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Abstract

A step can be regarded as an elementary ordering of two objects (or op-

erators). A step is a distinction combined with an action that crosses the

boundary of that distinction. The elementary step can be seen as a reference,

as a division of space or as a tick of a clock. By looking at the structure of

a step, we provide a context that unifies specific aspects of special relativity,

Laws of Form, topology, discrete physics and logic design.



1 Introduction

This paper considers the structure of a step in the contexts of space, time

and computation. A step can be regarded as a distinction, coupled with

the action of crossing from one side of that distinction to the other. By

taking such an elementary consideration as our theme, we are able to bring

together a very wide range of ideas and techniques under one roof and make

connections among them. The present paper is an expanded version of [27].

The second section is a brief discussion of Step, written in non-technical

language. Section 3 takes an ordered pair as the model for a step and in-

troduces the notion of iterant. An iterant is an infinite pattern generated

from the ordered pair. Such a pattern can be regarded as a spatial entity or

as a temporal entity (oscillation). In fact, an iterant is neither spatial nor

temporal, although these are two valid ways of viewing such a form.

Section 4 takes Section 3 and expands it, showing that the mathematical

structure of special relativity arises naturally in relation to iterants. This

leads, in Section 5, to the algebra of special relativity and a discussion of

the square root of minus one as a combination of waveforms composed with

a time-shift (delay). Section 6 expands on iterants in the boolean context
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and the role of the square root of negation. At this point we have arrived

at a formal notion of imaginary values in logic. These imaginary values all

involve special time-shifts in the temporal context or shifts of space in the

spatial context. Section 7 goes more deeply into this matter of imaginary

values by looking at the subtlety of transitions in examples ranging from the

game of GO to asynchronous circuit design, the Fixed Point Theorem of the

Church-Curry lambda calculus and questions about the nature of observation

in quantum mechanics.

Section 8 shows how matrix algebra develops naturally from iterants and

illustrates with an example from particle physics. Section 9 discusses how a

time-shift readjusts the classical calculus of finite differences, and how this

leads to a non-commutative calculus of finite differences that can be used as

a foundation for discrete physics. Section 10 is a brief discussion of the role of

topology and knot theory in relation to the theme of a step. Finally, section

11 takes the ideas and themes of the paper and discusses them in the light

of the design of ideal compilers. A key example is given via Laws of Form of

the descent from a higher level language to a more primitive language.

Section 11 can be read independently of the rest of the paper. We have
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illustrated throughout the paper how seemingly sophisticated ideas and struc-

tures are directly related to primitive ideas and forms of language. The ideal

compiler for human thought will take complexities and reduce them to intel-

ligible and workable simplicities. I hope that this paper provides ground for

discussion of this theme.

2 To Take a Step

In order to take a step there has to be a here and a possible there. We step

across the threshold. We take a step onto the surface of the moon. There

appears to be a boundary and it is possible to step across that boundary into

a new state.

The structure of step and distinction are intertwined. It is, however,

possible to harbor a distinction without taking a step. The beginner at the

top of the ski slope knows the distinction of altitude full well but finds the

act of stepping out onto the slope quite impossible.

It is also possible to take a step without crossing the boundary of a

distinction. Zeno steps halfway to the wall again and again, never reaching
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it, never crossing it. This step creates no permanent crossing, no mark of

distinction.

The concepts Step and Distinction are distinct, yet each may be enjoined

in the study of the other.

3 The Ordered Pair and a Non-numerical

Small World

Consider the ordered pair [a, b] as representative of a step. The ordered pair

represents a step from a to b. The a precedes the b. At this stage a and b

are letter symbols. They can stand for anything.

[a, b] abbreviates a process. Let [a,b] stand for the elementary repetition

...abababab... . Then [a, b] becomes a ”freeze” of that process, a way of viewing

it with a precedence of a before b. The vibration says ...ab..ab..ab..ab....

It could just as well be the other way. [b, a] stands for the same process,

heard differently as ...ba..ba..ba..ba..ba.... Two ordered pairs correspond to

two possible observations of the same process. Here we have a simple model

of a world ...ababababab... and two possible modes of observation of that
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world: [a, b] and [b, a].

The frieze pattern or iterant ...abababab... is intrinsically a whole infinite

form and not inherently spatial or temporal. The interpretation of an iterant

as a sequential process is a convenient way of speaking, but the iterant is

mathematically prior to the concepts of time and of space.

By itself the iterant is not distinct from itself but it can be juxtaposed

with a copy of itself in such a way that it and the copy are seen to be distinct

from one another.

...ababababababab...

...bababababababa...

