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A THEOREM ON GRAPHS.!

By HassLER WHITNEY.

1. Results of this paper.
1. Let a finite number of curves, or edges, whose end-points we call
vertices, intersect at no other points than these vertices. Let the system
be connected, that is, any two vertices are joined by a succession of edges,
each two successive edges having a vertex in common. This forms a graph.
A graph is planar if it can be mapped in a 1-1 continuous manner on
a plane (or a sphere). If the vertices a, b are joined by an edge, we shall
call the edge joining them @b, and shall say a touches b for short. A set
of distinct vertices, a, b, c, - - -, e, f, together with a set of distinct edges
joining them in cyeclic order, ab, be, ---, ef, fa, we shall call a circuit.
A planar graph lying on the surface of a sphere divides this surface
into a number of simply connected regions. The boundary of each of these
regions may be a circunit. If so, we shall call these cireuits elementary
polygons. If all these polygons are
n-gons, n fixed, we say the graph is
composed of elementary »-gons.
2. The fundamental theorem of this
paper is the following:
THEOREM 1.  Given a planar graph
composed of elementary triangles, in
which there are no circuits of 1,2, or
3 edges other than these elementary
triangles, there exists a circuit which
passes through every vertex of the graph.
The problem of finding graphs for
which this is so has been studied by
several people.? This seems to be
the first case when a large class of
planar graphs has been shown to have
this property.
\ 3. This theorem gives immediately

fe the following:
Fig. 2. NorMAL ForM. Given any graph
as described in Theorem 1, containing

'Recé{;é& Aprll 7, and July 14, 1930.—Presented to the American Mathematical Society,

Febr. 22, 1930.

2See St. Lagué, A., Les Réseaux, Mémorial des Sciences Math., fasc. 18, Paris (1926).
378



A THEOREM ON GRAPHS. 379

n vertices, we can construct a graph homeomorphic with it as follows: Draw
a regular polygon of w sides, and draw diagonals, mo two of which cross,
dividing the inside of the polygon into triangles. Simalarly draw circular arcs,
no two of which cross, dividing the outside of the polygon into circular triangles.

We have merely to find the circuit given by Theorem I, and distort it
into the polygon.

4. A theorem on maps deducible immediately from Theorem I is the
following, as we shall see later:

THEOREM II. Given a map on the surface of a sphere S
containing at least three regions in which: - ; —

(A1) The boundary of each region is a single closed | g, i
curve without multiple point, o i

(B) Exactly three boundary lines meet at each vertex, h

(As) No pair of vegions taken together with any | | SN
boundary lines separating them form a multiply connected |J" 1. c
region,

(As) No three regions taken together with any boundary Fig. 3.
lines separating them form a multiply connected region,
we may draw a closed curve which passes through each region of the map
once and only once, and touches no vertex.

5. By means of Theorem II and a lemma to be proved, we have a solution
of a conundrum, which we leave to the end of the paper.

6. Finally, Theorem I gives us a new statement of the four color map
problem. Given any map on the surface of a sphere, we “color” it by
assigning to each region a color in such a way that no two regions with
a common boundary are of the same color. Given any polygonal con-
figuration as described in 3., we “color” it by assigning to each vertex
of the polygon a color in such a way that no two vertices which are
joined by a line, either a side of the polygon or a diagonal, are of the
same color.

EQUIVALENT STATEMENT OF THE Four CoLorR MAp PROBLEM. If every
polygonal configuration as described in 3. can be colored in four colors, them
every map on the surface of a sphere can be colored in four colors, and
conversely.

2. Proof of Theorem I.

We consider only the graphs defined in § 1, 2. As the graph is com-
posed of elementary triangles, there are at least three vertices present.
If there are only three, the theorem is obvious. We shall assume from
here on that there are at least four vertices present.

As there are no circuits of one or two edges, no vertex touches itself,
and any two vertices are joined by at most a single edge.
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There is no vertex touching but a single other vertex. For then the
boundary of the region surrounding this other vertex would not be a circuit,
and therefor not an elementary triangle.

There is no vertex touching only two others. For suppose a touched
b and ¢ alone. Then the edges ab and ac would each be sides of two
triangles, whose third sides are both edges bc. But there is only one
edge bc, as two vertices are joined by at most a single edge. The two
triangles thus cover the whole surface of the sphere, and there are thus
only three vertices in the graph, contrary to hypothesis.

