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On irreducible 3-manifolds which 
are sufficiently large* 

By FRIEDHELM WALDHAUSEN 

We are mainly concerned with the questions whether any homotopy 
equivalence between compact orientable PL 3-manifolds can be induced by a 
homeomorphism, and whether homotopic homeomorphisms are also isotopic. 
Fairly complete answers are obtained for the class of manifolds which is 
indicated in the title. 

The restriction to irreducible manifolds has its main reason in the 
unproved Poincare conjecture. It has the side effect that our manifolds 
neither have handles nor are connected sums; which is very convenient, but 
only partially necessary. 

The second restriction is characteristic for the technique employed, which 
may be called an induction on dimension. Systematically, use is made of 
codimension 1 submanifolds which are "characteristic for the topology" of the 
"manifold." Following Haken, we adopt the name incompressible surface 
for such a submanifold (by this name, we will always refer to an orientable 
surface). We call a manifold sufficienty large, if it contains an incompressible 
surface. The important fact is that a sufficiently large irreducible manifold 
can be reduced to a ball, with the use of incompressible surfaces only, in the 
same way that a compact orientable 2-manifold, different from the 2-sphere, 
can be reduced to a disc by first splitting it at a non-contractible curve, if it 
is closed, and then splitting the resulting bounded 2-manifold at arcs (Haken). 
(Naturally, for 3-manifolds it takes a bit longer to get down.) 

Another (and rather immediate) consequence of this fact is that the uni- 
versal cover of such a manifold is a familiar space. 

The result concerning the existence of homeomorphisms has been known 
for surface bundles over the circle (Stallings [16], Neuwirth [9]). Partial 
results on the existence of isotopies have been announced by Giffen [3]. 

I wish to thank Professor Schubert for discussions. 

0. Notation 

Up to ? 7, we work in the piecewise linear category. 
* This work was partially supported by a grant from the National Science Foundation., 

GP5804. 
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By a manifold we mean an orientable 3-manifold. It is compact, unless 
the contrary is admitted explicitly, or might emerge from a construction (e.g., 
a covering); the same applies to other spaces or subspaces. It will sometimes 
be convenient to abbreviate system of submanifolds by manifold; but, in 
general, a manifold is connected. 

A surface is a connected 2-manifold. It is compact and/or orientable, 
unless the contrary is admitted explicitly. 

A surface F in the manifold M is properly embedded, i.e., F n AM= , 
(where a denotes boundary). A surface in AM is a submanifold of AM. 

A system of surfaces in M or AM consists of finitely many, mutually 
disjoint components of the above two types. 

For F, a system of surfaces in M or AM, the symbol [&F] will denote the 
image under the boundary homomorphism of the 2-cycle represented by F 
and an orientation of F. 

I, D, E, denote line, disc, and ball, respectively; I is occasionally identified 
with the unit interval [0, 1]. 

Closure and interior over more than one symbol are denoted by (a .) and 

U( ... ) denotes a regular neighborhood. General practice: Choose a 
triangulation in which all subspaces, previously mentioned in the argument, 
are subcomplexes; construct its second derived, and take the closed star of the 
object in question. Special practice: In the presence of a product structure, 
we will sometimes require that U( ... ) is in some sense compatible with the 
product structure. This will be indicated in the text. 

Let F be a surface in the manifold M. Then the manifold M', obtained 
by splitting M at F, has by definition the properties: AM' contains surfaces 
F1 and F2 which are copies of F, and identification of F1 and F2 gives a natural 
projection (M', F1 U F2) - (M, F). M' is homeomorphic to (M - U(F)), but 
we have to use both constructions. 

An isotopy 
(a) of a homeomorphism h: X-) Y is a map H: X x I-n Y such that, for 

hr = H I X x z, we have h. = h, and h.: X - Y is a homeomorphism onto Y, 
(b) of subspaces Z1, Z2 in X is an isotopy of the identity map on X, such 

that h1(Zl) = Z2, 
( c ) of embeddings is defined via (b). 
Let F and G be surfaces in M or AM. F is parallel to G, if and only if 

there exists an embedding of F x I in M, such that F = F x 0, and G 

(&(F x I) - F x 0). 
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Note. If F is parallel to G, then G is parallel to F. Note also that, if the 
surfaces F and G in M are parallel, then they are isotopic by an isotopy which 
is constant on AM. (Here the phrase surfaces in M, rather than surfaces in 
M or AM is essential). 

Frequently, a proof involves a sequence of constructions, each of which 
in turn involves alterations of some things. To avoid an orgy of notation in 
such cases, we often denote the altered things by the old symbols. The reader 
might adopt the point of view that such a proof proceeds by "induction on 
niceness." After having convinced ourselves that there is no obstruction to 
achieve some more niceness, we take up the same problem again, but with an 
improved induction hypothesis. 

1. Definitions and preliminaries 

(1.1) Incompressible surfaces. 

Definition. Let M be a manifold. Let F be a system of surfaces in M 
or AM. F is compressible in M in either of the following two cases. 

(a) There is a non-contractible simple closed curve k in F, and a disc D 
0x 0 

in M, D c M, such that D n F = AD = k. 
( b ) There is a ball E in M, such that En F = aE. 
F is incompressible in M, if and only if it is not compressible in M. 

Whenever there is no doubt about the manifold, we will abbreviate incom- 
pressible in M by incompressible. 

Definition. The manifold M is irreducible, if and only if every 2-sphere 
in M is compressible. (Remember. If M is irreducible, and AM 0 , then 
either M is a ball, or else genus (aM) > 0, and hence H1(M) is infinite.) 

Definition. The manifold M is boundary-irreducible, if and only if AM 
is incompressible. 

LEMMA 1.1.2. Let M be a manifold. Let F be a system of surfaces in M 
or AM. F is incompressible in M, if and only if every component is. 

LEMMA 1.1.3. Let M be a manifold. Let F be a surface in M or AM, F 
being not a 2-sphere. F is incompressible, if and only if 

ker (w1(F) > w1(M)) = O. 

Since F is either a submanifold of AM, or a two-sided proper surface in 
M, this follows from the loop theorem. 

LEMMA 1.1.4. Let M be a manifold. Let F be a system of incompres- 
sible surfaces in M or AM. Let U(F) be a regular neighborhood of F, and 
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M-(M - U(F)). Then 
(a) M is irreducible, if and only if M is. 
( b ) ker (w1(M') - w1(M)) = 0, where M' is a component of M. 

This is not difficult. A proof for (a) may be found in [17], and for (b) in 
[16]. The next one is a well known corollary of the sphere theorem. 

LEMMA 1.1.5. Suppose M is irreducible, and w1(M) is not finite. Then 
M is aspherical, i.e., rj(M) = 0, for j > 2. 

LEMMA 1.1.6. Let M be an irreducible manifold. 
(a) If AM # 0, and M is not a ball, then there exists in M an incom- 

pressible surface F such that 0 # [&F] e H1(&M). 
(b) If AM = 0, then there exists in M an incompressible surface, if 

and only if either H1(M) is not finite or w1(M) is a non-trivial free product 
with amalgamation (or both). 

If F is a separating incompressible surface in M, AM= 0, then w1(M) 
is a non-trivial free product with amalgamation, w1(M) A*,B, where 
C '- w1(F), in a natural way. 

This seems to be widely known. A proof is given in [19]. 

Definition 1.1.7. Let M be an irreducible manifold, which is not a ball. 
M is sufficiently large if and only if there exists an incompressible surface 
in M. 

Remark. There exist irreducible manifolds with infinite fundamental 
group, which are not sufficiently large [19]. 

(1.2) Hierarchies. Let M1 be an irreducible manifold. A hierarchy for 
M1 (of length n) is by definition a sequence of triples 

Mj, F3 c Mj, U(F3) c M3 ; Mj1 = (Mj - U(Fj)) 

where j ranges from 1 to n (>0), such that 
(a) Fj is an incompressible surface in Mj, U(Fj) is a regular neighbor- 

hood of Fj in Mj. 
( b ) each component of M,+, is a ball. 
This concept (with technical differences, and with an additional condition 

on the surfaces which is inessential for our applications) has been introduced 
by Haken [7]. 

In our applications, it will be convenient (yet not essential) that as many 
as possible of the Fj have non-empty boundary and do not separate the 
respective Mj. The following existence theorem gives us a hierarchy which 
automatically has these properties. 
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THEOREM. Let M1 be an irreducible manifold with non-empty boundary. 
Then there exists a hierarchy for M1, 

Mj, Fj c Mj, U(F3) c M; MM, 1 = (M -U(F3)), 

j =1, *..,n, such that 0# [Fj] e H1(Mj), j = 1, *, n. 

This is essentially a part of a result of Haken [7, if, p. 101]. Since details 
have not yet appeared, and since we rely heavily on this theorem, a proof will 
be given in the next section. Our method of proof is slightly simpler than 
the original one; but it cannot give Haken's result. In particular, it cannot 
give an upper bound for the length of the hierarchy. 

Note. In the hierarchy, given by the theorem, every Mj is connected, 
and (by induction on (1.1.4)), every Mj is irreducible, and the inclusion 
homomorphisms w1(M*) - r1(Mj), i > j, are injections. 

(1.3) Maps. Let F be a system of surfaces in M, and U(F) a regular 
neighborhood of F. Then U(F) may be given the structure of a line bundle 
F x I, with F= F x 1/2, and Fx In&M= aFx I. 

A map f: X - M will be called transverse with respect to F, if there 
exists U(F) = F x I as above, such that f induces in f-'(U(F)) the structure 
of a line bundle, and f maps each fibre homeomorphically onto a fibre. 

PROPOSITION. Let M be an irreducible manifold, and F a system of 
incompressible surfaces in M. Let N be a manifold, and f: N- M a map. 
Then there exists a map g, homotopic to f, which is transverse with respect 
to F, and such that the system of surfaces in N, G = g-1(F), is incompres- 
sible in N. If f I AN were transverse with respect to F, then the homotopy 
from f to g may be chosen constant on AN. 

