeomorphic to S^7 .

(For $k = \pm 1$ the manifold M_k^7 is diffeomorphic to S^7 ; but it is not known whether this is true for any other k.)

Clearly any differentiable structure on S^7 can be extended through $R^8 - (0)$. However:

COROLLARY 4. There exists a differentiable structure on S^7 which cannot be extended throughout R^8 .

This follows immediately from the preceding assertions, together with Corollary 1.

PROOF OF LEMMA 3. It is clear that the Pontrjagin class $p_1(\xi_{hj})$ is a linear function of h and j. Furthermore it is known that it is independent of the orientation of the fibre. But if the orientation of S^3 is reversed, then ξ_{hj} is replaced by ξ_{-j-h} . This shows that $p_1(\xi_{hj})$ is given by an expression of the form $c(h - j)\iota$. Here c is a constant which will be evaluated later.

PROOF OF LEMMA 4. Associated with each 3-sphere bundle $M_k^7 \to S^4$ there is a 4-cell bundle $\rho_k: B_k^8 \to S^4$. The total space B_k^8 of this bundle is a differentiable manifold with boundary M_k^7 . The cohomology group $H^4(B_k^8)$ is generated by the element $\alpha = \rho_k^*(\iota)$. Choose orientations μ , ν for M_k^7 and B_k^8 so that

$$\langle \nu, (i^{-1}\alpha)^2 \rangle = +1.$$

Then the index $\tau(B_k^8)$ will be +1.

The tangent bundle of B_k^s is the "Whitney sum" of (1) the bundle of vectors tangent to the fibre, and (2) the bundle of vectors normal to the fibre. The first bundle (1) is induced (under ρ_k) from the bundle ξ_{hj} , and therefore has Pontrjagin class $p_1 = \rho_k^* (c(h - j)\iota) = ck\alpha$. The second is induced from the tangent bundle of S^4 , and therefore has first Pontrjagin class zero. Now by the Whitney product theorem ([2] or [6])

$$p_1(B_k^8) = ck\alpha + 0.$$

For the special case k = 1 it is easily verified that B_1^8 is the quaternion projective plane $P_2(K)$ with an 8-cell removed. But the Pontrjagin class $p_1(P_2(K))$ is known to be twice a generator of $H^4(P_2(K))$. (See Hirzebruch [1].) Therefore the constant c must be ± 2 , which completes the proof of Lemma 3.

Now $q(B_k^8) = \langle \nu, (i^{-1}(\pm 2k\alpha))^2 \rangle = 4k^2$; and $2q - \tau = 8k^2 - 1 \equiv k^2 - 1 \pmod{7}$. This completes the proof of Lemma 4.

PROOF OF LEMMA 5. As coordinate neighborhoods in the base space S^4 take the complement of the north pole, and the complement of the south pole. These can be identified with euclidean space R^4 under stereographic projection. Then a point which corresponds to $u \in R^4$ under one projection will correspond to $u' = u/||u||^2$ under the other.

The total space M_k^7 can now be obtained as follows.⁵ Take two copies of $R^4 \times S^3$ and identify the subsets $(R^4 - (0)) \times S^3$ under the diffeomorphism

$$(u, v) \rightarrow (u', v') = (u/||u||^2, u^n v u^j / ||u||)$$

(using quaternion multiplication). This makes the differentiable structure of M_k^7 precise.

Replace the coordinates (u', v') by (u'', v') where $u'' = u'(v')^{-1}$. Consider the function $f: M_k^7 \to R$ defined by

$$f(x) = \Re(v)/(1 + ||u||^2)^{\frac{1}{2}} = \Re(u'')/(1 + ||u''||^2)^{\frac{1}{2}};$$

where $\Re(v)$ denotes the real part of the quaternion v. It is easily verified that f has only two critical points (namely $(u, v) = (0, \pm 1)$) and that these are non-degenerate. This completes the proof.

§4. Miscellaneous results

THEOREM 4. Either (a) there exists a closed topological 8-manifold which does not possess any differentiable structure; or (b) the Pontrjagin class p_1 of an open 8-manifold is not a topological invariant.

(The author has no idea which alternative holds.)

PROOF. Let X_k^s be the topological 8-manifold obtained from B_k^s by collapsing its boundary (a topological 7-sphere) to a point x_0 . Let $\bar{\alpha} \in H^4(X_k^s)$ correspond to the generator $\alpha \in H^4(B_k^s)$. Suppose that X_k^s , possesses a differentiable structure, and that $p_1(X_k^s - (x_0))$ is a topological invariant. Then $p_1(X_k^s)$ must equal $\pm 2k\bar{\alpha}$, hence

$$2q(X_k^8) - \tau(X_k^8) = 8k^2 - 1 \equiv k^2 - 1 \pmod{7}.$$

But for $k^2 \neq 1 \pmod{7}$ this is impossible.

Two diffeomorphisms $f, g: M_1^n \to M_2^n$ will be called *differentiably isotopic* if there exists a diffeomorphism $M_1^n \times R \to M_2^n \times R$ of the form $(x, t) \to (h(x, t), t)$ such that

$$h(x, t) = \begin{cases} f(x) & (t \leq 0) \\ g(x) & (t \geq 1). \end{cases}$$

LEMMA 6. If the diffeomorphisms $f, g: S^{n-1} \to S^{n-1}$ are differentiably isotopic, then the manifolds $M^n(f), M^n(g)$ obtained by the construction (C) are diffeomorphic. The proof is straightforward.

THEOREM 5. There exists a diffeomorphism $f: S^6 \to S^6$ of degree +1 which is not differentiably isotopic to the identity.

Proof. By Lemma 5 and Corollary 3 the manifold M_3^7 is diffeomorphic to $M^7(f)$ for some f. If f were differentiably isotopic to the identity then Lemma 6 would imply that M_3^7 was diffeomorphic to S^7 . But this is false by Lemma 4.

PRINCETON UNIVERSITY

References

- 1. F. HIRZEBRUCH, Ueber die quaternionalen projektiven Räume, S.-Ber. math.- naturw. Kl. Bayer. Akad. Wiss. München (1953), pp. 301-312.
- 2. -----, Neue topologische Methoden in der algebraischen Geometrie, Berlin, 1956.

- 3. M. MORSE, Relations between the numbers of critical points of a real function of n independent variables, Trans. Amer. Math. Soc., 27 (1925), pp. 345-396.
- 4. N. STEENROD, The topology of fibre bundles, Princeton, 1951.
- 5. R. THOM, Quelques propriétés globale des variétés différentiables, Comment. Math. Helv., 28 (1954), pp. 17-86.
- 6. WU WEN-TSUN, Sur les classes caractéristiques des structures fibrées sphériques, Actual. sci. industr. 1183, Paris, 1952, pp. 5–89.
- 7. G. REEB, Sur certain propriétés topologiques des variétés feuilletées, Actual. sci. industr. 1183, Paris, 1952, pp. 91-154.