Consider a vertex a touching other vertices b, ¢, ---, f. We read the
edges emenating from a in a counter-clockwise sense, and say, a touches
b, ¢, ---, f in cyclic order; or, a touches b, next ¢, ---, next f, next b.

Remembering now that the graph is composed of elementary triangles,
we have the three properties:

(a) Each vertex touches at least three other vertices in cyclic order, distinct
Jrom each other and distinct from the first,

(8) If a touches b and next c, then b touches c and next a,

() There are no triangles other than elementary triangles.

These properties, together with the fact that the graph lies on a sphere,
is all we need to prove the following lemma, from which the theorem is
deduced.

LEMMA. Consider a circuit R in a graph of the type considered in Theorem 1,
together with the vertices and edges on one side, which we shall call the inside.
Let A and B be two distinct vertices of R, dividing R into the two parts R,
and Ry, in each of which we include both A and B. Suppose

(1) No pair of vertices of R, touch each other inside R (arejoined by an edge
which lies inside R), and

(2) Either no pair of vertices of Ry touch each other inside R, or else there
is a vertex C in Ry distinct from A and B, dividing R, into the two parts Ry
and Ry, in each of which we include C, such that mo pair of vertices of Ry
and no pair of vertices of Ry touch each other inside R.

Then we can draw a line from A to B, passing only along edges of and in-
side R, and passing through each vertex of and inside R once and only once.

In brief, if we can divide the circuit R into either two or three parts,
such that in any part, including end vertices, no pair of vertices touch
each other inside R, we can then draw the required curve from any one
end vertex to any other end vertex of these parts.

The theorem is an immediate consequence of the lemma. For consider
any elementary triangle of the graph, containing the vertices 4, B, C,
which we call the circuit . The rest of the graph we call the inside
of the circuit. As each pair of vertices of R touch as a part of the
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circuit, and any two vertices are joined by at most one edge, it follows
that no pair of them touch inside B. Thus the conditions of the lemma
are fulfilled, and we can pass from 4 to B through every vertex of R
and every vertex inside F, that is, through every vertex of the graph.
We now pass from B directly to 4, forming a closed curve. The edges
passed over by the curve form the desired circuit.

Proof of the lemma. Assume the lemma is true for all circuits which,
with the vertices inside, contain m vertices, m = 3,4, ..., n—1. It is
obviously true for the case where m = 3. We will prove it for all
circuits which, with the vertices inside, contain » vertices. Then, by
mathematical induction, it is true in general.

Take any circuit R therefore, which, with the vertices inside, contains n
vertices. Let the vertices of the circuit be 4, a;, as, -+, aa, B, by, bs, - - -, bg,
C, ¢, cay -+, ¢y, A, (reading in a clockwise sense). We assume that
no pair of the vertices A4, a;, ---, ae, B, no pair of the vertices
B, b, ---, bg, C, (or with C replaced by A4, if there is no C), and no
pair of the vertices C, ¢;, - - -, ¢y, A touch inside the circuit. The vertices
C, ¢, ---, ¢y may be missing from the circuit, as may also the vertices
y, -+, @ OT by, ---, bg. We wish to draw the required curve from 4 to B.

We will divide the proof into four parts, according to what pairs of
vertices of the circuit touch inside the circuit:

Case (1). Some vertex a, touches a vertex b,, C, or ¢s inside R.

Case (2). There are no edges of the above form, but either B touches
a vertex ¢; or A touches a vertex ), inside R.

Case (3). No pairs of vertices of the circuit touch inside the circuit.

Case (4). Some vertex b, touches a vertex c; inside R, but there are
no edges of other forms between vertices of the circuit inside the circuit.

Case (1). Assume there is an edge of one of the forms a, C, @, cs. The
case where there is no edge as above, but there is an edge of the form
ay by, is reduced to this case by interchanging the roles of 4 and B and
of cs and b,. Suppose the edge mnearest A is a; k. If it is a; C, we
call , cx. The meaning of “nearest A” is obvious. Now either, Case (1a),
c¢x touches none of the vertices a;+1, ---, ae, B, or, Case (1b), a; touches none
of the vertices C, ¢, - - -, cx— inside the circuit cx, ai, - - -, au, B, by, -+, bg,
Cyey -+ ek If ¢ is C, the latter condition is satisfied automatically.

Consider Case (1a). We shall draw the required curve in two steps:
first from A4 to ¢, then from cx to B.