This principle has been applied to 3-manifolds by Stallings [16]. The proof 
proceeds, roughly, by sliding f along the fibres to make it transverse, and 
then, if f-1(F) is not incompressible, to simplify f 1(F) by surgery. Details 
are provided by Lemmas 1.1; 2, 3, 4a, 5 above, and by [19, Lem. 1.1]. 

The same principle, applied in lower dimension, gives 

LEMMA. Let F be a surface, and k a system of simple arcs and non- 
contractible simple closed curves in F, k n aF = ak. Let G be a surface, and 
f: G o F a map. Then there is a map g, homotopic to f, which is transverse 
with respect to k, and such that g-1(k) does not contain a contractible closed 
curve. If f I aG is transverse with respect to k, then the homotopy from f to 
g may be chosen constant on aG. 

(1.4) We state theorems of Baer and Nielsen (restricted to compact 
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orientable 2-manifolds) in the form in which we use them. Proofs of (1.4.1) 
and (1.4.2) may be found in [2]. The simplest proof of (1.4.3) is analogous to 
our proof of (6.1), it uses Lemma (1.3). The closest reference to this type of 
proof seems to be [13]. 

LEMMA 1.4.1. In the surface F, let k and l be either simple arcs or 
simple closed curves, such that k U aF = ak = 1 =1 neaF. Suppose k is 
homotopic to 1 by a homotopy which is constant on ak. Then there is an 
isotopic deformation of F, constant on aF, which carries k to 1. 

LEMMA 1.4.2. Let h: F - F be a homeomorphism, and H: F x In F 
a homotopy such that H I F x 0 = id, H I F x 1 = h, H(dF x I) c& F. Then 
h is isotopic to the identity. If the homotopy is constant on aF, then the 
isotopy may be chosen constant on aF. 

LEMMA 1.4.3. Let f: (G, aG) - (F, aF) be a map such that 

ker (f*: w1(G) - >w1(F)) = 0 . 

Suppose w1(G) # 0. Then there is a homotopy fi: (G, aG) (F, aF), zI, 
fO = f, such that either (a) or (b) holds. 

(a) G is an annulus, and f1(G) c aF, 
(b) fl: G -F is a covering map. 
If f I aG is locally homeomorphic, then the homotopy may be chosen so 

that f, I aG = f, I aG, for all z. 

2. Existence of hierarchies 

(Proof of Theorem 1.2) 

We need the very simplest facts of Haken's theory [6]. We refer to 
Schubert's exposition [12]. Since our definitions slightly differ, we give a 
shorthand description of the concepts which we use. Instead of normal 
decomposition, we use the term handle decomposition. 

(2.1) Let M be a manifold. A handle decomposition consists of collections 
of balls NO, NI, NII, N"'1, with union M, such that the members of each family 
are mutually disjoint, and with the additional properties below. The members 
of NO, NI, NII will be called Balls, Beams, and Plates, respectively. 

(1) NIII n (No U N' U NII) = aNIII, whence AM c N U N' U N"I 

( 2 ) For each Beam, a fixed presentation as I x D is specified; for each 
Plate, a fixed presentation as D x I is specified. 

(3 ) For any Beam, we have 
(a) IxDnN'=IxD 
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(b) I x Dfl N" = I x d, where d is a collection of arcs in &D; 
(d may be empty). 

(4 ) For any Plate, we have 

(a) D xInN' = e1 x I 
(b) D x I = N' e2 x I, where e1 and e2 are collections of arcs in 

&D (neither empty), such that e, U e2 = aD. 
( 5 ) For each component of N' f NN", the induced product structures 

agree. 

(2.2) To a handle decomposition we associate a triple (X, A, C) of non- 
negative integers, which, in lexicographical ordering, will measure the 
"complexity" of the decomposition. 

(3) For a Beam, let 3 denote the number of components of d in (2.1.3); 
define 3" = max (3 - 2, 0), 3' = max (3 - 1, 0). 

Then X = H3"; Y = E3'; where the sums are over all Beams. 
(s) For a Ball, E define s as the number of components of En (NI U NII); 

(we have s > 0, unless NI = 0 = NII). 
Define = (e - 1); where the sum is over all Balls. 

(2.3) Normal surfaces. Let F be an incompressible surface in M, such 
that 0 # [&F] e Hj(&M). Consider the following operations 

(p) Let D be a disc in M, such that D n F = AD. Replace a neighbhor- 
hood of D n F in F by two copies of D. Since F is incompressible, the result 
will consist of a 2-sphere and a surface F", which again is incompressible, and 
has the same boundary as F. We regard F" as the result of the operation. 

(a) Let D be a disc in M, such that D n (F U AM) = AD, and each of 
D n F and D n AM is one arc. Replace a neighborhood of D n F in F by two 
copies of D; call the result F'. Clearly, F' is incompressible. Also, if we give 
F and F' compatible orientations, then [&F'] = [&F]. As the result of the 
operation, we will consider F", which is F', if F' is connected, and otherwise 
is a component of F', such that [&F"] # 0. 

PROPOSITION. Given a handle decomposition of M, and an incompressible 
surface F in M, such that 0 # [&F] e H1(&M), there exists an incompressible 
surface G, [&G] # 0, which may be obtained from F by operations (p) and (a) 
and by isotopic deformations, and which is a normal surface in the following 
sense. 

(1) GnN` = 0. 
(2 ) If D x I is any Plate, then Dx InG = D x r, where r is a 

collection of points in I; in particular, G nNII = 0. 
(3) If I x D is any Beam, then I x DnG = I x k, where k is a 
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system of arcs in D, k n AD = ak. 
( 4 ) If k, is any component of k in (3), then the end points of k, are not 

contained in the same component of d (cf. (2.1.3)), or in the same component 
of AD- d. 

( 5 ) If k, is any component of k in (3), then the end points of k, are not 
contained in adjacent components of d (cf. (2.1.3)), and AD - d. 

( 6 ) The intersection of G and any Ball consists of discs. 

For the proof, we refer to [12], (2.2). The main difference between normal 
decomposition, as described there, and handle decomposition, as described here, 
is that we do not require that every member of N0, N', N" have connected 
intersection with AM. But this does not affect the normalization. After this 
normalization has been carried out, we are left with a surface G, which has 
the above properties, except possibly for (5), which has no analogue in [12]. 

In the situation which is forbidden by (5), there exist a Beam B, a Plate 
P, and a disc D in B, such that D n P and D n AM are one arc each, and 

I = (aD - ((D n P) U (D n AM))) is an arc which lies in G in such a way that 
G n U(l) = 1, where U(l) is a neighborhood of 1 in D. Then G is further 
simplified in a similar way as in step 9 in [12], (2.2). 

Note that, in another respect (concering G f NN), our definition of normal 
surface is much weaker than that in [12], namely, step 9 need be carried out 
only to the extent that our condition (4) is satisfied. 

PROPOSITION 2.4. Let M be a manifold with a handle decomposition of 
complexity (X, 'Y, C). Let G be a surface in M, such that 0 # [&G] e H1(aM), 
and such that G is a normal surface in the sense of (2.3). Let U(G) be a 

regular neighborhood of G. Then M' (M - U(G)) has a handle decompo- 
sition of complexity (X', I', c') < (X, I2, ) 

PROOF. (A) We choose U(G) small with respect to the handle decompo- 
sition. If now N is any Ball, Beam, or Plate of M, then we define the 

components of (N- U(G)) to be Balls, Beams, or Plates of M' respectively. 
To define the product structures, we construct the same decomposition in a 
slightly different way. Construct the manifold M" by splitting M at G, i.e., 
AM" contains two copies of G, and identifying these, we obtain M from M". 
Similarly as for M', we define a decomposition for M". Here we have natural 
product structures in the Beams and Plates, and it is easily checked that the 
axioms (2.1) hold. Finally, M" is homeomorphic to M' by a homeomorphism 
which respects the decompositions. 

(B) Let D be a disc, d a collection of arcs in AD, and k a system of arcs 
in D, such that k n AD = ak, and k n Ad = 0. Let U(k) be a regular neighbor- 
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hood of k in D, which is small with respect to d. Then (D - U(k)) consists 
of discs D1, D2, ... . Define systems of arcs dj = d n Dj. 

Let 3 (resp. 3j) be the number of components of d (resp. dj), and define 
f" = max (3 - 2, 0), 3' = max (3 - 1, 0), and similarly 137 and i3.. We wish to 

compare 13" and 3' with g3od and Ad3d-. We do this first in the case where k 
consists of the single component k1, by distinguishing cases. 

The end points of k1 are contained in 
(1 ) different components of AD - d, then 3 = 31 + 3,2 and 13, 32 > 1, 

thus 3' > EAd; 13" > Ea3; 
(2) the same component of AD - d, then, say, 31 = 3, 13 = 0, thus 3'= 

EaJ a" =-ai 
(3) non-adjacent components of d and AD - d, then 3 + 1 =3, + 3,2 

and 31, 32 > 2, thus 3" > Ea3; 
(4 ) adjacent components of d and AD - d, then, say, 31 = 3, 13= 1, thus 

a" - Ea'3' 
(5) different components of d, then 3 + 2 = 31 + 32, and 31, &2 > 2, thus 

13" = ace 
(6) the same component of d. 
Next, we take a general system of arcs, but subject to the conditions 

(2.3.4) and (2.3.5); i.e., no component of k has both its end points in the same 
component of d or AD - d, respectively, or has its end points in adjacent 
components of d and AD - d. Instead of removing U(k) all at once, we 
remove one component after the other. We have three cases. 

(a) The only general thing which we can claim is that, because of our 
conditions on k, we never come across an arc of type (6) above. Thus all steps 
are of types (1)-(5), whence 3" > E6;'. 

($) At least one component of k meets both d and AD - d. Then at least 
one step is of type (3) above, whence 3" > Add!. 

(a) &k c AD - d. Then all steps are of type (1) or (2) above, and at least 
one step is of type (1). Thus 3" > Add!, and 3' > Add. 

