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Abstract. This paper discusses relationships between topological entangle-
ment and quantum entanglement. Specifically, we propose that it is more fun-
damental to view topological entanglements such as braids as entanglement op-
erators and to associate with them unitary operators that are capable of creating
quantum entanglement.

1. Introduction

This paper discusses relationships between topological entanglement and quantum entanglement.
The paper is an expanded version of [9]. Specifically, we propose that it is more fundamental to
view topological entanglements such as braids as entanglement operators and to associate with
them unitary operators that perform quantum entanglement. Then one can compare the way the
unitary operator corresponding to an elementary braid has (or has not) the capacity to entangle
quantum states. Along with this, one can examine the capacity of the same operator to detect
linking. The detection of linking involves working with closed braids or with link diagrams. In
both cases, the algorithms for computing link invariants are very interesting to examine in the
light of quantum computing. These algorithms can usually be decomposed into one part that
is a straight composition of unitary operators, and hence can be seen as a sequence of quantum
computer instructions, and another part that can be seen either as preparation/detection, or as a
quantum network with cycles in the underlying graph.

The paper is organized as follows. Section 2 discusses the basic analogy between topological
entanglement and quantum entanglement. Section 3 proposes the viewpoint of braiding operators
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Figure 1. The Hopf link.

and gives a specific example of a unitary braiding operator, showing that it does entangle quantum
states. Section 3 ends with a list of problems. Section 4 discusses the link invariants associated
with the braiding operator R introduced in the previous section. Section 5 is a discussion of the
structure of entanglement in relation to measurement. Section 6 is an introduction to the virtual
braid group, an extension of the classical braid group by the symmetric group. We contend
that unitary representations of the virtual braid group provide a good context and language for
quantum computing. Section 7 is a discussion of ideas and concepts that have arisen in the course
of this research. An appendix describes a unitary representation of the three-strand braid group
and its relationship with the Jones polynomial. This representation is presented for contrast since
it can be used to detect highly non-trivial topological states, but it does not involve any quantum
entanglement.

2. The temptation of tangled states

It is quite tempting to make an analogy between topological entanglement in the form of
linked loops in three-dimensional space and the entanglement of quantum states. A topological
entanglement is a non-local structural feature of a topological system. A quantum entanglement
is a non-local structural feature of a quantum system. Take the case of the Hopf link of linking
number one (see figure 1). In this figure we show a simple link of two components and state its
inequivalence to the disjoint union of two unlinked loops. The analogy that one wishes to draw
is with a state of the form

ψ = (|01〉 − |10〉)/
√

2

which is quantum entangled. That is, this state is not of the form ψ1 ⊗ ψ2 ∈ H ⊗ H where
H is a complex vector space of dimension two. Cutting a component of the link removes its
topological entanglement. Observing the state removes its quantum entanglement in this case.

An example of Aravind [1] makes the possibility of such a connection even more tantalizing.
Aravind compares the Borromean rings (see figure 2) and the GHZ state

|ψ〉 = (|β1〉|β2〉|β3〉 − |α1〉|α2〉|α3〉)/
√

2.

The Borromean rings are a three-component link with the property that the triplet of
components is indeed topologically linked, but the removal of any single component leaves
a pair of unlinked rings. Thus, the Borromean rings are of independent intellectual interest as
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Figure 2. Borromean rings.

an example of a tripartite relation that is not expressed in terms of binary relations. The GHZ
state can be viewed as an entangled superposition of three particles with (say) all their spins in
the z direction. If we measure one particle of the three-particle quantum system, then the state
becomes disentangled (that is, it becomes a tensor product). Thus, the GHZ state appears to be
a quantum analogue to the Borromean rings!