If first, Case (1a,), a;is not a;, a;—1 exists, and does not touch ¢ inside
the circuit, as the edge «; ¢, was the edge of this form nearest A. Therefore
a; must touch some vertex in between «;—; and ¢;. For if a; touched a;—;
and next ¢y, a;—1 would touch ¢ and next a; by (8). Thus «;,—; would



382 H. WHITNEY.

touch ¢y between a;— (or A) and a;, and the edge a;—1 ¢ would therefor
be inside the circuit, which it cannot be, again as the edge a;cx was the edge

4 of this form nearest A. As a; touches
a, -1 a;
P,
A P(r
Cy x

vertices it touches between a;—; and ¢;;

s no vertices of the set cxi1, ---, ¢,
4, ay, -+ -, ai— inside the circuit, any
B
must be vertices inside the circuit R.
b

< Cby : Call them in order pi, ps, -+, Pop.

Fig. 4. Then, by (8), a;—1 touches p,, p, touches

Pe, - -, and pg touches ci.. We have

thus formed a eircuit 4, a;. - -+, ai1, ps - - -, Pp, Cks -+ -, ¢, A, No pair of
the vertices 4, a;, -- -, ;-1 touch inside this circuit, as none of the set
A, a, -+, aa, B touched inside the circuit E. Similarly no pair of the

set ¢y, ---, ¢y, A touch inside the circuit. Finally, no pair of the set
@i—1, P1s - - -+ Pg, i touch inside the circuit. For suppose for instance py
touched py inside, 2 >g¢. «; does not touch p, and next pn, as pgy and py
would then touch as a part of the circuit, and therefor not inside the
circuit. Therefor « touches a vertex ps in between. But then a:, pg
and p, form a triangle, with ps; on one side, and other vertices, as 4, on
the other side, which is therefor not an elementary triangle, in contra-
diction to (y). Thus all the conditions of the lemma are satisfied for this
circuit, and there are fewer than n vertices in and within the circuit. We
can therefor draw a line from 4 to ¢ passing through every vertex of
and inside the circuit.

If next a; is ay, suppose, Case (la.), ¢x is not ¢,. (If the edge nearest A
is a; C, suppose there is a vertex ¢, in R.) By uypothesis, ¢; does not
touch A inside the circuit. Therefor a, touches vertices between 4 and cx.
For otherwise, a, would touch 4 and next ¢z, and therefor A would
touch ¢ and next a;, by (8). But as ¢ is not ¢,, A would touch cx between
¢y and a;, and the edge Acy would be inside the circuit. As a, does not
touch ¢pi1, - -+, ¢, inside the circuit, the vertices it touches between 4
and ¢, must be vertices not in R. Call these vertices in order p,, - - -, pg.
We get thus a circuit 4, ps, -+, pg, ¢k, -+, ¢y, 4. No pair of the set
of vertices ¢, -+ -, ¢, A touch inside the circuit, nor do any of the set 4,
Py c s Pa, Ck, using exactly the same reasoning as in Case (la;). Thus
the lemma applies to this circuit, and we pass from 4 to cx, passing through
every vertex of and inside the circuit.

In each of the two Cases (1a;) and (1a;) we have now passed through
every vertex of and inside £ which is on A’s side of the edge «;ck.
For consider the circuit a;, cx, py -, P, ttie1, a;, (ov with a;,—; re-
placed by 4, if «; is «). As a; touches every other vertex of the
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circuit, there can be no vertices inside the circuit. For if there were
a vertex d inside the circuit, it must then lie inside one of the tri-
angles a;, p1, ai—1 (or A), ai, or ai, ps, P1, @, O ***, OF Qs Cky, Pp, Gi.
In any case, (y) would be violated. We have thus only to pass from ¢
to B on B’s side of the edge a; ¢, that is, through the circuit cx, a;, ---,
ey B,y by, o,y bﬂy Cy ey ooy i

We have still to consider in Case (la) the Case (lag), where the edge
nearest A was the edge a, ¢y (or a; C, when there is no c;,). Draw
a line directly from A4 to ¢y (or C). As there are no vertices inside
the circuit 4, a,, ¢,, 4 (or 4, a;, C, 4) by (7), we have left to pass
through only vertices of and inside the same circuit as in Cases (la;)
and (1ay).