There are two possible modes of observation of the one iterant. The

two modes are complementary. One cannot be seen without excluding the

other. This complementarity arises almost paradoxically from the fact that

the iterant itself does not ”have” these two states. The states arise through

the juxtaposition of the iterant with itself.

[a, b] and [b, a] are descriptions of the process ...ababababab.... In order

to have a scientific theory in this small world of one iterant and two de-
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scriptions we need a way to extract invariant information from the descrip-

tions. The simplest invariant is non-numerical. It is the unordered pair or

set corresponding to the ordered pair. Thus we let I[a, b] = {a, b} so that

{a, b} = {b, a} and hence I[a, b] = I[b, a].

The ordered pair (a, b) is traditionally defined in terms of sets by the

equation (a, b) = {{a}, {a, b}}. A simpler set-theoretic construction of order

places the two elements to be ordered at different levels in the heirarchy of

membership. For this purpose we take the version of the ordered pair given

by the equation

[a, b] = {a, {b}}.

This definition of ordered pair works whenever the elements a and b are of

the same logical type. (Trouble arises if a = {b}, but then a and b are of

different type.)

In order to get from a to b in {a, {b}} one must cross the boundary (curly

bracket) that separates them. In fact, drawing boundaries instead of the set

brackets, we could illustrate the ordered pair as shown below.
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Each element (a or b) of the pair becomes a label for one side of a dis-

tinction. That distinction is drawn in the plane and its outer compartment

is labelled a and surrounded by another boundary marker. The distinction

whose sides a and b discriminate is made within the outer circle.

4 Special Relativity

It may happen that a and b are entities (like numbers) that admit a rule

of combination (call it multiplication) indicated by their juxtaposition ab so

that ab = ba and (ab)c = a(bc). In this case we can construct an invariant

∆[a, b] by the equation ∆[a, b] = ab. Then ∆[a, b] = ∆[b, a]. Ordering is

released through the commutativity of multiplication.

Let us suppose that there are ”numbers” k that admit inverses k−1 so

that kk−1 = 1 where 1a = a1 = a for any a. Then we have the equation

∆[ka, k−1b] = ∆[a, b].

Proof. ∆[ka, k−1b] = (ka)(k−1b) = ((ka)k−1)b = (k(ak−1))b= (k(k−1a))b =

((kk−1)a)b = (1a)b = (a)b = ab.
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With algebraic structure of this kind present, we have a group of trans-

formations of the form

Tk[a, b] = [ka, k−1b]

leaving the ”value” ∆[a, b] invariant. The formal structure of this group of

transformations is identical to that of the Lorentz group in the special rel-

ativity of one time dimension and one space dimension. The mathematical

structure of special relativity arises almost automatically from the consider-

ation of a single iterant!

The relationship to special relativity is as follows: Let

a = t− x

and

b = t+ x

where t denotes the time coordinate and x the space coordinate. Let the

speed of light be taken as c = 1 by convention. Then the invariant interval

of relativity is

∆ = c2t2 − x2 = t2 − x2 = (t− x)(t+ x) = ab.

Thus ∆ = ∆[a, b] = ab is the invariant interval for special relativity. Tk
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is neccessarily a Lorentz transformation written in the ”radar” coordinates

a = t− x, b = t+ x. (See also [6] and [19], [20].)

The pair [a, b] = [t−x, t+x] consists in the emission and reception times

of a signal sent from the observer that intercepts the event and is returned

to the observer. Since this is a description of the radar process, these are

called radar coordinates.

It is worth pointing out that this same group of transformations arises

from simple valuation. To wit: Consider a distinction whose sides are as-

signed values a and b by one observer and a′ and b′ , respectively, by another

observer. Assume that these values are real numbers and that they are not

zero. Then there exist constants R and S such that a′ = Ra and b′ = Sb.

These constants express the relative differences in evaluation of the two sides

of the distinction for the two observers. Let

ρ =
√
RS

and

k =
√

R/S.
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Then R = ρk and S = ρk−1. We can write

[a′, b′] = [ρka, ρk−1b] = ρTk[a, b].

Two evaluations of the sides of a distinction are related, up to a scale factor ρ,

by an element Tk of the Lorentz group. In this sense, special relativity enters

into the structure of almost every human or computational interaction.

5 Iterant Algebra

Define

[a, b][c, d] = [ab, cd]

and

[a, b] + [c, d] = [a+ c, b+ d].

The operation of juxtapostion is multiplication while + denotes ordinary

addition. These operations are natural with respect to the structural juxta-

position of iterants:

...abababababab...

...cdcdcdcdcdcd...
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Structures combine at the points where they correspond. Waveforms combine

at the times where they correspond. Iterants conmbine in juxtaposition. If

@ denotes any form of binary compositon for the ingredients (a,b,...) of

iterants, then we can extend @ to the iterants themselves by the definition

[a, b]@[c, d] = [a@b, c@d]. In this section we shall first apply this idea to

Lorentz transformations, and then generalize it to other contexts.