(C) Proof that (X', /', C') < (X, A, C). Case 1. G n NII 0. 
In (B) we checked the amount of complexity, which is contributed to 

(X', A', %') by those Beams of M' which come from a single Beam of M. We 
found that 3" > E3'7 without exception. Since G n NII 0 and G n aM # 0, 
one Beam at least gives rise to the situation (f8). Thus, in fact, X' < X. 

Case 2. GnNII = 0, but, Gn NI ' 0. 
Then X'- x. Since only the situation (y) can occur, and at least one 

Beam is involved, we have A' < A. 
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Case 3. GnN'=0. 
Then X' = X and /' = A. Assume 4' =. It follows that the disc G is 

parallel to a disc in AM, which contradicts [aG] # 0. 

PROOF OF THEOREM 1.2. Let M1 be an irreducible manifold with non- 
empty boundary. Construct a handle decomposition, (2.1), for M1, e.g., from 
a triangulation of M1. Let (X1, 1, C,) be its complexity, (2.2). If aM1 consists 
of 2-spheres only, then M1 is a ball, since it is irreducible; so there is nothing 
to prove. Otherwise, there exists an incompressible surface F1 in M1 such 
that 0 # [&F1] e H1(&Ml), (1.1.6). By (2.3) we may assume, F1 is normal with 

respect to the given handle decomposition. Then, by (2.4), M2 = (M1 - U(F1)) 
has a handle decomposition of complexity (x2s 2 22) <(X1 ,1 ,1). Use this handle 

decomposition to continue with the construction, and proceed inductively. 
Assume the induction step can be carried out arbitrarily often. It 

follows that we can construct an infinite sequence of triples, (Xij r~, 0j), 
1 < j < 00, such that 

(Xi, yi, 0) > (Xi+?9 
' 
j+l? j+) -> (0, 0, 0) - 

But such a sequence does not exist. 

3. Product line bundles 

In this section, M = F x I is the product of the orientable surface F 
which is not the 2-sphere, and the interval. p: M-e F denotes the projection 
onto the factor F. A subspace X of M is called vertical, if X = p-'(p(X)). 

PROPOSITION 3.1. Let G be a system of incompressible surfaces in M. 
Suppose aG is contained in F x 1. Then G is isotopic, by a deformation 
which is constant on AM, to a system G' such that p I G' is homeomorphic on 
each component of G'. 

COROLLARY 3.2. Each component of G is parallel to a surface in F x 1. 

Proof of (3.1) in the case where F is a disc, annulus, or 2-sphere with 
3 holes. Let H be a system of vertical discs in M, such that splitting at the 
arcs H n F x 1 would reduce F x 1 to a disc, and such that the intersection 
(H n F x 1) n G consists of the smallest possible number of points. In 
particular, we have general position at that intersection. 

Deform G by an isotopy which leaves aG fixed, so that H and G intersect 
in general position, and that, in addition, H n G is as small as possible. Then 
we have 

(a) Every component of H n G is an arc. 
(b) Define M =M - U(H)), where U(H) is a vertical regular 
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neighborhood of H (small with respect to G), and define G =G G M. Then G 
is incompressible in M. 

ad (a) Assume there are closed curves in H n G. Then there is a disc D 
in H, such that D n G = AD. Since G is incompressible, AD bounds a disc D' 
in G. D U D' is a non-singular 2-sphere, so it bounds a ball E in M, since M 
is irreducible. E shows that there is an isotopy of G which discards (at least) 
D' n D from H n G, contrary to our assumption that H n G is minimal. 

ad (b) Assume the contrary. Then there is a disc D in M, D n G = aD, 
AD not bounding a disc in G. However AD bounds a disc in G, whence H n G 
contains a closed curve, in contradiction to (a). 

Near H deform G so that pI G n U(H) is homeomorphic on each component. 
This is possible by (a). M is a ball. Therefore by (b) each component of G is 
a disc. We claim 

(c ) p I aG is homeomorphic on each component. 
For assume there is a component D of G for which p ID is not a homeo- 

morphism. Let D be part of the component G1 of G. Any component of aG, 
intersects any component of H in at most one point. We have two cases. 

Case 1. There is a component k of G1 n H such that those components 
k, and k2 of aG1 which contain the end points of k, bound an annulus in F x 1. 
It makes sense to assume that this annulus does not contain any other com- 
ponent of aG1, which we do. Let U be a regular neighborhood of that annulus, 
and the disc in H which is bounded by k and an arc in that annulus. 
(a u n M) n G1 is a curve which bounds a disc in (a U n M). Consequently, 
being incompressible, G1 must be an annulus. Therefore G1 intersects any 
component of H in at most one arc, and it follows that D cannot have been a 
counter-example. 

Case 2. For none of the arcs in G1 n H we have Case 1. We deform G, 
in such a way that each of its boundary curves goes to that boundary curve 
of F x 1 to which it is isotopic, and then slightly into aF x I. Because of 
our assumption that we are in Case 2, we can keep p aG1 U (G1 n H) locally 
homeomorphic during this isotopy, and again it follows that D cannot have 
been a counter-example. 

By (c) we may span aG by a system of discs in M, each component of 
which is mapped homeomorphically by p. Since this new system is isotopic to 
G by a deformation of M which is constant on AM, we have proved that there 
is a deformation of G, constant on AM, which makes pIG locally homeomorphic. 

Assume then p G is locally homeomorphic, but not globally on each 
component of G. This means there is a path 1 in G with end points q1 and q2 
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such that p(q,) p(q2). As a point x travels along 1 from the upper end point 
q, to the lower end point q2, the intersection p-'(p(x)) n G generates (among 
other things) a path 1' which starts at q2 and ends at some point q3. q3 cannot 
lie in aG, since aG n F x 0 = 0. Hence q3 must lie below q2. By induction 
on this argument, we see that p-'(p(q,)) n G contains an infinite number of 
points, which is absurd. 

Proof of 3.1 in the general case, by induction on (genus F, number of 
components of aF) in lexicographical ordering. Let H be a vertical annulus 
in M, such that H n F x 1 = H = F x 1 is a non-contractible curve which 
is not parallel to a component of DF x 1, and which is disjoint to aG. H is 
incompressible. By an isotopy which is constant on AM, we deform G so that 
H and G intersect in general position, and that H n G consists of as few 
curves as possible. Then by similar arguments as in (a) and (b) in the special 
case above, we prove (a) and (b) below. 

(a) Each of the curves HnG is in H parallel to HnF x 1. 

(b) G = G n M is incompressible in M = (M - U(H)), where U(H) is 
a vertical regular neighborhood of H (which is small with respect to G). 

By (a), we may assume that G has been deformed near H in such a way 
that p G n U(H) is homeomorphic on each component. 

To make use of the induction hypothesis, we argue with M, as follows. 
We push upward and slightly into M n F x 1 those boundary curves of G 
which lie in U(H) n M. This can be done by an isotopy which always keeps 
p I a& homeomorphic on each component. We know then by (b) and the in- 
duction hypothesis that, after an isotopy of G constant on AM, we will have 
p I G homeomorphic on each component. Finally, we wish to push back aG to 
its original position. Let G, be a component of G, and assume it is G,'s turn 
to have its boundary curve k pushed into the component H1 of M f U(H). We 
have two cases. 

Case 1. So far, there is nothing of aG, in H1. Then, in pushing k into 
H1, we can keep p I G1 homeomorphic. 

Case 2. The boundary curve I of G1 is already in H1. Then there is an 
annulus G' in AM, which is bounded by 1 and k and which contains H1 n F x 1. 
We know from the corollary to the induction hypothesis, that G, is parallel to 
a surface in AM - F x 0; there is no other choice for this surface but G1. 
Tracing back G1 and G' to the time just before we started pushing, we find 
two curves in H n G bounding an annulus in G which is parallel to an annulus 
in H. But this contradicts our minimality assumption on H n G. 

Thus we see that we may assume p I G locally homeomorphic. That this 
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forces p G to be homeomorphic on each component of G, follows exactly as 
in the special case above. 

Definition 3.3. A homeomorphism h: M M is level-preserving, if and 
only if it can be written as h(x, y) = (f,(x), y), for x C F, y I. An isotopy 
is level-preserving if and only if it goes through level-preserving homeo- 
morphisms. 

LEMMA 3.4. In M, let G be a system, such that each component of G is 
either a disc which intersects aF x I in two vertical arcs, or an incompressible 
annulus which has one boundary curve in F x 0, and the other one in F x 1. 
Then there is an isotopy, constant on F x 0 U aF x I, which makes G vertical. 
This isotopy may be composed of isotopies which are either constant on AM, 
or level-preserving and constant on F x 0 U aF x I. 

PROOF. Let G1 be the first component of G. Define k, = G1 n F x 0; 
k2 = G1 n F x 1. Using the projection p: Ma F, we define k' as lying in 
F x 1 over k1. We have kfl nD(F x 1) = k2 n (F x 1) = ak- =ak2. The 
projection of G1 to F x 1 defines a homotopy from k2 to k' which is constant 
on ak2. Thus, by Baer's theorem there is an isotopy, constant on D(F x 1) 
which carries k2 to k'. We extend this isotopy to a level-preserving isotopy 
of M, which is constant on F x 0 U aF x I. Denote by G' the vertical object 
determined by k1. We have then aG' = aG1. 

Case 1. G1 is a disc. After a deformation of G, constant on AM, we may 
assume that Gi n G' consists of their common boundary and a number of simple 
closed curves in the interior, at which the intersection is transversal. Assume 
the number of these curves is minimal. Then there are no such curves, by the 
usual argument. Thus G, U G' bounds a ball, whence there is a deformation, 
constant on AM, which takes G, to G'. Splitting then M at G1, we have an 
induction. 