But we can do this, by the lemma. For, no pair of the set a;, - - -, de,
B touch inside the circuit. Also, ¢, touches none of these vertices inside
the circuit, by the hypothesis of Case (la). Therefor none of the vertices
Cky, @y, ", de, B touch inside the circuit. Nor do any of the set B,
by, *=+, bg, C, or any of the set C, ¢, *--, e, (if these are present),
by the original hypotheses. The circuit is thus divided into two or threc
parts, depending on whether ¢, is C or not, and the lemma applies in either
case. We thus pass from ¢, to B, completing the required curve from A4
to B. This disposes of Case (1a).

Consider Case (1b), where a; touches none of the vertices C, ¢, -, ¢x—1,
inside the circuit (if any are present). In this case, instead of passing from
A to ¢y through all the vertices of and inside the cireuwit 4, a,, - -, «;,

ey "ty ¢y, A, except a;, the same steps show we can pass from 4 to a
through every vertex of and inside this circuit except cx. We now apply
the lemma to pass from «; to B. For, no pair of vertices of the set C,

e, oo, ¢ touch inside the eireuit a;. - - -, ae, B, by, -+, bs, C, ¢, - -,
¢k, i, and a; touches none of these vertices inside the circuit; therefor
none of the set C, ¢;, -+, ¢, a; touch inside the circuit. Also, no pair
of the set a;, -+, ae, B, and no pair of the set B, b, ---, bg, C touch

inside the circuit. The proof for Case (1) is now complete.

Case (2). Suppose B touches a vertex c¢s inside the circuit. Of all such
vertices, let the one nearest A be ¢.. Exactly as we before passed from
A to ¢k, going through all the vertices on A’s side of the edge a; ¢, we
now pass from 4 to ¢, going through all the vertices on A’s side of the
edge Bei. We have now only to pass from ¢. to B, going through all
the vertices on the other side of the edge B¢;. But we can do this, by
the lemma. For the vertices ¢x, B do not touch inside the cireuit cr, B,
by, "+, bg, U5 ery -7, a. Also, no vertices of the set B, by, -+, bg, C,
and no vertices of the set C, ¢. ---. ¢ touch inside the circuit.
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The proof is the same if A touches some vertex b, inside the circuit.

Case (3). No vertices of the circuit touch inside the circuit. As
any circuit contains at least three vertices, there is at least one other
vertex besides 4 and B in the circuit. Thus if we call the vertices of
the circuit A, a,, -, aa, B, by, -, bg, A, either a, or bg, say bg, is
present. Draw a line from 4 to bs. We have still to pass from bs to B.

Suppose, Case (3a), a, is also present in the circuit. As a, and bg do
not touch inside the circuit, 4 does not touch bz and next a,, and A
touches therefor other vertices in between. Calling these in order p,, -,
P, We have a circuit g, pi, - °, Pp, 01, -, Ga, B, by, -+ . bg, where
at least bg, py, @, and B are present. The lemma applies to this circuit.
For, no pair of the vertices bg, pi. ***, pg, @, N0 pair of the vertices
@i, ** . de, B, and no pair of the vertices B, b, ---, bsg touch inside
the circuit. There are no vertices inside the circuit bg, 4, a1, pg, -,
P, bg, as A touches all the other vertices of this circuit.

Suppose now, Case (3b), @, is not present in the circuit, but by 4 by is.
Then, as B does not touch bs inside the circuit, A touches vertices
between bg and B, and we obtain the cireuit bg, p1, - - -, pg, B, by, - - -, bs,
to which the lemma applies. For, no pair of the vertices g, p1, - - -, pg, B,
and no pair of the vertices B, by, - - -, bz touch inside the circuit.

Consider now Case (3¢), where the circuit B consists only of the vertices
A, B, by =bg, A. If there are no vertices inside the circuit, we pass
directly from bg to B. If there are vertices inside the circuit, 4 touches
vertices between bs and B, and we obtain the circuit bg, p1, -+, po, B, bg,
to which the lemma applies, as in Case (3b).

Case (4). No pair of vertices of the circuit R touch inside except for
edges of the form b.¢s. Of all such edges, let the one furthest from the
vertex C be the edge bjcx. We will carry through the proof for this
case in three steps:

(1) A chain of vertices pi, - - -, pp with the edges joining them stretching
from b; to 4 and to a, (or to B, if there is no a,), will be found.

(2) A subset of these vertices with the edges joining them will form
another chain, ¢, - - -, go.

(8) The required curve will be drawn from A to b; on A’s side of this
latter chain, and from b; to B on the other side of the chain.