So, to work: We have

[t− x, t+ x] = [t, t] + [−x, x] = t[1, 1] + x[−1, 1].

Since [1, 1][a, b] = [1a, 1b] = [a, b] and [0, 0][a, b] = [0, 0], we shall write

1 = [1, 1]

and

0 = [0, 0].

Let

σ = [−1, 1].

σ is a significant iterant that we shall refer to as a polarity. Note that

σσ = 1.
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Note also that

[t− x, t+ x] = t+ xσ.

Thus the points of spacetime form an algebra analogous to the complex

numbers whose elements are of the form t+ xσ with σσ = 1 so that

(t+ xσ)(t′ + x′σ) = tt′ + xx′ + (tx′ + xt′)σ.

In the case of the Lorentz transformation it is easy to see the elements of the

form [k, k−1] translate into elements of the form

T (v) = [(1 + v)/
√

(1 − v2), (1 − v)/
√

(1 − v2)] = [k, k−1].

Further analysis shows that v is the relative velocity of the two reference

frames in the physical context. Multiplication now yields the usual form of

the Lorentz transform

Tk(t+ xσ) = T (v)(t+ xσ)

= (1/
√

(1 − v2) − vσ/
√

(1 − v2))(t+ xσ)

= (t− xv)/
√

(1 − v2) + (x− vt)σ/
√

(1 − v2)

= t′ + x′σ.
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The algebra that underlies this iterant presentation of special relativity

is a relative of the complex numbers with a special element σ of square one

rather than minus one (i2 = −1 in the complex numbers).

The appearance of a square root of minus one unfolds naturally from

iterant considerations. Here is one story along these lines (compare with

[13]). Define the ”shift” operator D on iterants by the equation

D[a, b] = [b, a].

Sometimes it is convenient to think of D as a ”delay” opeator, since it shifts

the waveform ...ababab... by one internal time step. Now define

i[a, b] = σD[a, b] = [−1, 1][b, a] = [−b, a].

We see at once that

ii[a, b] = [−a,−b] = [−1,−1][a, b] = (−1)[a, b].

Thus

ii = −1.

This is the traditional construction of the square root of minus one in terms

of operations on ordered pairs. It goes back to the work of Sir William Rowan
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Hamilton in the last century. Here we have described i[a, b] in a new way

as the superposition of the waveforms σ = [−1, 1] and D[a, b] where D[a, b]

is the ”delay shift” of the waveform [a, b]. This point of view on i appears

in [13],[11],[12],[16],[18]. Interesting variants on the algebra of waveforms are

given in [32].

All these remarks apply to contexts more general than the arena of real

numbers and ordinary algebra. The following sections indicate applications

to boolean algebra,logic design, quaternions,matrix algebra and physics.

6 The Boolean Context

In the boolean context the fundamental iterants are

I = [1, 0]

and

J = [0, 1]

corresponding to the underlying waveform

...010101010101....
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Elsewhere [16],[18] we have characterized these iterants as ”imaginary boolean

values”. In that context, the waveform is regarded as an oscillation corre-

sponding to the apparently paradoxical equation

P = Neg(P ).

There are many ways to create a context for this equation. The oscillation

comes about by regarding the equals sign as a sign of replacement so that

P = 1 must be replaced by P = 1′ = 0, then P = 0 must be replaced by

P = 0′ = 1 and so on. The result is an oscillating sequence of values that

can start with 1 or 0 depending on the initial conditions. This gives rise to I

and J respectively. We wish, however to understand P as a (mathematical)

entity prior to time and to space. The doubly infinite sequence ...01010101...

has just this property if we decide that

Neg(...abababab...) = ...a′b′a′b′a′b′a′b′...

then, letting

P = ...010101010101...,

we have Neg(P) = P.

If we just negate coordinatewise, I and J are no longer invariant under
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negation. We will have Neg(I) = J and Neg(J) = I. However, if we include

a delay in this operation of negation, defining

Neg[a, b] = NegD[a, b] = [b′, a′],

then

NegI = I

and

NegJ = J.

Including I and J in a context of algebraic logic then leads to a multiple

valued logic with four values [11].

The subject does not rest in multiple valued logic. There is a new method

to keep imaginary values of this kind directly in a boolean context due to

the author and James Flagg [13], [24]. In this Flagg Resolution we require

the simultaneous substitution of P ′ for P for all instances of P in a given

equation. This resolution of paradox is a direct abstraction of the temporal

interpretation of P, but it does not require that interpretation. Thus P can

retain its purity beyond time and still participate in the boolean framework

- a well-appreciated compromise.
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This ends our sketch of the boolean context. The next section elaborates

on imaginary values.