Case 2. G1 is an annulus. k= G1 n F x 0 is a non-contractible curve 
in F x 0. Therefore there exists k c F x 0, k nf (F x 0) = ak, which is a 
simple closed curve or arc according to whether F is closed or not, such that 
k n k, consists of one or two points, and cannot be made smaller by an isotopy 
of k. Let H be the vertical object over k. After G has been adjusted by a 
small deformation, constant on AM, G1 f H will consist of simple closed curves 
and arcs. Assume that among the arcs in G1 , H, the arc 1 has both its end 
points in F x 0; then by our choice of H, l = AH n kl, and projection of the 
disc which is split off G1 by 1, will show that AH fn k can be made empty, 
contrary to the definition of H. Thus (since AH fn k and AH l k2 have the 
same number of points), any arc in G1 n H must intersect both F x 0 and 
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F x 1. In particular, any closed curve in G1 n H is contractible in both G1 
and H, and so these can be removed in the usual way. We conclude that 
there is a deformation of G, composed of one which is constant on AM, and 
one which is level-preserving and constant on F x 0 U aF x I, which makes 
G1 n H consist of one or two vertical arcs. 

Splitting now at H (and forgetting for the moment about G - G1), we 
obtain a manifold M and a system G in M, which comes from G1. To G in M 
Case 1 applies. Thus there is in fact a deformation of M, of our special sort, 
which makes the component G1 of G vertical. Splitting then M at G1, we have 
an induction. 

LEMMA 3.5. Let h: Ma M be a homeomorphism such that 

h I (F x 0 U aF x I) 

is the identity. Then there is an isotopy, constant on AM, which makes h a 
level-preserving homeomorphism. 

PROOF. We first show h can be deformed into the identity by isotopies 
which are either constant on AM, or level-preserving and constant on 
F x O U aF x I. 

Case 1. aF # 0; Let G be a system of vertical discs such that splitting 
at p(G) will reduce F to a disc. By (3.4), we may assume h(G) = G, (and each 
component of G is mapped to itself). Further deformations of our special type 
will give us consecutively hI G = id i G, and h = id i aM, where M is 
obtained from M by splitting at G. An application of Alexander's theorem 
to the ball M will complete the proof. 

Case 2. aF = 0. Since F is not a 2-sphere, there exists in M an incom- 
pressible vertical annulus G. By (3.4), we may assume h(G) = G. Further 
deformations which are constant on AM or level-preserving and constant on 
F x 0, will give us h I G = id I G. Splitting then M at G, we reduce Case 2 
to Case 1. 

Let hT, z C I, be the isotopy obtained in the end. Clearly, we may write 

hr = fnZgnZ * * fizgiz, I e I, 

where the isotopies fjr, z e I, are constant on AM, and the gjr are level- 
preserving and constant on F x 0 U aF x I; rewriting gives 

gnz. 
g1r4g' ... gf-lfnrgn r 

g1r) 
... 

(gl'f1lg1.) 

Taking the composition of the bracketed factors only, we obtain the required 
isotopy. 
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4. Twisted line bundles 

PROPOSITION 4.1. Let M = F x I, where F is a closed surface, different 
from the 2-sphere. Let N be a manifold with connected boundary. Suppose 
Mis a 2-sheeted cover of N. Then N is homeomorphic to a line bundle over 
a non-orientable closed surface. 

PROOF. Denote by f: M-u N the covering map, and by g: Mu M the 
covering translation. To prove the proposition, it suffices to construct a 
fibering of M which is invariant under g. This will be done in several steps. 

(4.2) There exists an incompressible annulus G1 in M, such that 
G1nFx F 0 0, GlnFx 1# 0,andG, ng(G) = 0. 

PROOF. Let G be a vertical incompressible annulus in M. The map 
f I G:G-)N has no local singularities. Therefore, looking at f(G), we find small 
isotopic deformations of G, after which the singularities of f I G will be simple 
closed double curves and simple double arcs (with transversal intersection) 
only. There are four types to be considered. 

( 1 ) There is a disc D in G, such that D n g(G) = AD. Since G is incom- 
pressible, AD bounds a disc D' in g(G). In g(G), replace D' by a disc near D, 
"at the other side"; and do the corresponding (i.e., via g) change at G. Since 
the intersection at AD has been transversal, at least one intersection curve 
has vanished. So we assume such a D does not exist. 

( 2 ) There is a disc D in G, such that Dfn(G U g(G)) = AD, and Dfng(G) 
is one arc k. Then there is a disc D' in g(G) such that AD' c k U g(aG). In 
g(G), replace D' by a disc near D, "at the other side"; and do the correspond- 
ing change at G. Since the intersection at k had been transversal, at least k 
has vanished. So we assume such a D does not exist. 

(3) G n g(G) consists of closed curves only, each of which is parallel 
in G to the boundary curves of G. Take a regular neighborhood U(f (G)) in 
N, and define V - f-(U(f(G))). The system (-V - aM) contains four 
annuli. These are incompressible, and1 at least two of them intersect both 
F x 0 and F x 1. Let G1 be one of the latter. Then either g(G1) n G, = 0, 
and we are through; or, g(G1) = G1. In the latter case, f(G1) is a two-sided 
Moebius strip in N. So this case cannot occur. 

(4) G n g(G) consists of arcs only, each of which intersects both F x 0 
and F x 1. In this case, we are forced to argue with f (G), and to admit 
singular things at intermediate steps. Let 1 be a double arc of f (G). There 
are two possibilities to do a cut (Umschaltung) at 1. One choice for the cut 

1 Added in proof. This may be false if F is a torus. Replace the argument in (3) by 
one involving cuts, similar to (4) below. 
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will decompose our singular annulus into two things which are either singular 
annuli or singular Moebius strips. The other cut will have as its result one such 
object. The important thing is that at any step we are free to make our choice. 
We find that we can always obtain a singular annulus or Moebius strip with non- 
contractible boundary. Let H be the end-result. H is a non-singular annulus or 
Moebius strip. f-1(H) consists accordingly of two or one annuli which are in- 
compressible and intersect both boundary components of M. In the former case, 
we take as G1 a component of f-1(H). In the latter case, g interchanges the 
sides of f'-(H), so we need only push f-1(H) slightly to one of its sides. 

(4.3) Let G, be the annulus which was constructed in (4.2). Define G2 = 
g(G,). By (3.4), there is an isotopy of M, which makes G1 U G2 vertical. We 
are careful, however, not to move G1 and G2. Instead, we use the inverse 
isotopy to deform the fibering of M. We have then induced fiberings on G1 
and G2. We proceed to make g I G1 fibre-preserving. We do this by deforming 
M near G2 in such a way that the induced deformation on G2 carries that 
fibering of G2, which is induced by the inclusion in M, to that one which is 
defined by G2 = g(G1). Finally, we achieve that there are vertical neighbor- 
hoods U(G1) and U(G2), such that g(U(G1)) = U(G2), and g I U(G1) is fibre- 
preserving. Roughly, we achieve this by removing G1 and G2 from M, and 
inserting instead U(G1) and U(G2). 

(4.4) Let M' be a component of (M - (U(G1) U U(G2))). Assume g(M') = 
M'. Let D be a vertical disc in M', such that aD is not contractible in aM', and 
g(li) n ii 0, i, j = 1, 2, where 11 and 12 are the arcs D n (U(G1) U U(G2)). By 
similar arguments as in (4.2), we find a disc D' in M', such that aD' is not 
contractible in aM', (D' LU g(D')) n (U(G1) U U(G2)) =(D U g(D)) n (U(G1) U U(G2)), 
and g(D') n D' = 0. Then, by (3.4), there is a deformation of the fibering of M', 
constant on (DM' n M), after which D' U g(D') will be vertical. And finally, 
as in (4.3), we find further deformations of the fibering of M' (constant on 
(DM' n M)) and regular neighborhoods which are vertical, such that 
g( U(D')) = U(g(D')), and g I U(D') is fibre-preserving. 

(4.5) We repeat step (4.4) as often as possible: i.e., we construct a sub- 
manifold M* in M, (the union of all those neighborhoods), such that M* is 
vertical, g(M*) = M*, and g M* is fibre-preserving, and that finally we 
have: If M' is any component of (M - M*), then either g(M') # M', or 
there is no such disc D in M' as was used in (4.4). In the latter case, M' 
must be a ball, and so again g(M') # M', since g has no fix-point. Thus, 
whenever g M' is not fibre-preserving, we may define a new fibering of 
g(M'), precisely by requiring g I M' to be fibre-preserving. 
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5. Isotopic surfaces 

LEMMA 5.1. Let M be an irreducible manifold which need not be 
compact. Let F be an incompressible (compact, closed) boundary component 
of M. In AM - F, let F' be an incompressible surface which need neither 
be closed nor compact. Suppose: if k is any closed curve in F, then some 
non-null multiple of k is homotopic to a curve in F'. Then, M is homeo- 
morphic to F x I. 

PROOF. Let r be the genus of F. Choose simple closed curves k1, *.., k2r 
in F such that ki n kj = 0, if i + j ? 1, and k5 and k5?1 intersect (transversely) 
in exactly one point, for j = 1, * *, 2r - 1. Such a system of curve is easily 
constructed from a usual "meridian-longitude-system"; the complement of 
Ukj is an open disc. 

Let 1 be the circle. By assumption there exists a map fj: 1 x I M, such 
that f5(l x 1) c F', f5(l x I) c M, and that f5(l x 0) is a non-null multiple 
of kj. The generalized loop theorem [18] gives us a non-singular annulus Gj, 
Gi n AM =aGj, which has one boundary curve in F, near kj, and the other 
boundary curve in F', such that not both its boundary curves are contractible 
in M. Since both F and F' are incompressible, G5 has in fact both its boundary 
curves non-contractible in M; whence that boundary curve in F must be iso- 
topic to kj. So we assume it is kj. 