(1) The chain of p’s. As bj— (or B, if there is no bj—;) does not touch
¢k, the edge bjcx being the one furthest from C, b; touches a vertex in
between, which is inside the circuit R. Call p, the vertex b; touches
just before c¢x. Then p, touches cx and forms the first vertex of the chain.
If p, touches A, the first part of the chain is finished. If not, let ¢, be
the vertex of the set ¢, - - -, ¢, nearest A which it touches.
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Suppose we have constructed the chain as far as the vertex p;, which
does not touch 4, and ¢y, is the vertex nearest 4 which p; touches. Assume
the following properties
hold:

(a) All the p's are
distinct.

(b) Each ps, s <4,
touches the vertex psi1,
and each touches a ver-
tex ¢p,.

(¢) No p, touches any
of the vertices ¢y, -+, ¢,
inside the circuit 4, ai, - -+, ae, B, by, -+, bj, p1, -+, Pi, &, - -5 G, 4.

These properties are seen to hold when we have found the first vertex of
the chain, p,. Having found p;, we find the next vertex, p;~1, as follows.
As p; does not touch cp1, (or 4, if ¢, is ¢;), inside the circuit, ¢, touches
a vertex in between. Any such vertex is not a vertex of the circuit B,
nor is it any of the vertices p,, - - -, p;, by the above assumptions. Call p;44
the vertex ¢, touches next after p;. If piy1 touches A, the first part of
the chain is finished. Otherwise, let ¢, be the vertex nearest 4 that
pi+1 touches (which may be ¢;). Now piyy is distinct from all former
p’s, p; touches pit1, piy1 touches cp, , and no vertex pi, - - -, pit1 touches
¢p,,, O any vertex nearer .4 inside the new circuit. Thus the same properties
still hold, and we continue finding vertices of the chain.

We note that, although p;.; touches ¢y, it touches no vertex cs nearer C
than ¢,. Thus if p; touches cs, p; touches ¢, and j >, then ¢ > s.

We must eventually reach 4. For each time a vertex p; does not
touch 4, we find a new vertex p;i1, all the vertices ps; are distinct, and
there are only a finite number of vertices inside the circuit.

Call the last vertex of this chain p;. If py touches a, (or B, if there
is no @), call it also py. Otherwise, 4 touches vertices in between,
none of which are vertices of the circuit B or of the chain p;, ---, py.
Call these in order pyi1, ---, pp. We now have a chain of vertices
P1s -+, P, stretching from b; to ai(or B), each of which touches a vertex cs
or 4.

(2) The chain of ¢'s. Mark in now any edges there may be joining
the vertices bj, p1, - - -, pp, a1 (B) inside the circuit we now have, which
includes the p’s and B. Call ¢; the vertex of the set pi, - - -, py nearest a, (B)
which b; touches (which may be p;). Thus ¢, exists. Having found g¢;,
if it touches a; (B), we cass call it go. Otherwise, we take as ¢;41 the
vertex of the set p,,---, py nearest a, (B) which ¢; touches. Continue
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in this manner till we reach a, (B). Now every vertex ¢; touches a vertex cs
or A. Also, no vertices of the set bj, q1, - - -, ¢o, a1 (D) touch inside the
circuit bj, qi, -+, o, a1, -+, @, B, b1, ---, bj (where the a’s may be
missing), on account of the construction of the chain. As, also, no pair
of the vertices a1, - - -, ae, B, and no pair of the vertices B, b1, ---, U
touch inside the circuit, we can apply the lemma and draw a line from
b to B, passing through every vertex of and inside this circuit.

(3.) The curve. If there are no vertices gs touching 4, call a1 (B), gy.
Otherwise, call the first vertex gs which touches 4, gy. To finish the proof
of the lemma, we have only to pass from A to b; through every vertex
on ¢g's side of, but not in, the chain bj, g1, - - -, quw, 4. For if gy is a1 (B),
the chains bj, q1, - -+, qw and bj, g1, - -+, go, a1 (B) are identical, and we
have passed through every vertex of and on B’s side of the chain in
passing from b; to B. 1f gy is not ai (B), consider the circuit 4, a1 (B),
qo. -+ -, @, A, (Where gy may be go). As A touches each of these vertices,
there can be no vertices inside the circuit, by (#). Thus all the vertices
we have not passed through on ¢’s side of the chain bj, g1, - -. go,
a1(B), A, are also on ¢'s side of the chain bj, g1, - - -, qu, 4.