7 Imaginary Values in Circuit Transition

If the reader is familiar with the game of Go, she will appreciate the subtlety

of the capture of a group of stones (the pieces in Go are called stones). In

order to capture a group it must be surrounded by stones of the opposite

color. To surround a group is to eliminate all its liberties, where a liberty is

a possible placement of a stone that is adjacent to other stones of the group.

Ordinarily, White may not move into a place where she is surrounded by

black stones. Such a place is called an eye for Black. Such a move would be

a suicide.

However, if the act of moving a White stone into an eye completes the

elimnination of the liberties of a group of Black stones, then this act captures

these stones before they can become the captors. The Black stones disappear,

and White wins the group. White’s single stone is surrounded, but since she

surrounds Black on her move, the value of being surrounded accrues to White
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and not to Black.

Could it have been otherwise? Indeed it could. Without a rule to decide

this condition, the placement of the White stone would create an ambigu-

ity. Perhaps this would be decided by the speed of response of the players.

Whowever calls capture first would win the shot. Go is not designed this way.

We can say that Go has installed an imaginary value to monitor each eye

and decide in favor of the person on the move in the event of the elimination

of liberties. As soon as the capture takes place, the imaginary value vanishes

along with the eye. Before the insertion of White’s stone into the eye, the

imaginary value is not activated. This imaginary value has the tiny duration

of the interval between the performance of the move and its completion.

We are familiar (as in Go) with a concept of imaginary value that takes

effect just in the act of stepping across a boundary, just in the act of a tran-

sition. These values occur in the circuit of special observation of the whole

by a part of that whole, influencing the transition and avoiding ambiguity or

paradox.

A simple example is the device one can purchase in a novelty shop that

consists in a black box with a lever on it. Pull the lever and the box vibrates,
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and extends a hand that reaches out and pulls the lever back to its original

position, returning the box to its quiescent state.

An example from logic design is an extra gate monitoring two sides of a

memory (the memory consists of two NOR gates feeding into one another)

and sending the NOR of these two states back to one side of the memory.

If the memory is in the ambiguous state of output 1 on both of its gates,

then this extra monitor will influence the transition, eliminating the ambi-

guity. The imaginary value that resides at the extra gate is evidenced in this

transitional determinism. Imaginary values of this sort occur in abundance

in asynchronous circuit design. Good examples are given in Chapter 11 of

Laws of Form by G. Spencer-Brown [33]. See also [14],[15].

The specific subject of imaginary values in asynchronous circuit design

cannot be taken up in any detail in this paper. This view of imaginary values

is highly subtle in comparison to the first pass we made through the imaginary

values related to boolean and arithmetical waveforms. These simple para-

doxical elements arise from the unavoidable transitions of the self-inverting

circuit shown below.
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The full context of self-observing circuits is wide-open for further study.

Can we compare the imaginary values in circuit transition with the con-

dition of conscious awareness? In conscious awareness the apparent world

and the observer of that world appear together. Time flows and there are

no gaps. Is this believable? A fantastic tale. Lets try another scenario.

World and self arise, world and self arise, world and self arise. No world, no

self. They wax and wane together. No self present in the ever-present gaps.

Self gone when world gone. No discontinuity. The film is dark between the

frames. The projection booth does not exist between the frames. Continuity

arises from discreteness in the presence of an imaginary value. And anything

can happen ”in-between”.

This last musing is not far from the structure of observation in quantum

mechanics, where the observer must strike the chord of an eigenvalue or a

projection to a subspace of Hilbert space. In between, more observations

can be filled in by the doctrine of completeness of states and the limiting

scenario of all possible paths from here to there appears to follow a smooth

differential equation (Schrödinger’s equation) in the absence of an observer.

In particular, the model for observation is the establishment of eigenstate
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and eigenvalue -

Hψ = λψ.

The formal analogue of the eigenvector is a fixed point J of an operator

F . When

F (J) = J

we have that J is an eigenform of F . The analog is with eigenvalue λ = 1. We

can make the comparison of logical and conscious experience with quantum

formalism at the level of eigenforms. Condsider the following construction

Let J = F (F (F (F (F (...))))). Then F (J) = J . This version uses an infinite

regress to construct a fixed point. Second version: Let G be defined by the

equation

Gx = F (xx).

This equation occurs in a realm where elements can act on themselves and

each other. Then, substituting G for x, we find

GG = F (GG).