However, Aravind points out that this analogy is basis dependent, for if one changes basis,
rewriting to

|ψ〉 = (|β1x〉/
√

2)(|β2〉|β3〉 − |α2〉|α3〉)/
√

2 + (|α1x〉/
√

2)(|β2〉|β3〉 + |α2〉|α3〉)/
√

2,

where |β1x〉 and |α1x〉 denote the spin-up and spin-down states of particle 1 in the x direction,
then one sees that a measurement of the spin of particle 1 in the x direction will yield an entangled
state of the other two particles. Thus, in this basis, the state |ψ〉 behaves like a triplet of loops
such that each pair of loops is linked! Seeing the state as analogous to a specific link depends
upon the choice of basis. From a physical standpoint, seeing the state as analogous to a link
depends upon the choice of an observable.

These examples show that the analogy between topological linking and quantum
entanglement is surely complex. One might expect a collection of links to exemplify the
entanglement properties of a single quantum state. It is attractive to consider the question:
What patterns of linking are inherent in a given quantum state? This is essentially a
problem in linear algebra and should be investigated further. We will not pursue it in
this paper.

On top of this, there is quite a bit of ingenuity required to produce links with given properties.
For example, in figure 3 we illustrate a Brunnian link of four components. This link has the
same property as the Borromean rings but for four components rather than three. Remove any
component and the link falls apart. The obvious generalization of the GHZ state with this property
just involves adding one more tensor product in the two-term formula. This raises a question
about the relationship of topological complexity and algebraic complexity of the corresponding
quantum state. The other difficulties with this analogy are that topological properties of linked
loops are not related to quantum mechanics in any clear way. Nevertheless, it is clear that this is
an analogy worth pursuing.
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Figure 3. A Brunnian link.

3. Entanglement operators

Braids and the Artin braid group form a first instance in topology where a space (or topological
configuration) is also seen as an operator on spaces and configurations. It is a shift that transmutes
the elements of a topological category to morphisms in an associated category. While we shall
concentrate on braids as an exemplar of this shift, it is worth noting that such a shift is the basis
of quantum topology and topological quantum field theory, where spaces are viewed (through
appropriate functors) as morphisms in a category analogous to a category of Feynman diagrams.
This pivot from spaces to morphisms and back is the fundamental concept behind topological
quantum field theory.

Braids are patterns of entangled strings. A braid has the form of a collection of strings
extending from one set of points to another, with a constant number of points in each cross
section. Braids start in one row of points and end in another. As a result, one can multiply two
braids to form a third braid by attaching the end points of the first braid to the initial points of the
second braid. Up to topological equivalence, this multiplication gives rise to a group, the Artin
braid group Bn on n strands.

Each braid is, in itself, a pattern of entanglement. Each braid is an operator that operates
on other patterns of entanglement (braids) to produce new entanglements (braids again).

We wish to explore the analogy between topological entanglement and quantum
entanglement. From the point of view of braids this means the association of a unitary operator
with a braid that respects the topological structure of the braid and allows exploration of the
entanglement properties of the operator. In other words, we propose to study the analogy between
topological entanglement and quantum entanglement by looking at unitary representations of
the Artin braid group. It is not the purpose of this paper to give an exhaustive account of
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Figure 4. A braiding operator.

Figure 5. The Yang–Baxter equation.

such representations. Rather, we shall concentrate on one particularly simple representation and
analyse the relationships between topological and quantum entanglement that are implicit in this
representation. The main point for the exploration of the analogy is that, from the point of view
of a braid group representation, each braid is seen as an operator rather than a state (see figure 4).

We will consider representations of the braid group constructed in the following manner.
To an elementary two-strand braid there is associated an operator

R : V ⊗ V −→ V ⊗ V.

Here V is a complex vector space, and for our purposes, V will be two-dimensional so that V can
hold a single qubit of information. One should think of the two input and two output lines from
the braid as representing this map of tensor products. Thus the left endpoints of R as shown
in figures 4–6 represent the tensor product V ⊗ V that forms the domain of R and the right
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Figure 6. Inverses.

Figure 7. Braiding operator entangling a state.

endpoints of the diagram for R represent V ⊗ V as the range of the mapping. In the diagrams
with three lines shown in figure 5, we have mappings from V ⊗ V ⊗ V to itself. The identity
shown in figure 5 is called the Yang–Baxter equation, and it reads algebraically as follows, where
I denotes the identity transformation on V :

(R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)(I ⊗ R).