Consider a fixed pair Gi, Gj. After a small deformation, if necessary, 
Gi f Gj will consist of mutually disjoint simple closed curves and arcs. If 
i = j + 1, and only then, there is a distinguished one among the intersection 
arcs which has one end point in F and one end point in F'. Any other inter- 
section arc has both its end points in F'. Any closed intersection curve is 
either contractible in both Gi and Gj, or non-contractible in both Gi and Gj, 
because of the incompressibility of F. We proceed to reduce the number of 
intersections by performing a cut (Umschaltung) either at a closed intersection 
curve or at a non-distinguished intersection arc. By what we said above, there 
is at each step a correct one among the two possibilities. The annuli which 
show up at intermediate steps may have singularities. But in the end we are 
left with a pair of non-singular annuli, again denoted by Gi, Gj, such that 
Gi f Gj is a distinguished intersection arc if i = j + 1, and empty otherwise. 

Next, we take up some other pair, and do with it the same things we did 
with Gi, Gj, and so on. In the course of this construction, we may be forced 
to take up several times the "same" pair. But finiteness may be seen thus: In 
the beginning, we might have normalized the Gj in such a way, that the inter- 
sections of UGj consisted of double curves and arcs, and triple points, only. 
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The pair (t, d), where t denotes the number of triple points, and d the number 
of double curves and arcs, will then be decreased, in the sense of lexico- 
graphical ordering, every time a cut is performed. 

We conclude that in the end, UGj is homeomorphic to (Ukj) x I. Taking 
regular neighborhoods, we see that (a U(F U UGj) n M) is a disc. Since F' is 
incompressible, (F' - (U(F U UGj) n F')) is a disc, too (whence in particular, 
F' is closed). So, (a U(F U UGj U F') n M) is a 2-sphere. Since M is irre- 
ducible, this 2-sphere bounds a ball in M, and the lemma follows. 

LEMMA 5.2. Let M be an irreducible manifold which need not be 
compact. Let G be a boundary surface of M which need not be compact. Let 
F be a (compact) surface in G, such that aF # 0. Suppose both F and G - F 
are incompressible. And, any arc k in F, k n aF ak, is homotopic to an 
arc k' in G, k' nF F= ak', by a homotopy which is constant on ak. Then, F 
is parallel to G - F. 

PROOF. Let k1, ... kr_ r > 0, be a system of (disjoint) arcs in F, 
F3 n aF = akj, such that splitting at the kj would reduce F to a disc. By 
assumption, there exists a singular disc fi: D - M, such that fj(DD) c G, and 
fj I fy'-1(fj(DD) n F) is a homeomorphism onto kj. 

The curve fj(DD) is essential in G modulo that normal subgroup of 7c1(G) 
which is generated by w1(G - F). Therefore the loop theorem gives us a 
non-singular disc D3 near fj(D), Di n AM= aDj, such that aDj is essential in 
G modulo that same normal subgroup. We recall that in the proof of the loop 
theorem the disc D3 is actually constructed in a very special way. This enables 
us to conclude in our present case that Di n F is either empty or is an arc 
which is isotopic in F to kj. Thus, we may assume Di n F = kJ. 

The rest is similar to the proof of (5.1). We construct new discs which 
are pairwise disjoint, and then an argument involving regular neighborhoods 
will complete the proof. 

LEMMA 5.3. Let M be an irreducible manifold. Let G be an incom- 
pressible surface in AM. Let F be an incompressible surface in M, such 
that aF c G. Suppose there is a surface H and a map f: H x I - M, such 
that f IH x 0 is a covering map onto F, and f(a(H x I) - H x O) cG. 
Then F is parallel to a surface F' in G. 

PROOF. F is not a 2-sphere. If F is a disc, then the assertion follows 
immediately from the fact that G is incompressible and M irreducible. So we 
assume, F is not a disc. Then no boundary curve of F is contractible (in 
either G or M). 

Let us look first at the special case f-'(F) n (H x I) = 0. We construct 
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the manifold M' by splitting M at F. By our assumption on f, there exists a 
lifting f ': H x I * M' of f. Since F was incompressible, M' is irreducible, 
and since no boundary curve of F was contractible, the system G' (which is 
G, split at F) is incompressible. Therefore we can apply either (5.1) or (5.2), 
and the lemma follows. 

We return to the general case. Our aim is to reduce it to the special case, 
by constructing a "homotopy" of the special sort. 

First, we may assume that aF n aG = 0. For otherwise, we enlarge G 
slightly to G" which also is incompressible; the surface F' which we are going 
to detect in G", will nevertheless be contained in G, since it cannot contain 
boundary points of G" in its interior. 

Thus, we may add to the hypotheses about f 
( 1 ) There exists a regular neighborhood U(H x 0 U AH x I), such that 

f-'(F) n U - H x 0. 
Next, we apply our normalization procedure (1.3) to f: 
( 2 ) By a deformation of f, constant on U, we induce a deformation of 

f I H x 1: H x 1 G, which makes this map transverse with respect to aF; 
we choose the deformation so that f-1(DF) n (H x 1 - U) will not contain a 
contractible curve, and that (in addition) the number of these curves will be 
as small as possible. 

After this deformation, fi D(H x I - U) is transverse with respect to F. 
So, another application of (1.3) gives a deformation which is constant on 
H x 1 U U, and which makes f-'(F) n (H x I - U) a system of incompressible 
surfaces in (H x I - U), and hence also in H x I. 

If this system is empty, our reduction is complete. So we assume the 
component H' exists. By (3.2), H' is parallel to a surface H" c H x 1. Let 
N be the submanifold which is bounded by H' U H". By another application 
of (3.2), it makes sense to assume that H' is "next" to H x 1, i.e. that 
Nn f-'(F) = H'; which we do. If now f I H': (H', aH') (F, aF) is 
homotopic (by a homotopy of pairs) to a covering map, then, looking at f N, 
we see that again our reduction is complete. So we assume it is not. A com- 
mutative diagram shows, ker (f | H')* = 0. Therefore, by Nielsen's theorem, 
(1.4.3), there are only two cases left: 

Case 1. H' is a disc. Then H" is a disc, too, which contradicts (2) above. 

Case 2. H' is an annulus, and f I H': (H', AH') > (F, DF) contracts; 
in particular, f(DH') is contained in one component k, of aF. We have again 
two cases, according to whether f I H": (H", AH") - (G, k) does or does not 
contract into (k, k). In the second case it follows from (1.4.3) that G is a 
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torus, that G ci f(H") and hence (since (f IH")-'(DF) = (f I H")-N(k)) that 
FnG G= k # aF, which contradicts aF ci G. The first case contradicts (2) 
above. 

PROPOSITION 5.4. Let M be an irreducible manifold. In M let F and G 
be incompressible surfaces, such that aF c F aF aG, and F n G consists of 
mutually disjoint simple closed curves, with transversal intersection at any 
curve which is not in aF. Suppose there is a surface H and a map 
f: H x In M, such that f I H x 0 is a covering map onto F, and 

f (a(Hx I) - H x 0) ci G. 

Then there is a surface H and an embedding H x I M, such that 

H x 0 FcF, (a(H x I) - x 0) = GcG 

(i.e., a small piece of F is parallel to a small piece of G), and that moreover 
F n G = WF, and either G n F = adG, or r and G are discs. 

PROOF. Case 1. The intersection curve k ci F n G is contractible in F 
or G. Then there is a disc D in G, say, which is bounded by k. D contains an 
innermost disc D', i.e., D' nF F= AD'. Since F is incompressible, there is a 
disc D" in F, such that AD" = AD'. Let F be an innermost disc in D"; so 
F nG = aF. Since G is incompressible, there is a disc G in G, such that 
a = aPF. Because of our choice of F, the 2-sphere F U G is non-singular; 
since M is irreducible, this 2-sphere bounds a ball, and the proposition follows 
in Case 1. 

Case 2. None of the intersection curves is contractible in F or G. Our 
aim is to reach a situation where we can apply (5.3); the construction of this 
situation is similar to the proof of (5.3). 

Using small deformations of f, we add to our hypotheses the following. 

( 1 ) There is an open neighborhood of H x 1 U AH x I, the interior of 
which is disjoint to f 1(G). 

( 2 ) For any boundary curve k of H, there exists a regular neighborhood 
U(k x 0), such that U(k x o) n ft1(G) = (U(k x o) n AH x I) U X, where 
X is either empty, or is an annulus such that x n aU(k x 0) = AX, and 
Xn (H x I) = k x 0. 

By (1) and (2), provided (2) is done carefully, there exists a regular 
neighborhood U of H x 1 U AH x I, such that f I d(H x I - U) is transverse 
with respect to G. So, by (1.3), there is a deformation of f, constant on 
U U H x 0, which makes f-1(G) n (H x I - U) a system of incompressible 
surfaces in (H x I- U). We have then ft1(G) = H x 1 U AH x I U Ufl, 
where UHj is a system of incompressible surfaces in H x I; (in fact, for any 
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U(k x 0) (cf. (2)), UHj n U(k x 0) is at most one annulus. Therefore each of 
the Hj is non-singular, and any two are disjoint; incompressibility is clear). 

We assume the component H' of UHj exists (the other case is quite 
similar, and is simpler). By (3.2), H' is parallel to H" ci H x 0; let N be the 
submanifold which is bounded by H' U H". We assume H' is "next" to H x 0, 
i.e., f-1(G) NN= H'. 

Construct the manifold M' by splitting M at G. Then a map f': No M' 
exists which is a lifting of f I N: N o M. In AM' there are two copies of 
G; denote by G' that one which contains f'(H'); G' is incompressible in M' 
(trivially). 

Because of our general position assumptions on F n G, the subspace F' 
of M' which by M' M is projected onto F, is a system of surfaces in M'. 
F' is incompressible in M'. For otherwise, there exists a disc D in M' such 
that D n F' = AD, AD not bounding a disc in F'. Since the image of AD in 
M bounds a disc in F, we find a curve in F n G, which is contractible in F, 
contrary to our assumption that we are not in Case 1. 

Let F" be that component of F' which contains f'(H"). We conclude 
that with M', G', F", f': No M', we are exactly in the hypotheses of (5.3). 
Therefore there is a surface G" ci G' which is parallel to F". If now 
G" f F' = G" n F", then the proposition is proved. Otherwise, denote by 
M" that submanifold of M' which is bounded by F" U G". Applying (3.2) to 
the system F' n M" in M", we find a component F of F' n M", which is next 
to G", and which is parallel to G ci G". 