Thus F has a fixed point that comes into existence at once without infinite

regress. (We have just proved the Fixed Point Theorem of the Church-Curry

Lambda Calculus [2],[9].)
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The two modes of reaching a fixed point are related as soon as the equality

sign is seen as an act of substitution. Then the definition Gx = F (xx) is seen

as the description of the process of duplicating x and tucking the two copies

next to one another inside F . When x is G, the process must repeat at the

two adjacent G′s and the system undergoes recursion in the direction of the

fixed point. But in time it never gets there. The definitional substitution

jumps directly to the structure of self-reference and avoids unending temporal

process. See [23].

These formalisms speak directly to conscious observation, where we do

not notice the gap between successive applications of ”I” because when ”I”

am present, awareness is, and when ”I” am absent, awareness is not. Con-

tinuity of self-description is accomplished by a trick directly analogous to

the substitution leading to the fixed point in the form GG = F (GG). If I

can refer, then why not to myself? Am I then separate from myself in order

to so refer? The appropriate equality creates the fiction of continuity, and

still allows the act of thinking about thinking. Compare with Wittegenstein

[37] ” The limits of my language mean the limits of my world. ...I am my

world.(The microcosm.)... There is no such thing as the subject that thinks
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or entertains ideas....The subject does not belong to the world:rather,it is a

limit of the world.” von Foerster [35], ”I am the observed relation between

myself and observing myself”, Fuller [10] ”I seem to be a verb.”, Spencer-

Brown [33] ”We now see that the first distinction, the mark and the observer

are not only interchangeable, but,in the form, identical.”

The imaginary value in Church-Curry formalism resides in that context for

the use of an equals sign. If the equals sign is an instruction for substitution

of F (xx) for Gx, then with x = G there needs be an overseer to stop the

recursion after an appropriate depth else the computation go into an infinite

loop. This ”counter” is an imaginary value in our sense. If the ”counter” is

set at ”1” then we get

GG 7−→ F (GG)

and the process stops. Here self-reference occurs in that GG refers to a

statement involving GG. Thus, perhaps with a little surprise, we see that

the pattern of our own self-reference is modelled by a bit of Lambda Calculus

coupled with an imaginary value that terminates the recursion as soon as it

starts.

We began this digression into the Lambda calculus with a motivation from
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quantum mechanics - eigenforms as a generalization of eigenstates. Does the

formal apparatus of eigenforms inform the matter of quantum observation?

Let’s turn this question around. Why is quantum mechanics so successful,

with a model of observation that seems to be uncoupled with the theory

(no underlying mechanism for the act of observation)? If the world were

generated from nothing by acts of self-reference there would surely be a way

to generate quantum mechanics from a formalism similar to the Lambda

Calculus. Such a possibility is not an impossibility. We may wait for such a

theory to emerge before the answers to these questions can be found.

8 Matrix Algebra via Iterants

We all think that we know matrix algebra quite well. But it is a recent

invention and has some strange wisdom built into its very bones. Look at a

2x2 matrix.











a b

c d
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Compare the matrix with the ”two dimensional waveform” shown below

......................

...abababababababab...

...cdcdcdcdcdcdcdcd...

...abababababababab...

...cdcdcdcdcdcdcdcd...

...abababababababab...

......................

Each matrix freezes out a way to view the infinite waveform.

In order to keep track of this patterning, lets write

[a, d] + [b, c]η =











a b

c d











The four matrices that can be ”framed” in the two-dimensional wave

form are all obtained from the two iterants [a,d] and [b,c] via the ”delay
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shift” operation D[x,y] = [y,x] which we shall denote by an overbar as shown

below

D[x, y] = [x, y] = [y, x].

Letting A = [a, d] and B = [b, c], we see that the four matrices seen in the

grid are

A+Bη,B + Aη,B + Aη,A+Bη.

The operator η has the effect of rotating an iterant by ninety degrees in the

formal plane. Ordinary matrix multiplication can be written in an incredibly

concise form using the following rules:

ηη = 1

ηQ = Qη

where Q is any two element iterant.

For example, let ǫ = [−1, 1] so that ǫ = −ǫ and ǫǫ = [1, 1] = 1. Let

i = ǫη

then

ii = ǫηǫη = ǫǫηη = ǫ(−ǫ) = −ǫǫ = −1.
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We have reconstructed the square root of minus one in the form of the

matrix

i = ǫη = [−1, 1]η =











0 −1

1 0











.

More generally, we see that

(A+Bη)(C +Dη) = (AC +BD) + (AD +BC)η

writing the 2x2 matrix algebra in iterant form as a system of hypercomplex

numbers. Note that

(A +Bη)(A−Bη) = AA−BB

(Compare with [17].) The formula on the right corresponds to the determi-

nant of the matrix. Thus we define the conjugate of A+Bη by the formula

A+Bη = A− Bη.