This equation expresses the fundamental topological relation in the Artin braid group, and is
the main requirement for producing a representation of the braid group by this method. We
also need an inverse to R and this will be associated with the reversed elementary braid on two
strands as shown in figure 6. One then defines a representation τ of the Artin braid group to
automorphisms of V ⊗n by the equation

τ(σk) = I ⊗ · · · ⊗ I ⊗ R ⊗ I · · · ⊗ I,

where the R occupies the k and k+1 places in this tensor product. If R satisfies the Yang–Baxter
equation and is invertible, then this formula describes a representation of the braid group. If R
is unitary, then this construction provides a unitary representation of the braid group.

Here is the specific R matrix that we shall examine. The point of this case study is that R,
being unitary, can be considered as a quantum gate and since R is the key ingredient in a unitary
representation of the braid group, it can be considered as a operator that performs topological
entanglement. We shall see that it can also perform quantum entanglement in its action on
quantum states:

R =




a 0 0 0
0 0 d 0
0 c 0 0
0 0 0 b


 .

Here a, b, c, d can be any scalars on the unit circle in the complex plane. Then R is a unitary
matrix and it is a solution to the Yang–Baxter equation. It is an interesting and illuminating
exercise to verify that R is a solution to the Yang–Baxter equation. We will omit this verification
here, but urge the reader to perform it. In fact, the following more general construction gives a
large class of unitary R matrices: let M = (Mij) denote an n × n matrix with entries in the unit
circle in the complex plane. Let R be defined by the equation

Rij
kl = δi

lδ
j
kMij.
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It is easy to see that R is a unitary solution to the Yang–Baxter equation. Our explicit example
is the special case of R where the matrix M is 2 × 2. It turns out, just as we shall show here for
the special case, that R detects no more than linking numbers for braids, knots and links. This
is interesting, but it would be even more interesting to see other unitary R matrices that have
subtler topological properties. The reader may enjoy comparing this situation with the unitary
representation of the Artin braid group discussed in [8].

One can use that representation to calculate the Jones polynomial for three-strand braids.
There is still a problem about designing a quantum computer to find the Jones polynomial, but this
braid group representation does encode subtle topology. At the same time the representation in [8]
cannot entangle quantum states. Thus the question of the precise relationship between topological
entanglement and quantum entanglement certainly awaits the arrival of more examples of unitary
representations of the braid group. We are indebted to David Meyer for asking sharp questions
in this domain [14]. Now let P be the swap permutation matrix

P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




and let τ = RP so that

τ =




a 0 0 0
0 c 0 0
0 0 d 0
0 0 0 b


 .

Then from the point of view of quantum gates, we have the phase gate τ and the swap gate P
with τ = RP . From the point of view of braiding and algebra, we have that R is a solution to
the braided version of the Yang–Baxter equation, τ is a solution to the algebraists version of the
Yang–Baxter equation, and P is to be regarded as an algebraic permutation or as a representation
of a virtual or flat crossing. We discuss the virtual braid group [3, 4, 5, 7] in section 5, but for
here suffice it to say that it is an extension of the classical braid group by the symmetric group
and so contains braiding generators and also generators of order two. Now the point is that by
looking at unitary representations of the virtual braid group, we can (as with the matrices above)
pick up both phase and swap gates, and hence the basic ingredients for quantum computation.
This means that the virtual braid group provides a useful topological language for quantum
computing. This deserves further exploration.

The matrix R can also be used to make an invariant of knots and links that is sensitive to
linking numbers. We will discuss this point in section 4.

But now, consider the action of the unitary transformation R on quantum states. We have

(1) R|00〉 = a|00〉
(2) R|01〉 = c|10〉
(3) R|10〉 = d|01〉
(4) R|11〉 = b|11〉.

Here is an elementary proof that the operator R can entangle quantum states. Note how this
comes about through its being a composition of a phase and a swap gate. This decomposition is
available in the virtual braid group.