COROLLARY 5.5. Let M be an irreducible manifold. Let F and G be 
incompressible surfaces in M. Suppose there is a homotopy from F to G, 
which is constant on aF. Then, F is isotopic to G by a deformation which 
is constant on AM. 

PROOF. By an isotopy which is constant on AM, move F so that the inter- 
section F U G consists of mutually disjoint simple closed curves, the number 
of which is as small as possible. Consider those tiny pieces F and G which 
were found in (5.4). Suppose F and G are discs, and F n G # aG. Then the 
ball which is bounded by P U G, contains part of F its interior. Pushing out 
these things across G, we reduce the intersection F n G. But this contradicts 
our minimality condition, and so this case cannot occur. Therefore there is 
an isotopic deformation of F, constant on (F - F), which takes F to G. 
Suppose F # F. Then we can push off F slightly to the other side of G, 
while keeping F n aF fixed, and again we achieve the impossible. Therefore 
F = F. We have also G = G. For, we have just seen that aG ci aM, and 
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since G n AM = aG, there is no other choice for G. 

6. Existence of homeomorphisms 

THEOREM 6.1. Let M and N be manifolds which are irreducible and 
boundary-irreducible. Suppose that M is sufficiently large, and that 

wc1(N) # 0. Let f: (N, AN) - (M, AM) be a map which induces an injection 
f*: w1(N) 7fw(M). Then there exists a homotopy fT: (N, aN) (M, aM), 
z G I, f0 = f, such that either (a) or (b) holds. 

(a) N is the product line bundle over a closed orientable surface, and 

fi(N) ci aM, 
(b) fl: N- M is a covering map. 
If f I AN is locally homeomorphic, then the homotopy may be chosen so 

that f, I aN = f0 I AN, for all z. 
Proof of (6.1) in the case AM # 0. Let R be a boundary component of 

N; R is not a 2-sphere. Let S be that boundary component of M which 
contains f (R). Since N is boundary-irreducible, it follows from ker f* = 0, 
that ker (fI R)* = 0. Therefore, by Nielsen's theorem, f I R is homotopic to 
a covering map. We perform a homotopy of f which induces such homotopies 
at all boundary components of N. We compose it with a general position 
homotopy, to make sure that f-1(aM) -aN. If f I AN was locally homeo- 
morphic in the beginning, there has been no necessity so far to alter it, since 
in what follows there will be no necessity either, the last assertion in (6.1) 
will be established. 

Choose a hierarchy for M1 = M, (cf. (1.2), theorem): 

Mj1 Fj2c--Mj U(Fj2) c-Ml I M,2+1 = (Mj -U(Fj)), j = 11 .. * n . 

So far, we proved that, for r = 1, the following holds. 

Induction hypothesis: f I f -1(aM U U3j< U(Fj)) is locally homeomorphic. 

Suppose, we have proved it for r n + 1. M]I6+4 is a ball. Let N* be a 
component of f-1(M?+). We assumed w11(N) # 0, whence N* # N. Since 
there are no covering maps onto a 2-sphere other than homeomorphisms, it 
follows from the fact that N is irreducible, that there is a homotopy of f I N*, 
constant on AN*, which will make f I N* a homeomorphism; and Case (b) of 
the theorem will follow. Thus we attempt to show that the induction step 
can be made. When we fail, it will turn out that we can prove Case (a) of 
the theorem. 

Let N' be a component of f -1(Mr). Denote by f' the restriction f I N'. 
We have f ': (N', aN') - (Mr, aMp). By the induction hypothesis, f' ' aN' is 
locally homeomorphic. By (1.3), there is a homotopy of f', constant on AN', 
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such that afterwards f' is transverse with respect to Fr, and that f '-(Fr) is 
a system of incompressible surfaces in N'. We prove easily, ker f 0. 
From this follows ker (f'I G)* 0, where G is any component of f''(F7). 
We would like to conclude that f' I G: G - F7 is homotopic to a covering map 
by a homotopy which is constant on aG. If this conclusion holds for any G, 
and for any choice of N', then the induction step follows immediately. 

Assume then that the conclusion is false for G. Remembering that G 
cannot be a 2-sphere, we find ourselves left with the following two possi- 
bilities. 

(1) Fr is a disc; G too; and the covering map af' G is not a homeo- 
morphism. 

( 2 ) Fr is not a disc. By Nielsen's theorem (1.4.3), G is an annulus, and 
f' G: (G, aG) , (Fr, aFr) contracts to (aFT, aFr); in particular, f'(aG) is 
contained in one boundary curve of Fr. 

In both cases, there exists a simple arc 1 in G, l na G = al, with the 
properties: f'(al) is one point; f' I 1: (1, at) (Fr, f'(al)) contracts. Composing 
1, if necessary, with two suitable arcs (obtained e.g. by lifting an arc which 
joins f'(al) inside Uj<r U(Fj) to aM), we find a simple arc k in N, such 
that ak consists of two different points, p1 and P2, in AN, and such that 
f I k: (ky, ak) (M, f(ak)) contracts, (in particular f(p1) = f(p2)). 

Denote by S that boundary surface of M which contains f(pl). Using 
f (p1) twice as base point, we have an obvious inclusion homomorphism 
i*: w11(S) - z1(M). Let R, and R2 be those boundary components of N which 
contain p1 and P2. Using p1 twice as base point, we define il*: w1r(R1) - wr1(N). 
Finally, we define 

i2* wl1(R2) 111(N) using the path k. All these inclusion 
homomorphisms are injective. We have f*i1* = i*(f I R1)*, (by naturality), 
andf*i2* = i*(f IR2)*, (since f Ik: (k, ak) - (M, f(ak)) contracts). 

Since all three, R1, R2, Sy are closed, and since f I R1 and f I R2 are cover- 
ings, (f I R1)*(wr1(R1)) and (f i R2)*(wr1(R2)) have finite index in w1(S). Thus, by 
the above, i1*(7w1(R1)) and i2*(w1(R2)) intersect in a subgroup which has finite 
index in both. 

We now distinguish three cases. 
(a) R1 # R2. By (5.1), N is homeomorphic to R1 x I. Consider the 

covering JM of M which is associated to i*(w1(S)); denote by S a copy over S, 
for which wr1(S) 111(S) is an isomorphism. Let f: No i be a lifting of f, 
such that ](aN) n 3 # 0. Then, in fact, f(tN) c S, because f I k: (ky, ak)) 
(M, f(ak)) contracted. Observing that M deformation-retracts to 3, we find 
that we have proved Case (a) of the theorem. 



IRREDUCIBLE 3-MANIFOLDS 79 

(b) R1 = R2. (k, ak) - (N, RI) does not contract into (R1, R1). Consider 
the covering N of N which is associated to ij*(w1r(R1)). Denote by R' a copy 
over R1 for which w1(R') - wc1(R,) is an isomorphism. Let k' be a copy over k, 
which originates at R'. Denote by R" that copy over R1 which contains the 
other end point of i'; R" is different from R', (and may be non-compact). That 
identification of subgroups in w11(N) along k, lifts to an identification of sub- 
groups in w1(K) along k', one of the subgroups concerned being a subgroup of 
finite index in wc1(R'). Thus, by (5.1), N is homeomorphic to R' x I. Conse- 
quently, ]No N is a 2-sheeted covering, whence, by (4.1), N is homeomorphic 
to a line bundle over a non-orientable closed surface. Since f I k: (k, ak) - 
(M, S) contracts, wc1(N) is isomorphic to a subgroup of w11(S). Since S is ori- 
entable, this is absurd. 

(c ) R1 = R2. There is a homotopy of k, fixed on ak, which sends k to 
an arc in R,. Call this arc k. f(k) defines a based loop in S, which is not con- 
tained in the subgroup (f I Rj)*(w1(RJ)). On the other hand, fl(k) is homotopic 
in M to the based loop f(k), which is contractible. Since S is incompressible, 
it follows that fl(k) is contained in any subgroup of w11(S). 

Proof of 6.1 in the case aM-=i0. By our conditions on M, there is an 
incompressible surface in F in M. Since M is closed, F has to be closed, too. 
Homotope f to make it transverse with respect to F, and to make f-1(F) a 
system of incompressible surfaces in N, (1.3). Choose the homotopy in such 
a way that in addition, the number of components of f-1(F) is as small as 
possible. Let G be a component of f-1(F) (at the present stage, we are not 
claiming that f'-(F) is non-empty). Since N is closed, G is closed, too. A 
commutative diagram shows that ker (f I G)* = 0. Since G is not a 2-sphere, 
Nielsen's theorem tells us that f I G is homotopic to a covering map. Thus we 
may assume that there is a regular neighborhood U(F), such that f I f-( U(F)) 
is a covering map on each component. 

Consider then M, which is component of M - U(F); N, which is a com- 
ponent of f -`(M); and f = f I 1: No - M. Another diagram (cf. (1.1.4)) shows 
that ker.* = 0. Since f I aN is locally homeomorphic, the formerly proved 
part of the theorem shows that there is a homotopy of ]7, constant on AN, 
with two possibilities for its end result. The first possibility would result in 
a contraction into AM. This is ruled out by our minimality condition on f. So 
there is in fact a homotopy of if, constant on AN, which makes f a covering 
map. 

Definition 6.2. Let M and N be manifolds. Let A: wc1(N) - wc1(M) be a 
homomorphism. * is a homomorphism of group systems or respects the 
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peripheral structure, if and only if the following holds. For each boundary 
surface F of N, there exists a boundary surface G of M, such that 

Ar(i*(wi(F))) ci A, and A is conjugate in wc1(M) to i*(wr(G)). (Here i*. denotes 
inclusion homomorphisms. The definition does not depend on the choice of 
the i*.) 