These patterns capture the quaternions, Cayley numbers and generalize to

higher dimensional matrix algebra.
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It is worth pointing out the first precursor to the quaternions: This pre-

cursor is the system

{±1,±ǫ,±η,±i}.

Here ǫǫ = 1 = ηη while i = ǫη so that ii = −1. The basic operations in

this algebra are those of epsilon and eta. Eta is the ”delay shift operator”

that reverses the components of the iterant. Epsilon negates one of the

components, and leaves the order unchanged. The quaternions arise directly

from these two operations once we construct an extra square root of minus

one that commutes with them. Call this extra root of minus one
√
−1. Then

the quaternions are generated by

{i = ǫη, j =
√
−1ǫ, k =

√
−1η}

with

i2 = j2 = k2 = ijk = −1.

The ”right” way to generate the quaternions is to start at the bottom iterant

level with boolean values of 0 and 1 and the operation (EXOR). Build

iterants on this, and matrix algebra from these iterants. This gives the

square root of negation. Now take pairs of values from this new algebra and

build 2x2 matrices again. The coefficients include square roots negation that
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commute with constructions at the next level and so quaternions appear in

the third level of this heirarchy. This construction matches the levels of the

combinatorial heirarchy [3], [4], [30] and should be compared with the work

of Mike Manthey [28].

This construction of the quaternions is discussed in relation to knot theory

and the Dirac string trick in the author’s book Knots and Physics [21]. See

also [29]. The fact is that the quaternions, the rotational stucture of 3-

space and the structure of spin angular momentum in elementary quantum

mechanics are right there in the algebraic description of the properties of a

distinction. Sir William Rowan Hamilton called his quaternions the ”Science

of Pure Time” sixty years before the discovery of special relativity and before

the discovery that those quaternions played a crucial role in the structure of

spacetime algebra. We have not finished mining the gold in this vein.

8.1 Electrons,Neutrinos and W-Bosons

Here is a vignette of particle physics expressed in iterant algebra. See [7] for

a discussion of the weak interactions of elementary particles. ν = [1, 0] is the
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neutrino. ν = [0, 1] is the antineutrino.

νν = ν

and

νν = 0.

e = νη = W−

represents both the electron and the W− boson. These two particles are

distinct but we can get by in the reactions below by using the same bit of

algebra. Finally, the W+ boson is represented by

W+ = νη.

Here η is our familiar special rotator of the formal plane with ηQ = Qη and

ηη = 1. Then:

W−e = νηνη = νν = 0.

W−ν = νην = ν2η = νη = e.

W+e = νηνη = ν2 = ν.

W+ν = νην = ννη = 0.

This is an exact catalog of the allowed and not-allowed (0) interactions

of these particles. It is an on-going research project to express the rest
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of standard-model particle physics in these combinatorial and interactional

terms through the use of iterants and the concepts of discrete time and space.

9 A Discrete Ordered Calculus

We now turn to one of the simplest contexts for a step. This is the calculus

of discrete differences. Let

dX = X ′ −X

define the discrete derivative of a variableX whose succesive values in discrete

time are

X,X ′, X ′′, X ′′′, ....

We can proceed to do calculus in this realm. An early exercise reveals the

formula

d(XY ) = X ′d(Y ) + d(X)Y.

Proof.

d(XY ) = X ′Y ′ −XY = X ′Y ′ −X ′Y +X ′Y −XY

= X ′(Y ′ − Y ) + (X ′ −X)Y = X ′d(Y ) + d(X)Y.
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The key point is that this formula is different from the usual formula in

Newtonian calculus by the time shift of X to X ′ in the first term. In [25] and

[8] we undertake to correct this discrepancy in the calculus of finite differences

by taking the derivative D as an instruction to shift the time to its left. That

is we take XD(Y ) quite literally as first find DY , then find the value of X.

In order to find D(Y ) the clock must advance one notch. Therefore X has

advanced to X ′ and we have that the evaluation of XD(Y ) is

X ′(Y ′ − Y ).

In order to keep track of this non-commutative time-shifting, we write

D(X) = J(X ′ −X) where the element J is a special time- shifter satisfying

the property

ZJ = JZ ′

for any Z. The time-shifter acts to automatically evaluate expressions in this

non-commutative calculus of finite differences that we call DOC. The key

result is the adjusted formula:

D(XY ) = XD(Y ) +D(X)Y.

Proof.

D(XY ) = J(X ′Y ′ −XY ) = J(X ′Y ′ −X ′Y +X ′Y −XY )
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= J(X ′(Y ′ − Y ) + (X ′ −X)Y ) = JX ′(Y ′ − Y ) + J(X ′ −X)Y

= XJ(Y ′ − Y ) + J(X ′ −X)Y = XD(Y ) + Y D(X).