Lemma. If R is chosen so that ab �= cd, then the state R(ψ⊗ψ), with ψ = |0〉+|1〉, is entangled.
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Proof. By definition,

φ = R(ψ ⊗ ψ) = R((|0〉 + |1〉) ⊗ (|0〉 + |1〉)) = a|00〉 + c|10〉 + d|01〉 + b|11〉.
If this state φ is unentangled, then there are constants X , Y , X ′, Y ′ such that

φ = (X|0〉 + Y |1〉) ⊗ (X ′|0〉 + Y ′|1〉).
This implies that

(1) a = XX ′

(2) c = X ′Y

(3) d = XY ′

(4) b = Y Y ′.

It follows from these equations that ab = cd. Thus, when ab �= cd we can conclude that the state
φ is entangled as a quantum state. ��

Remark. Note that if α = a|0〉 + b|1〉 and β = c|0〉 + d|1〉 then α ⊗ β = ac|00〉 + ad|01〉 +
bc|10〉+ bd|11〉. Thus a state γ = X|00〉+Y |01〉+Z|10〉+W |11〉 is entangled if XW �= Y Z.

3.1. Questions

This phenomenon leads to more questions than we have answers.

(1) How does one classify quantum entanglements in terms of braids (and corresponding
braiding operators) that can produce them?

(2) Can all quantum entangled states be lifted to braidings?

(3) How do protocols for quantum computing look from this braided point of view?

(4) What is the relationship between the analogy between quantum states and entangled loops
when viewed through the lens of the braiding operators?

(5) Does the association of unitary braiding operators shed light on quantum computing
algorithms for knot invariants and statistical mechanics models? Here one can think of
the computation of a knot invariant as separated into a braiding computation that is indeed a
quantum computation, plus an evaluation related to the preparation and detection of a state
(see [6, 8]).

(6) How does one classify all unitary solutions to the Yang–Baxter equation?

4. Link invariants from R

The unitary R matrix that we have considered in this paper gives rise to a non-trivial invariant of
links. In this section we shall discuss the invariant associated with the specialization of R with
c = d so that

R =




a 0 0 0
0 0 c 0
0 c 0 0
0 0 0 b


 .
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Figure 8. Formulae for the state summation.

Later we will specialize further so that a = b. We omit the details here, and just give the formula
for this invariant in the form of a state summation. The invariant has the form

ZK = a−w(K)(
√

a/b)rot(K)〈K〉,
where w(K) is the sum of the crossing signs of the oriented link K and rot(K) is the rotation
number (or Whitney degree) of the planar diagram for K (see figure 8). The bracket 〈K〉 is the
un-normalized state sum for the invariant. This state sum is defined through the equations shown
in figure 8.

In this figure, the first crossing is positive, the second negative. The first two diagrammatic
equations correspond to terms in the matrices R and R−1 respectively. Note that the glyphs
in these equations are labelled with 0 or 1. The first two terms correspond to the action of
R on |00〉 and on |11〉 respectively. The third term refers to the fact that R acts on |01〉 and
|10〉 in the same way (by multiplying by c). However, these equations are interpreted for the
state summation as instructions for forming local states on the link diagram. A global state
on the link diagram is a choice of replacement for each crossing in the diagram so that it is
either replaced by parallel arcs (as in the first two terms of each equation) or by crossed arcs
(as in the third term of each equation). The local assignments of 0 and 1 on the arcs must fit
together compatibly in a global state. Thus in a global state one can think of the 0 and 1 as
qubits ‘circulating’ around simple closed curves in the plane. Each such state of circulation
is measured in terms of the qubit type and the sense of rotation. These are the evaluations
of cycles indicated below the two main equations for the state sum. Each cycle is assigned
either Q or 1/Q where Q =

√
b/a. The state sum is the summation of evaluations of all of

the possible states of qubit circulation where each state is evaluated by the product of weights
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Figure 9. States for the Hopf link H .

a, b, c (and their inverses) coming from the expansion equations, multiplied by the product of
the evaluations Q or 1/Q of the simple closed curves in the state. This completes a summary of
the algorithm.