We will pass from A to ¥; in two steps: first from 4 to cx, on A’s side
of the edge bj ¢y, then from c: to ;, on C’s side of the same edge.

Mark in all edges between the ¢’s and the ¢’s. Remembering that each
vertex ¢;, ¢ < ¥, touches a vertex cs, and that if g; touches ¢, ¢; touches ¢,
and j >/, then #>s, we see that these edges divide the section of the
oraph we must pass through into a number of sections, each of which
we will pass through in turn.

Suppose gy touches a vertex of the set cx, - - -, ¢, Call the one nearest A
that ¢y touches ¢;. If ¢4 is ¢y, there are no vertices inside the circuit 4,

qus ¢y, 4, and we pass directly from 4 to

Ty, ¢y. Otherwise, ¢; does not touch A4 inside

the circuit, and therefor g, touches other ver-

tices in between. Call these vertices in order

T P ri, -+, ru. There are no vertices inside the

cirenit A, qu, cg, Tu, -+, 71, 4. Thus we

need only pass from A to ¢, through all the

Fig. 6. vertices of and inside the circuit 4, »ry, - - -,

Ypy g, - o Gy, A, But we can do this, by the

lemma. For, no pair of the vertices A, ri, -+, 74, ¢5, and no pair of
the vertices ¢y, - - -. ¢y, 2 touch inside the circuit.

If ¢, touches any more vertices of the set cx, - -, ¢, We pass through
ecach of the sections thus formed in turn in exactly the same manner, till
we reach the last ¢ that gy touches, .
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If the vertex nearest A of the ¢'s that qy—: touches is ¢;, we must now
pass through the section bounded by ¢, qu, qu—1, ¢, -+, cn.

If ¢y did not touch any vertex ¢s, we would have this section to pass
through in the first place, ¢ being replaced by 4.

If ¢; is cp, this section is a triangle which contains no vertices inside,
and we consider the next section. Suppose therefor ¢; is not ¢,. As
then gy—1 does not touch cn, ¢y touches vertices
in between, none of which are any of the set
Ciy»+ -, cn. We obtain thus a chain of vertices
stretching from ¢, to qy—1, of which the last is d
say d. Similarly, we obtain a chain of vertices
stretching from ¢y to ¢;, of which the first is d.

As there are no vertices inside the circuit ¢, gy, i
Qu—1s Ciy + -+, d. ---, e, We have only to pass Fig. 7.

from ¢, to ¢; through the cirveuit ¢, ---, d, - - -,

¢y -+, cn. We can do this, by the lemma. FKor, no vertices of the set
cn, - -+, d, none of the set d, ---, ¢, and none of the set ¢;, - - -, ¢, touch
inside the circuit.

We pass in this manner through each section in turn, till we reach ..
The last section, in particular, is bounded by the vertices ¢, ¢1, bj, 1., - -, ¢7,
where ¢y is either ¢, or the vertex nearest ¢ of the ¢’s that ¢1 touches.
Thus here, b; takes the place of what would otherwise be the next q.

We have now but to pass from ¢. to b; on C’s side of the edge 0, c..
We can do this, by the lemma. For, the vertices ¢, b;, no pair of the
set bj, ---, bg, C, and no pair of the set (, ¢;, ---, ¢ touch inside the
circuit thus described.

The proof of the lemma, and therefor of Theorem I, is now complete.

1 -

3. Proofs of the theorems on maps.

The dual representation. Given a
map on the surface of a sphere, we
find the dual representation in the
form of a graph as follows. Mark in
each region of the map a point, which
will be a vertex of the graph, and
which we shall call by the same name
as the region of the map in which
it lies. Across each boundary line of
the map draw a line connecting the
vertices in the two regions the boundary separates, forming an edge of
the graph.
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Now surrounding each vertex of the map there is a region of the graph
bounded by a set of edges.

Proof of Theorem II. We will show first that in any map of the type
considered in Theorem II, the dual graph holds to the properties (&), (8)
and () of § 2.

Each region of the map is simply connected, on account of (A;). Each
boundary is a boundary between two distinct regions. For suppose there
were a boundary line QR running through a single region a. We could
then, starting from a point P of QR, move into a on one side of QF,
run along a path remaining always in «, and get back to P on the other side
of QR. Let us now run around the boundary of a. At some time we
pass along the boundary line QR. We are now inside the path we have
drawn through a, and as the boundary of « is a closed curve, we must get out
again. But we can only get out by passing through P, which contradicts (A,).

