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The Story of Two Worlds

Let Ω ⊂ C be a simply connected domain.

Let φ : D→ Ω be a conformal Riemann map.

Let ω denote the harmonic measure.

Equivalent definition: ω(A) = λ1(φ−1(A)).

Sometimes we can associate a symbolic dynamical system
representing the domain.
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Why is this relationship interesting?
Questions where this connection is used.

• Brennan’s conjecture: Let Ω be a simply connected domain,
with at least two boundary points, and let φ be a conformal
map of Ω to the open unit disc. For which values of p ∈ R does∫∫

Ω

∣∣φ′∣∣p dxdy <∞ ?

• Littlewood’s constants: What is the best constant α such
that for any polynomial g of degree n the areal integral of its
spherical derivative is at most const nα?

• Makarov dimension theorem: The dimension of harmonic
measure is equal to 1.
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! The maps are defined on the 2nd generation because of

angles.

Identifying every linear map with a symbol,

we relate almost every point of the snowflake

with a sequence in ΣN, Σ is the alphabet.

π
3

4π
3

The Koch Snowflake.

→ Replacing the triangle by another polygon you get Carleson domain.

→ Allowing expanding conformal maps (instead of only linear ones) you get

Jordan Repellers.



The Main Objects- imprecise definitions

Definition

The Minkowski distortion spectrum, denoted d, is the
dimension of the set in ∂D where the derivative behaves

approximately like
(

1
1−r

)a
.

! Related to the Integral means spectrum by Legendre transform.

Definition

The Minkowski dimension spectrum, denoted f , is the
dimension of the set in ∂Ω where the harmonic measure behaves
approximately like δα.
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Let z ∈ ∂Ω be a point with
ω(B(z, δ)) roughly δα.

Assume there is an arc,
A ⊂ ∂D, with diameter(φ(A))
roughly δ and λ1(A) roughly
ω(B(z, δ)).← Could be false!!!
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Counterexample 1- The Feisty Pacman

δ

∼ δ2

The Feisty Pac-Man: One curve is too short and carries most of the
harmonic measure. The other curve is long, but carries very little
harmonic measure.
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happen infinitely often.
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In fact it can happen on a set of
dimension as close to 1 as you
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! We do not need slits, but this is simpler to see...

In fact it can happen on a set of
dimension as close to 1 as you
wish.
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∼ δ2

� δ2



Are We DOOMED?!?!?

Just a little bit...

Theorem (Binder, G., 2023?)

Quasi-disks satisfy what we want. (In particular, Jordan Repellers, or IFS).

The relation does not hold for every set, but holds for the
universal counterparts.

Theorem (The Universal Counterparts:
Carleson-Jones 1992, Makarov 1998, Binder-G., 2023?)

F (α) := sup
Ω
s.c

fΩ(α) = F+(α) = sup
F IFS

f+
ΩF

(α), for all α > 0.

D(a) := sup
Ω
s.c

dΩ (a) = sup
F IFS

dΩF (a) , for all a > 0.

In particular,
D

(
1− 1

α

)
=

1

α
F (α) .
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How?

1) Identify the important part of the boundary:
- dimension requires small curve with large harmonic measure.
- distortion requires long curve with small harmonic measure.

2) Cover the boundary of the domain with disks.
The important part of the boundary with disks of the correct
scale, the rest of the boundary with small disks.

3) For the polygon generated by these disks, at

most half of the important boundary does

NOT change its harmonic measure

significantly.

4) Replicate the construction of the Koch snowflake to generate a Repeller

(start with 2nd generation).

5) Use multiplicativity of harmonic measure of Repellers (refined Carleson’s

estimate) to get a lower bound on the spectrum.



Thank you!!!


	