There are many ways to construe a state summation such as this. One can arrange the knot
or link with respect to a given direction in the plane, and see the calculation as a vacuum–vacuum
amplitude in a toy quantum field theory [6]. One can look directly at it as a generalized statistical
mechanics state summation as we described it above. One can write the link as a closed braid
and regard a major part of the calculation as a composition of unitary braiding operators. In this
picture, a good piece of the algorithm can be construed as quantum. We believe that algorithms
of this type, inherent in the study of so-called quantum link invariants, should be investigated
more deeply from the point of view of quantum computing. In particular, the point of view of
the algorithm as a sum over states of circulating qubits can be formalized, and will be the subject
of another paper.

An example of a computation of this invariant is in order. In figure 9 we show the admissible
states for a Hopf link (a simple link of two circles) where both circles have the same rotation
sense in the plane. We then see that if H denotes the Hopf link, then 〈H〉 = a2Q2 + b2Q−2 +2c2

whence

ZH = Q−2〈H〉 = a2 + b2Q−4 + 2c2Q−2.

From this it is easy to see that the invariant Z detects the linkedness of the Hopf link. In fact,
Z cannot detect linkedness of links with linking number equal to zero. For example, Z cannot
detect the linkedness of the Whitehead link shown in figure 10.
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Figure 10. The Whitehead link.

4.1. A further specialization of ZK

If we let a = b in the definition of ZK , then the state summation becomes particularly simple
with Q = 1. It is then easy to see that for a two-component link ZK is given by the formula

ZK = 2(1 + (c2/a2)lk(K))

where lk(K) denotes the linking number of the two components of K. Thus we see that for
this specialization of the R matrix the operator R entangles quantum states exactly when it can
detect linking numbers in the topological context.

Here is another description of the state sum: instead of smoothing or flattening the crossings
of the diagram, label each component of the diagram with either 0 or 1. Take vertex weights of a
or c (in this special case, and the corresponding matrix entries in the general case) for each local
labelling of a positive crossing as shown in figure 11. For a negative crossing the corresponding
labels are 1/a and 1/c (which are the complex conjugates of a and c respectively, when a and c
are unit complex numbers). Let each state (labelling of the diagram by zeros and ones) contribute
the product of its vertex weights. Let Σ(K) denote the sum over all the states of the products of
the vertex weights. Then one can verify that Z(K) = a−w(K)Σ(K) where w(K) is the sum of
the crossing signs of the diagram K.

For example, view figure 12. Here we show the zero–one states for the Hopf link H .
The 00 and 11 states each contributes a2, while the 01 and 10 states contribute c2. Hence
Σ(H) = 2(a2 + c2) and a−w(H)Σ(H) = 2(1 + (c2/a2)1) = 2(1 + (c2/a2)lk(H)), as expected.

The calculation of the invariant in this form is actually an analysis of quantum networks
with cycles in the underlying graph. In this form of calculation we are concerned with those
states of the network that correspond to labellings by qubits that are compatible with the entire
network structure. A precise definition of this concept will be given in a sequel to this paper.
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Figure 11. Positive crossing weights.

Figure 12. Zero–one states for the Hopf link.

Here one considers only those quantum states that are compatible with the interconnectedness
of the network as a whole.

The example of the Hopf link shows how subtle properties of topological entanglement
are detected through the use of the operator R in circularly interconnected quantum networks.
It remains to do a deeper analysis that can really begin to disentangle the roles of quantum
entanglement and circularity in such calculations.
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5. A remark about EPR

It is remarkable that the simple algebraic situation of an element in a tensor product that is not
itself a tensor product of elements of the factors corresponds to subtle nonlocality in physics. It
helps to place this algebraic structure in the context of a gedanken experiment to see where the
physics comes in. Consider

S = |0〉|1〉 + |1〉|0〉.
In an EPR thought experiment, we think of two ‘parts’of this state that are separated in space.
We want a notation for these parts and suggest the following:

L = {|0〉}|1〉 + {|1〉}|0〉, R = |0〉{|1〉} + |1〉{|0〉}.