Suppose we run around the boundary of a region « in a counter-clockwise
sense. We are on successively sections of the boundary separating a from
other regions b, ¢, ---, f, in cyclic order. Thus in the dual graph,
«a touches b, c, ---, f, in cyclic order, and these vertices are distinct from a.

Suppose a touches b and next ¢. Then if we pass around the boundary
of the region a in a counter-clockwise sense, two successive sections of
this boundary will be C, separating « and b, and B, separating a and c.
C and B will meet at the vertex V. By (B), only one other boundary
line abutts at V. Call it A. It must thus separate the regions b and c.
Run now around the boundary of b in a counter-clockwise sense. Two
successive sections of this boundary will be A and C. Thus we see that
the vertex b touches ¢ and next a, proving property (8).

Suppose now a touches in order b, ¢, d, ---, f. These vertices are
then all distinct. For consider any two of the vertices a touches, say
b and d. If @ touches b and next d, or d and next b, then b touches d,
and therefor b and d are distinct. Suppose now « touches a vertex ¢ after b
and before d, and a vertex f after d and before . Here again b and d
must be distinct, for otherwise the regions « and b would form a multiply
connected region, separating ¢ and f, contrary to (As).

Except in a map of three regions, for which Theorem II is obvious,
each region of the map touches at least three others. For if there were
a region touching only one or two others, that region or pair of regions
would form a multiply connected region, contrary to (A;) or (As). Thus each
vertex of the dual graph touches at least three others. This finishes the
proof of property (c).

Finally, there are no triangles in the graph other than elementary triangles.
For if there were such a triangle, the regions of the map surrounding it
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would form a multiply connected region, contrary to (As). The properties
(), (8) and (y) are now proved.

Now, applying Theorem I to the dual graph, we find a circuit passing
through every vertex of the graph. This circuit is the desired closed curve
passing through every region of the map.

Proof of the equivalent statement of the four color map problem. Elementary
considerations in the four color map problem show that if any map of
the type considered in Theorem II can be colored in four colors, then any
map on the surface of a sphere can be colored in four colors. We need
therefor consider only maps of the above type.

Put the dual graph of such a map in the normal form. Suppose we
can color this polygonal configuration in four colors. We then color each
region of the map with the same color as the corresponding vertex of the
dual graph. Any two regions with a common boundary correspond to two
vertices of the graph which are joined by an edge, and are therefor of
different colors. ‘

The converse is obvious, as every polygonal configuration is the dual
of a map.

Conundrum. Suppose a man, living in a certain country (state), wishes
to visit all the countries about him, but does not wish to pass through
any country more than once on his voyage. Can he do it? If the region
he wishes to visit covers the entire globe, he can do it if the countries
make up a map of the type considered in Theorem II. Suppose now the
region covers but a portion of the globe. If, upon replacing the rest of
the globe by a single country, we obtain a map of the type considercd,
he can do it also. We have but to apply the lemma to the ring of coun-
tries about the added country. By (A;), no pair of the countries of this
ring touch inside the ring. Therefor, picking out any two adjacent coun-
tries of the ring, 4, B, we draw a line from one to the other, passing
through every country the man wishes to visit. We now join the two
ends of this line, completing the man’s path.

More generally, whenever the conditions of the lemma are satisfied by
the ring, calling some two adjacent countries A and B, we obtain the
desired path.

4. Further remarks.

Necessity of (Ag). Theorem I would not be true if the assumption that
there are no circuits of three edges other than the elementary triangles
were omitted. That is, Theorem II would not be true if the assumption (A,)
were omitted. The following example shows this.?

% This example of such a map containing the least number of regions was communicated
to me by C. N. Reynolds.
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The number Py. In constructing the normal form for a graph, we divide
an n-sided polygon into triangles by diagonals. It is interesting to know
in how many ways we can do this. The formula
for this number was found by Euler. A simple proof

was first given by Lamé:*

3.5.7...(2n—0>5)
3.4.5...(m—1) °

Pn —_— 2%-3

As we divide both the inside and outside of the

Fig. 9. polygon into triangles, we can construct in this

manner P, different figures. Of course these are not

all graphs of the type considered, and many of them give the same graph.
For instance, there are 96 different circuits in the graph, Fig. 1.

*J. Math. Pures Appl. (1), 3 (1838), pp. 505-507.
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