LEMMA 6.3. Let M and N be manifolds, such that M is irreducible and 
boundary-irreducible, and has infinite fundamental group. Let 7fr: w1(N) 
7c1(M) be a homomorphism. Then there exists a map f: (N, AN) (M, AM) 
which induces A, if and only if * respects the peripheral structure. 

PROOF. One direction is obvious. We come to the other. By the usual 
argument, M is aspherical. Therefore a map f': N o M can be constructed 
which induces A. To prove the lemma, it will suffice to prove let F be a 
boundary component of N, and g. = f' I F. Then there exists a homotopy 
g,: F- fM, T e I, such that g1(F) ciaM. We construct this homotopy piecewise. 
Inspection of (6.2) reveals that g, can be defined on the 1-skeleton of F. Next, 
we define g1, compatible with g, on the 1-skeleton. The obstruction to do this 
lies in ker (w1(G) - wc1(M)), which is 0, where G is the boundary component 
involved. The obstruction to fill in the rest, lies in w2(M), which is 0, too. 

COROLLARY 6.4. Let M and N be manifolds which are irreducible and 
boundary-irreducible. Suppose M is sufficiently large; N is not homeo- 
morphic to a product line bundle over a closed surface, and w1(N) # 0. Let 
*: wc1(N) - wc1(M) be an injection which respects the peripheral structure. 
Then there exists a covering map f: No M, which induces A. 

PROOF. We apply (6.3) to obtain a map g: (N, aN) - (M, aM), with 
g* = A. From g, we obtain f by (6.1). (If in the construction of f we moved 
the base point, we move it back in the end.) 

COROLLARY 6.5. Let M and N be manifolds which are irreducible and 
boundary-irreducible. Suppose M is sufficiently large. Let A: w11(N) -+w1(M) 
be an isomorphism which respects the peripheral structure. Then there 
exists a homeomorphism f: N o M, which induces A. 

PROOF. If N is not excluded in the hypotheses of (6.4), we apply (6.4) to 
obtain a 1-sheeted covering map. If N is a product line bundle, then A-1 also 
respects the peripheral structure. Since sufficiently large depends only on 
the homotopy type, we try to apply (6.4) to <r. If this should fail, too, 
Nielsen's theorem will save the corollary. 

7. Existence of isotopies 

THEOREM 7.1. Let M be a manifold which is irreducible and sufficiently 



IRREDUCIBLE 3-MANIFOLDS 81 

large. Let h: M-u M be a homeomorphism which is homotopic to the identity 
map by the homotopy H: M x I-n M. And suppose that either (a) or (b) holds. 

(a) H(aMxI)caM. 
( b) M is boundary-irreducible. If M is homeomorphic to a line bundle, 

then h is orientation-preserving. 
Then h is isotopic to the identity. 

If in case (a), H I AM x I is projection onto the first factor, then the 
isotopy from h to the identity may be chosern constant on aM. 

In the proof we shall consider four cases. 
Case 1. AM L 0; the homotopy is constant on AM. Choose a hierarchy 

for M1 M, (cf. (1.2), theorem) 

.ZVI Fj c- Mj, U(Fj) c- Mj, Mj +1 (Mj -U(Fj)), i = 1IS. , Xn 

By assumption, the following holds for r = 1. 

Induction hypothesis. H I (AM U Ui<r U(Fj)) x I is projection onto the 
first factor. 

As a consequence of the induction hypothesis, we have h I Mr is a homeo- 
morphism onto Mr, and h I AM, is the identity map. 

Let F be a surface which is homeomorphic to F,, and define the map 
f: F x I-n M as the restriction H I F, x I. 

LEMMA 7.2. There is a homotopy of f, constant on a(F x I), after 
which f (F x I) ci M,. 

PROOF. Assume as induction hypothesis, that f (F x I) c M8, for s < r. 
f I a(F x I) is trivially transverse with respect to F8; thus, by (1.3), there is 
a homotopy of f: F x I- 1 M,8, constant on a(F x I), which makes f-'(F8) a 
system of incompressible surfaces. Since these surfaces have to be closed, 
and since aF = 0 , (3.2) shows that f-'(F8) is empty. We finally push f(F x I) 
out of U(F8), i.e., into M8,1. 

By (7.2) we may apply (5.5) to the surfaces Fr and h(Fr) in M,; i.e., we 
can find an isotopic deformation of h I M,, constant on aMr, such that after- 
wards h(F,) = F,. Thus we assume, this holds true. 

LEMMA 7.3. There is a homotopy of f, constant on a(F x I), after 
which f (F x I) c F,. 

PROOF. At the present stage of our normalization, we have f(F x 0) ci Fa, 
f (F x 1) ci F,, and f I aF x I is "projection onto the first factor" anyway. 
Denote by fT, r e I, the homotopy which we are going to construct. Define 
fo = f, and f, I a(F x I) = fo Ia(F x 1), for all T. Since aF a 0, the 
interior of F x I admits a decomposition into open 2- and 3-cells only. 
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Therefore, the only obstructions to extending fi I a(F x I) to fi: F x Id Fry 
lie in ker (WiJ(Fr) - rW(Mr)) and Wr2(Fr), which are 0. Similarly, the obstructions 
to defining the rest of the homotopy, lie in Wr2(Mr) and Wr3(Mr), which are 
0, too. 

By (7.3) we may assume that f: F x I-n Mr is in fact a map f: F x In Fr. 
So, by Baer's theorem, h I Fr is isotopic to id I Fr by an isotopy which is 
constant on aFr. So we assume, h I Mr has been deformed (by an isotopy 
which is constant on AMr) so that h I Fr = id I F. 

Looking again at f: F x I-n Fr, we find a homotopy, constant on a(F x I), 
from f to the projection onto the first factor. In fact, there is no obstruction 
to construct this homotopy, because the two maps agree on a(F x I); Fr is 
aspherical; (F x I) admits a decomposition into open 2- and 3-cells only. 

We recall now that f was initially defined as the restriction to Fr of 
H: M x I n M. And we observe that all the deformations of f may be ex- 
tended to deformations of H I Mr x I which are constant on aMr x I. Finally, 
extending our normalizations to a neighborhood, we make 

H I(aM U Uj<r+l U(Fj)) x I 

projection onto the first factor. 
After n induction steps have been performed, h IM - M,,,) will be the 

identity map. Since M,,, is a ball, Alexander's theorem will complete the 
proof in Case 1. 

Case 2. AM =# 0; H(dM x I) c( aM. Let F be a boundary component of 
M. Consider f: F x I-) F x I, defined by f(x, y) = (H(x, y), y), for x e F, 
y e I. f I F x 0 and f I F x 1 are homeomorphisms. Therefore there is a 
homotopy of f, constant on F x U, which makes f a level-preserving homeo- 
morphism, by (6.1) and (3.5). We change H near F x I according to this 
homotpy of f. After this change, H I F x I describes the ideal isotopy of 
h I F; namely, we perform this isotopy (actually, induce it by an isotopy of 
h near F), while making HI F x I the constant homotopy. Case 2 is thus 
reduced to Case 1. 

Case 3. AM # 0; M is boundary-irreducible; if M is homeomorphic to 
a line bundle, then h is orientation-preserving. Assume, Case 3 cannot be 
reduced to Case 2. Then for some component F of aM, and for the map 
f: F x I - M, defined as H I F x I, there is no deformation (of pairs) of 
f: (F x I, F x AI) - (My AM) into (dM, aM). It follows from (6.1) that there 
is a homotopy of f, constant on F x AI, which makes f a covering map. Since 
f I F x 0 is a homeomorphism, this covering is 1- or 2-sheeted. 

In the first case, h interchanges the boundary components of M; since h 
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is homotopic to the identity map, it must be orientation-reversing. 
In the second case, we argue as follows. We know from (4.1) that M is 

homeomorphic to a line bundle over a closed non-orientable surface. We 
compose the homeomorphism h with a homeomorphism which is reflection on 
each line. Denote the composition by h'. There is a natural homotopy H' 
from h' to the identity map. What we assumed on H, implies that 

f': (Fx I,Fx al))(M, AM) , 

defined as H' i F x I, does contract to (aM, aM). Thus, since F is all of AM, 
we deduce from Case 2 that h' is isotopic to the identity map. Whence h was 
orientation-reversing. 

To handle Case 4, we need the following lemma. 

LEMMA 7.4. In the closed irreducible manifold N, let G be an incompres- 
sible surface. Let h: N-o N be a homeomorphism, such that h(G) = G. If h 
is homotopic to the identity map, then h does not interchange the sides of G. 

PROOF. If G is non-separating, look at a closed curve which intersects G 
in one point. Since h induces the identity on H1(N), the assertion follows. 

If G is separating, then 7c1(N) A *, B in a non-trivial (and natural) way, 
where C, A, B stand for w1(G), 7rw(N1), w1(N2) respectively, N1, N2 being the 
closures of N - G, (cf. (1.1.6)). If our assertion were wrong, there would 
exist an inner automorphism of A *c B which interchanges A and B. Let a be 
an element which effects such an inner automorphism. Present a as a = 

a1. f f f -am, where aj is an element of A or B, and not both aj and aj+l belong 
to either A or B. If am C C, then m = 1, a = am, and conjugation by a cannot 
interchange A and B; so assume am n C, and am C A, say. Select b C B, b X C. 
Then 

aba-1 = a1. * -amba-1 . * m -a-' . 
But this is not an element of A [8, Satz 2, p. 340; Kor. p. 341]. 

Case 4. M is closed. Let F be an incompressible surface in M. By (5.5), 
we may assume h(F) = F. Let G be a surface which is homeomorphic to F. 
Define f: G x I > M as the restriction HI F x I. A small homotopy of f, 
constant on G x AI, will give us f '(F) n U(G x AI) = G x AI, where 
U(G x AI) is a regular neighborhood of G x AI. Applying then (1.3), we find 
a homotopy of f, constant on U(G x AI), which makes f I(G x I - U(G x AI)) 
transverse with respect to F, and 

f '(F)n(G x I- U(G x AI)) = GU U UGm, 

a system of incompressible surfaces in (G x I - U(G x AI)), and hence also 
in G x I. The Gj are closed, so by (3.2), each Gj is parallel to G x 0, and any 
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two are parallel. By a commutative diagram, ker (f I Gj)*- 0. Therefore, 
using Nielsen's theorem, we may assume f I Gj is a covering map for any j. 
Finally we assume, f has been deformed (by a homotopy which is constant on 
G x HI) so that it has the above properties and that, in addition, the number 
m is as small as possible. 