In the left state L, an observer can only observe the left-hand factor. In the right state R, an
observer can only observe the right-hand factor. These ‘states’ L and R together comprise the
EPR state S, but they are accessible individually just as are the two photons in the usual thought
experiment. One can transport L and R individually and we shall write

S = L ∗ R

to denote that they are the ‘parts’ (but not tensor factors) of S.
The curious thing about this formalism is that it includes a little bit of macroscopic physics

implicitly, and so it makes it a bit more apparent what EPR were concerned about. After all, lots
of things that we can do to L or R do not affect S. For example, transporting L from one place
to another, as in the original experiment where the photons separate. On the other hand, if Alice
has L and Bob has R and Alice performs a local unitary transformation on ‘her’ tensor factor,
this applies to both L and R since the transformation is actually being applied to the state S. This
is also a ‘spooky action at a distance’ whose consequence does not appear until a measurement
is made.

6. Virtual braids

This section expands the remarks about how the inclusion of a swap operator in the braid group
leads to a significant generalization of that structure to the virtual braid group.

The virtual braid group is an extension of the classical braid group by the symmetric
group. If Vn denotes the n-strand virtual braid group, then Vn is generated by braid generators
σ1, . . . , σn−1 and virtual generators c1, . . . , cn where each virtual generator ci has the form of
the braid generator σi with the crossing replaced by a virtual crossing. Among themselves, the
braid generators satisfy the usual braiding relations. Among themselves, the virtual generators
are a presentation for the symmetric group Sn. The relations that relate virtual generators and
braiding generators are as follows:

σ±
i ci+1ci = ci+1ciσ

±
i+1, cici+1σ

±
i = σ±

i+1cici+1, ciσ
±
i+1ci = ci+1σ

±
i ci+1.

It is easy to see from this description of the virtual braid groups that all the braiding generators
can be expressed in terms of the first braiding generator σ1 (and its inverse) and the virtual
generators. One can also see that Alexander’s theorem generalizes to virtuals: every virtual knot
is equivalent to a virtual braid [4]. In [7] a Markov theorem is proven for virtual braids.
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Figure 13. Braid generators and virtual braid generators.

From the point of view of quantum computing, it is natural to add the virtual braiding
operators to the Artin braid group. Each virtual braiding operator can be interpreted as a swap
gate. With the virtual operators in place, we can compose them with the R matrices to obtain
phase gates and other apparatus as described in section 3. We then have the virtual braid group
as a natural topologically based group structure that can be used as an underlying language for
building patterns of quantum computation.

7. Discussion

We are now in a position to state the main problem posed by this paper. We have been exploring
the analogy between topological entanglement and quantum entanglement. It has been suggested
that there may be a direct connection between these two phenomena. But on closer examination,
it appears that rather than a direct connection, there is a series of analogous features that are
best explored by going back and forth across the boundary between topology and quantum
computing. In particular, we have seen that the unitary operator R can indeed produce entangled
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Figure 14. Relations in the virtual braid group.

quantum states from unentangled quantum states. The operator R is the basic ingredient for
forming a representation of the Artin braid group. As such, it is intimately connected with
topological entanglement. In fact, the operator R is also the basic ingredient in constructing
the link invariant ZK that we have studied in section 4. The construction of this link invariant
is motivated by quantum statistical mechanics and its structure bears further investigation from
the point of view of quantum computing. The theme that emerges is powerfully related to the
circularity of the links. It is through mutual circularity that the topological linking occurs. And it
is through this circularity and the measurement of circulating states of qubits that one computes
the state summation model. A deep relation of quantum states and topological states will be seen
through the study of the quantum states of circularly interconnected networks structurally related
to three-dimensional space. These networks are both topological and quantum mechanical, and
a common structure will emerge. This is the project for further papers in our series.
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In the meantime, the language of the braid group and virtual braid group provides an arena for
representing quantum operators that can be interpreted topologically. This framework provides
a means for topology and quantum computing to converse with one another.