The upshot is that DOC behaves formally like infinitesimal calculus and can

be used as a foundation for discrete physics. In [25] Pierre Noyes and the

author use this foundation to build a derivation of electromagnetism in a

non-commutative formalism.

In fact, DOC gives rise to a new way to think about discrete physics. First

of all the definition of the derivative is actually in the form of a commutator:

DX = J(X ′ −X) = JX ′ − JX = XJ − JX = [J,X].

This allows us to regard the DOC in the context of discretized quantum

mechanics. Secondly, in DOC X and DX have no reason to commute:

[X,DX] = XJ(X ′ −X) − J(X ′ −X)X = J(X ′(X ′ −X) − (X ′ −X)X)

Hence

[X,DX] = J(X ′X ′ − 2X ′X +XX).

This is non-zero even in the case where X and X’ commute with one another.

Consequently, we can consider physical laws in the form

[Xi, DXj] = gij
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where gij is a function that is suitable to the given application. In [25]

we show how the formalism of electromagnetism arises when gij is δij , the

Kronecker delta. In [26] we show how a curious combination of guage theory

and gravity arises in the the general case of gij . This latter result follows

work of Tanimura [34] and places it in a discrete context.

It is, of course natural to hope for actual scalar variables in the course

of articulating a theory based on DOC. Here we run into an interesting

technicality. Consider the equation [X,DX] = Jk where k is a constant.

This reads J(X ′X ′−2X ′X+XX) = Jk and hence we may consider solutions

to the equation

(X ′X ′ − 2X ′X +XX) = k.

If X and X’ commute then this becomes

(X −X ′)2 = k

with the solution

X ′ = X ± k1/2.

For some problems it may be sufficient to consider the situation where the

variables are succesively incremented or decremented by a constant. The
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problem arises when we go to more than one variable. For example, consider

the equation [Xi, DXj] = Jkδij where i and j range from 1 to 3. Then for

i 6= j we have

[Xi, DXj] = 0.

LetXi = A andXj = B. Then this equation reads AJ(B−B′)−J(B−B′)A =

0. Hence

A′(B − B′) − (B − B′)A = 0.

Thus if A and B commute, we conclude that (A′−A)(B′−B) = 0. Unfortu-

nately, this contradicts the equations [A,DA] = Jk and [B,DB] = Jk that

are given by our assumptions, except in the case where k = 0. This analysis

shows that non-commutativity of the dynamical variables in theories based

on DOC is a part of life!

It is not, however, neccessary to assume that non-commutativity could

not have a scalar source. The very fact of discrete time-shifting can create

quite different basic equations. For example, suppose that X = DT where

T and T ′ are commuting scalars. Consider the equation

[X,DX] = J2k

where k is a commuting scalar constant. Then we have [DT,DDT ] = J2k.
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Let

∆ = T ′ − T

and note that ∆ is also a commuting scalar. Then DT = J∆, and therefore

[DT,DDT ] = J2(∆′′(∆′ − ∆) − (∆′′ − ∆′)∆).

Hence the equation [X,DX] = J2k translates into

∆′′(∆′ − ∆) − (∆′′ − ∆′)∆ = k,

whence

∆′′ = (k − ∆∆′)/(∆′ − 2∆).

This recursion relation for ∆ and its time series has remarkable properties.

For a fixed non-zero value of k, the recursion is highly sensitive to initial con-

ditions, with regions that give rise to bounded oscillations and other regions

that give rise to unbounded oscillations. There are boundary values in the

initial conditions where the system undergoes transition between bounded

and unbounded behaviour, with the phase portrait showing clear evidence of

chaotic behaviour. We urge the reader to try graphing this recursion and to

see the phenomena for herself!
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We are in the process of investigating this method (of letting Xi = DnTi

for some n where Ti and T ′

j are commuting scalars) for producing a system

of non-commuting extrinsic dynamical variables with an underlying scalar

structure. If this idea is correct, then there will emerge a picture of discrete

physics based on DOC as a global description, that fits classical structures

such as electricity or gauge theory, occurring over a substrate of discrete

chaotic dynamics.

10 Topology

There are many contacts between the material in this essay and topological

studies. We shall mention one. A knot is encoded in a planar diagram with

crossings as indicated below. These crossings are extra structure on a four-

valent vertex in the plane and can be encoded by the symbols [A,B] and [B,A]

as shown above. Thus a knot or link is a network of iterant pairs. This gen-

eralization of flat crossings to pairs leads to a significant generalization of the
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Penrose spin networks [31] to a formalism where these generalized networks

encode three dimensional manifolds and concurrently compute topological

invariants [21], [22]. The spin networks are closely related to the combina-

torial structure of the representations of the quaternion group SU(2). Many

questions are open about the relationships of these structures with quan-

tum field theory [36] and quantum gravity [1]. This section is only a hint,

but topology figures in the background of all the structures that we have

discussed in this essay.