Any two components of G x HI U G1 U ... U G., bound a domain G x I'. If 
these components are adjacent, there is a lifting of f I G x I' to j' G x I' M, 
where M is obtained fron M by splitting at F. Applying (6.1) to all these f, 
and remembering our minimality condition on m, we find a deformation of f, 
constant on G x aI U G, U ... U G,,,, with one of the following four cases as 
its end result. 

(a) f(G x I) c F 
(b, c, d) f :(G x I, G x H U G1 U U Gm) (M, F) is locally homeo- 

morphic. 
(b) M is homeomorphic to F x L 
(c) m = 0, and (at least) one component of M is the twisted line bundle 

with F as its boundary. 
(d) m > 0, and both components of M are the twisted line bundle with 

F is its boundary. 
(In the conclusions (b, c, d), we used that f C G x 0 is a homeomorphism, and 
(4.1).) 

ad (a). In the same way as in Case 2 above, we make the homotopy 
constant on F. By (7.4), h does not interchange the sides of F. So we can 
take a regular neighborhood U(F), make h U(F) the identity map, and 
make the homotopy constant on U(F). Next, we construct a hierarchy for 
(M - U(F)), if (M - U(F)) is connected, respectively, hierarchies for the 
components of (M - U(F)) in the other case. The proof proceeds then as 
Case 1 from the beginning, with the difference only that the induction in 
(7.2) starts with M0 = M, and F0 = F. 

ad (b). There is an obvious isotopy which slides around F. After this 
has been performed, the homotopy can be made constant on F. Thus we are 
in Case (a). 

ad (c, d). We show these cannot happen. 
ad (c). Let M' and Mi" be the closures of M - F; let M' be that sub- 

manifold onto which f: G x I is a covering map. There is a 2-sheeted covering 
p: NAt M, such that p-1(M') is homeomorphic to F x I, and p-'(M") has two 
components, each of which is mapped homeomorphically by p. 

Denote by h, the homotopy of the identity map on M, defined by H. 
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There exists a homotopy h' of the identity map on N, such that p o 
h'=h, 

o p, 
Define h' = hK. The map h': N N is a lifting of the homeomorphism h; it 
has no choice but to be a homeomorphism itself. Consider now a lifting f' of 
f: G x IB M. f': G x I is a homeomorphism onto p-'(M'). Thus, if we 
denote D(p-1(M')) by F' U F", it follows that h' interchanges F' and F". 
Hence h' interchanges the components of p-1(M"). Since F" is parallel to F', 
we can deforme h' into a homeomorphism h": N-+ N, which maps F' to itself, 
and interchanges its sides. Since h" is homotopic to the identity map, this 
contradicts (7.4). 

ad (d). Make the same construction as in (c). And consider a lifting 
f': G x I- N. If f`1(p-1(Mf)) = f'-(M') has an odd number of components, 
it follows again that h' interchanges F' and F", so the same contradiction 
comes out. 

Otherwise, f '(G x AI) c F', say. Denote by N' and N" the closures of 
N - F'. Denote by a and ,3 the number of components of f''(N') and 
f'-`(N"), respectively. a + 8 is equal to the number of components of 
f-1(M"). Neither a nor f8 can be 0 unless the other is 1. Thus, repeating 
the construction of (c), we finally get our contradiction. 

As an immediate consequence of (6.5) and (7.1), we have the following. 

COROLLARY 7.5. Let M be an irreducible and boundary-irreducible 
manifold which is sufficiently large, and which is not homeomorphic to 
a line bundle. Let ,C0(M) be the quotient group of the group of auto- 
homeomorphisms of M by the subgroup of those which are isotopic to the 
identity map. The set of those automorphisms of w1,(M) which respect the 
peripheral structure is a group, and its quotient group by the subgroup of 
inner automorphisms, is naturally isomorphic to JCo(M). 

Remark. There is a long way from the above isomorphism to the actual 
calculation of ZW0(M) for a given manifold. For a few manifolds, there is an- 
other, more geometric, approach to ,C0(M), which will be indicated now. 

Let N be a compact orientable Seifert fibre space which is "big enough" in 
the (slightly more restricted) sense that there exists an incompressible surface 
in N, which is not boundary-parallel, and which receives an induced fibering 
from N. Denote by 9(N) the group of fibre-preserving homeomorphisms of 
N, and by %'(N) the subgroup of those which are isotopic to the identity 
map by fibre-preserving isotopies. And consider the natural homomorphism 

t(N)1t'(N) SoZ(N). This homomorphism is surjective if N is not one of a 
finite number of exceptions [17], (10.1). It is also infective. (This is not too 
difficult, and goes roughly as follows. There is a hierarchy for N, in which 
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the first surfaces (and neighborhoods) receive an induced fibering from N, and 
the remaining surfaces are discs (being essentially meridian surfaces in fibre- 
neighborhoods of the exceptional fibres.) Given a fibre-preserving homeomor- 
phism of N and an isotopy from it to the identity map, we treat this isotopy 
as a homotopy, and start playing the game by which we proved (7.1), using 
the above hierarchy. The essential step is to make the homotopy constant on 
those first surfaces of the hierarchy. We achieve this by referring explicitly 
to (5.4), (instead of (5.5) in the proof of (7.1)). The small region of parallelity 
which we find this way does not contain an exceptional fibre, by [17, Lemmas 
(7.4) and (7.6)], and so the situation can be improved by a fibre-preserving 
isotopy. 

The calculation of 9?(N)/1'(N) may be considered as a (2 + s)-dimensional 
problem. It should be practicable quite generally. (Clearly, there is an exact 
sequence A - 9/9' - B > 0, where each element of A is represented by a 
homeomorphism which sends each fibre to itself, and B is a kind of braid group.) 

8. Universal covers 

Let M be a compact connected orientable PL 3-manifold, which is irre- 
ducible and sufficiently large (in the sense of (1.1.7)). Denote by Mi the 
universal cover of M. Let E be the unit ball in euclidean 3-space. 

THEOREM 8.1. There is an embedding f: Mu E, such that f(M) D E. 

Let F be an incompressible (PL) surface in M, U(F) a regular neighbor- 
hood of F, and N= (M - U(F)). Because of (1.2) it will suffice to prove 

If (8.1) holds for N (respectively, for the two components of N), then it 
holds for M, too. 

The subspace of M which projects onto F by the covering map, consists 
of a number (countable at most) of components, each of which is homeomorphic 
to the universal cover of F. We denote them by G1, G2, .... The subspace 
of M which projects onto U(F) may be written as U (Gj x I) in a natural 
way, with Gj identified with Gj x 1/2. Each component of (M - U (Gj x I)) 
is homeomorphic to the universal cover of N (respectively of one of the com- 
ponents of N). We denote them by N1, N2, .... We arrange the numbering 
of the Nj and Gj, and define the N'j), in such a way that the following holds. 

N -1)=N,; Nl) n(GjxI) -GjxO; (GjxI)fnNjl+=Gjx1; 
Nfj+1' - N'j) U (Gj x I) U Nj+1 . 

Suppose, anembedding N') -Ehas been costructed, such that N 'D E. 
Then in particular, Gj x 0 is embedded in aE. 
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On the other hand, Gj x 0 is homeomorphic to a submanifold G! of the 
disc D, with Go D D. We identify D with the unit disc in the plane z = 0 in 
(another) euclidean 3-space. Let p and q be points on the z-axis with 
z-coordinates z, -1, and 

(8.2) 1/j K Zq < 0, 

and let P and Q be the cones from p and q to G!. Finally, let G! x I/2 be the 
cylinder, determined by G! and by 0 < z < 1/2. We define an embedding 
Q U (G; x I/2) Q as follows. For any straight line which contains q, we 
map the closure of its intersection with Q U (G; x I/2) linearly onto ist inter- 
section with Q. 

Using this embedding and the natural homeomorphism from P to the 
cone over Gj x 0 (with cone-point the center of E), we define an embedding 
N'i' U (Gj x [0, 1/2]) * E. Then, again, (N(i) U (Gj x [0, 1/2])) D E, and 
moreover, the closure of G6 = Gj x 1/2 in aE is a disc. In the same way 
we construct from the embedding of Nj+1 in the ball E' an embedding of 
(Gj x [1/2, 1]) U Nj+1 in E', such that the closure of Gj in aE' is a disc. If 
we use both times the same homeomorphism to G! c D (i.e., via the corre- 
spondence Gj x 0 e- Gj x 1), we find that the identification map aE D Gj e 
Gi c aE' extends to a homeomorphism of the closures of Gj. Thus, matching 
aE and aE' along these closures, we define an embedding of N'j+1' in the ball 

0 
EUE', with N'j+l' D (E U E'). 

We finally map E U E' onto E by a homeomorphism h: E U E' - E with 
the properties 

(8.3) For any x C E, the distance of h(x) from aE is not less than that of 
x from aE. If x C E has distance at least 1/j from aE, or if x lies in the cone 
from the center of E to (?E - (E n E')), then h(x) = x. 

Repeating the induction step, we construct embeddings N'j) E for 
arbitrary large j. Because of (8.2) and (8.3), a limit map is defined. It is the 
required embedding. 

Remark. Of those irreducible manifolds, known to me, which have infi- 
nite fundamental group and are not sufficiently large [19], some (and possibly 
all) have a finite cover which is sufficiently large. Moreover, due to their 
fibre structure, it is easily seen directly that their universal cover is indeed 
euclidean 3-space. Thus, (8.1) is by no means best possible. 
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