The papers [10, 11] and [12, 13] provide background to the considerations of the present
paper. In particular, they provide a general framework for studying quantum entanglement that
may be useful in investigating the role of infinitesimal braiding operators and other aspects of
the representation theory of the Artin braid group.

The reader may wish to compare the points of view in this paper with the paper [2]. There the
author considers the possibility of anyonic computing and follows out the possible consequences
in terms of representations of the Artin braid group. We are in substantial agreement with his
point of view and we contend that braiding is fundamental to quantum computation whether or
not it is based in anyonic physics.
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Appendix. A unitary representation of the three-strand braid group and the
corresponding quantum computer

Many questions are raised by the formulation of quantum computation associated with a given
link diagram. In this appendix we give an example of a unitary representation of the three-strand
braid group. We can use this representation to compute the Jones polynomial for closures of
3-braids, and therefore this representation provides a test case for the corresponding quantum
computation. We now analyse this case by first making explicit how the bracket polynomial is
computed from this representation. See [8] for more details about this construction.

The representation depends on two matrices U1 and U2 with

U1 =
[
δ 0
0 0

]
and U2 =

[
δ−1

√
1 − δ−2√

1 − δ−2 δ − δ−1

]
.

The representation is given on the two braid generators by

λ(σ1) = AI + A−1U1 λ(σ2) = AI + A−1U2

for any A with δ = −A2 − A−2, and with A = eiθ, then δ = −2 cos(2θ). We get the specific
range of angles |θ| ≤ π/6 and |θ −π| ≤ π/6 that give unitary representations of the three-strand
braid group.
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Note that tr(U1) = tr(U2) = δ while tr(U1U2) = tr(U2U1) = 1. If b is any braid, let I(b)
denote the sum of the exponents in the braid word that expresses b. For b a three-strand braid, it
follows that

λ(b) = AI(b)I + Π(b)

where I is the 2 × 2 identity matrix and Π(b) is a sum of products in the Temperley–Lieb
algebra [8] involving U1 and U2. Since the Temperley–Lieb algebra in this dimension is generated
by I, U1, U2, U1U2 and U2U1, it follows that

〈b〉 = AI(b)δ2 + tr(Π(b))

where b denotes the standard braid closure of b, and the sharp brackets denote the bracket
polynomial [8] as described in previous sections. From this we see at once that

〈b〉 = tr(λ(b)) + AI(b)(δ2 − 2).

It follows from this calculation that the question of computing the bracket polynomial for
the closure of the three-strand braid b is mathematically equivalent to the problem of computing
the trace of the matrix λ(b). To what extent can our quantum computer determine the trace of
this matrix?

The matrix in question is a product of unitary matrices, the quantum gates that we have
associated with the braids σ1 and σ2. The entries of the matrix λ(b) are the results of preparation
and detection for the two-dimensional basis of qubits for our machine:

〈i|λ(b)|j〉.
Given that the computer is prepared in |j〉, the probability of observing it in state |i〉 is equal to
|〈i|λ(b)|j〉|2. Thus we can, by running the quantum computation repeatedly, estimate the absolute
squares of the entries of the matrix λ(b). This will not yield the complex phase information that
is needed for either the trace of the matrix or the absolute value of that trace. Thus our quantum
computer can compute information relating to the braiding process, but it cannot approximate
the full value of the bracket polynomial.

Note that our quantum computer does indeed have the capability to detect three strand
braiding, since for a braid b the matrix λ(b) can have non-trivial off-diagonal elements. The
absolute squares of these elements are approximated by successive runs of the quantum computer.
In this quantum computer, braiding corresponds to quantum states and is detectable by that token.
The bracket polynomial itself depends upon subtler phase relationships and is not detectable by
this quantum computer.

What is remarkable here is that this unitary representation of the three-strand braid group
can do so much topology, and that it does so without using any quantum entanglement. The
representation described above is defined on a two-dimensional complex vector space and hence
acts upon a single qubit. No entanglement occurs in the quantum process, and yet topological
linking and knotting is detected. Clearly, the relative roles of entanglement in quantum computing
and in topology need a deeper examination.
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