11 On Constructing a Compiler

A compiler takes a text written in a ”higher order language” and translates it

into a text written in a language that is more elementary. More elementary

usually means fewer primitives and that certain irreducible constructions

in the higher order language are constructed from these primitives. Along

with the problems of designing compilers there is the problem of discovering

perspicuous ”lower level” languages. A compiler may not actually translate

into machine language, but simply into some other language and the notion

of machine language may eventually evolve.
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Sometimes, we find remarkable languages that demand attention just

because a ”higher order” language can be translated into them, and they

seem to have fundamental properties of their own. In this section, I want to

illustrate how one can ”fall into” a primitive language by letting go of certain

features in a higher level of description. Please consider the following story:

Let us suppose that we have a distinction. The two sides of this distiction

are called ”Inside” (I) and ”Outside” (O). We allow that it is reasonable to

adopt the convention that ”The value of a name called again is the value of

the name.”, or in symbols

II = I

and

OO = O.

We also devise a symbol,<>, to denote crossing from one side of the dis-

tinction to the other side. In this symbolism, when A denotes the value of

the given side, then the value of the side obtained upon crossing from A is

denoted < A > (read ” A cross”). Thus we have the equations

< I >= O
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and

< O >= I.

Now it occurs to us that we might not actually need to use a symbol for

the inside. Why not leave the inside unmarked? In the algebraic language,

an empty word, a blank space will indicate the inside. We introduce the

unmarked state and refer to the outside (O) as the marked state. Will the

equations still work? We write them down:

=

OO = O

< >= O

< O >= .

The most interesting of these new equations are the last two. The first,

<>= O, reads ”A crossing from the unmarked state yields the marked

state.”, and the second reads ”A crossing from the marked state yields the

unmarked state.”. The first equation suggests that we can eleminate the

name (O) of the marked state and replace it by the symbol ”cross” - <>.
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That is we can take as the name of the outside the instruction ”cross from

the unmarked state”. This reduces us to two equations:

<><>=<>

<<>>= .

The first reads ”The value of a call made again is value of the call.”. The

second reads ”The value of a crossing from the marked state is unmarked.”.

There is really a third equation:

< >=<>,

reading ”The value of a crossing made from the unmarked state is the marked

state.”. Here we have used the two interpretations of <> for the two sides

of the equality sign.

The reader familiar with Spencer-Brown’s Laws of Form [33] will recognise

that our descent from a named distinction has lead us directly and inevitably

to the Calculus of Indications. We did not start out in boolean algebra.

Neither of the values O or I dominated the other. But in the primitive

system of the mark, the marked state naturally dominates the unmarked

state and boolean patterns prevail. As a result, the Calculus of Indications
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and its algebra, The Primary Agebra, become primitive languages into which

much of standard logic can be rewritten. I should like to say ”compiled”.

In the case of this Spencer-Brown compiler for logic and distinctions, the

advantages are a little different from the usual situation with machine lan-

guage. The ”primitive” language of the Calculus of Indications is in fact also

highly sophisticated. It speaks in the argot of fundamental distinction and

uses the power of the unmarked state. The user is well advised to learn to

speak this primitive language herself, and to examine the consequences of

ascending and descending from the realm of fundamental distinction to more

highly articulated speech. In the case of the Calculus of Indications the

analogy with compilers should be augmented with the analogy of elementary

particles. The marked and unmarked states are the elementary particles of

logic, thought,perception. Reduction to expressions in patterns of marked-

ness and void is not void of meaning. The operation of the compiler is to

expand world and possibility.

The point I am trying to make and hoping to explore through these

examples and through the other structures in this paper is that the ideal

compiler is a two way translater of languages. That compiler should enable
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us to move freely back and forth among different levels of structure. So far,

it has been extraordinarily convenient to have compilers that let us write in

high level computer languages. We all appreciate the virtues and flexibilities

of simplicity. Most computer users are to a great extent locked away by

these very conveniences from lower levels which hold the possibility of being

higher levels. Boole entitled his work ”The Laws of Thought” [5]. He meant

it. He meant to explore the deepest possible elements of human thought.

We are still in that quest. It is a quest for a fully open two-way compiler for

conscious and unconscious language and thought. It is , I believe, identical

to the quest of the physicist, natural scientist, mathematician or philosopher

who gropes for the keys to fundamental theory and secrets of universe.
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