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Abstract. Let µ be a non-atomic self-similar measure on R, and let ν be its pushforward to
a non-degenerate curve in Rd, d ≥ 1. We show that for every ε > 0 there is p > 1, so that
∥ν̂∥pLp(B(R)) = Oε(R

ε) for all R > 1, where B(R) is the R-ball about the origin. As a corollary, we
show that convolution with ν quantitatively improves L2-dimension.

1. Introduction

1.1. Statement of Main results. Let U ⊆ R be an open interval. We call a Cd+1 curve Q : U →
Rd non-degenerate if

det[Q(1)(x)Q(2)(x) · · ·Q(d)(x)] ̸= 0 for all x ∈ U. (1.1)

When Q is real analytic, we call it non-trapped if the determinant above has at most finitely many
zeros in any compact interval; this is equivalent to the trace of Q not being contained in a proper
affine hyperplane of Rd (Lemma 2.12). Such curves have become standard objects in harmonic
analysis, see e.g. [FO14, GGW24] for some discussion and applications in modern projection theory.

The purpose of this paper is to study the Lp-norm of the Fourier transform of self-similar measures
on R, when they are pushed-forward by either a non-trapped or a non-degenerate curve.

Theorem 1.1. Let µ ∈ P(R) be a non-atomic self-similar measure, and let d ≥ 2. Let U be an
open interval containing supp(µ), and let Q : U → Rd be either a non-trapped analytic curve, or a
Cd+1 non-degenerate curve. Let ν = Qµ be the pushforward of µ via Q. Then,

∀ε > 0 ∃p > 1 ∀R > 0 : ∥ν̂∥pLp(B(R)) = Oε(R
ε), (1.2)

where B(R) is the R-ball around 0 in Rd.

Recall that a self-similar measure µ on the line is a Borel probability measure satisfying the
stationarity condition, for some strictly positive probability vector p,

µ =

n∑
i=1

pi · fiµ, where all fi ∈ Aff(R) are s.t. |f ′
i | ∈ (0, 1), and fiµ is the push forward of µ by fi.

See Section 2.1 for more discussion about them. Also, the notation Oε means the implicit constant
may depend on ε; it may also depend on µ, d,Q and the maps fi. Next, we note that the non-
degeneracy condition (1.1), and the non-trapped condition, cannot be relaxed from the Theorem.
Indeed, (1.2) cannot hold for any measure ν living on a proper affine subspace, since then |ν̂(ξ)| ∼ 1

for all frequencies ξ that are nearly orthogonal to the subspace supporting ν. In particular, such
frequencies contribute non-trivially to the Lp-norm of ν̂.
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Finally, let us explain the relation between the title of the paper and our main result. For m ∈ N,
let Dm be the dyadic partition of Rd given by translates of 2−m[0, 1)d by 2−mZd. Given q ≥ 1, we
define the moment sum corresponding to m, q, and a Borel probability measure ν, by

sm(ν, q)
def
=

∑
Q∈Dm

ν(Q)q.

For q = ∞, we set

sm(ν,∞)
def
= max {ν(Q) : Q ∈ Dm} .

A standard computation (Lemma 2.13) shows that if ν is compactly supported, then for every
R > 1, letting m = [log2R] ∈ N be the integer part of log2R, we have

sm(ν, 2) ≍ 2−dm ∥ν̂∥2L2(B(R)) .

Thus, the conclusion of Theorem 1.1 is equivalent to the following flattening phenomenon of moment
sums: for every ε > 0 there exists p ∈ N such that for all m large enough,

sm(ν∗p, 2) = Oε

(
2m(ε−d)

)
. (1.3)

Here µ∗ν means the usual Euclidean convolution of measures (pushforward of µ×ν by (x, y) 7→ x+y),
and ν∗p means the p-fold self-convolution of ν.

Theorem 1.1 has the following consequences. Recall that for a Borel probability ν on Rd and
1 < q < ∞, one defines its Lq-dimension via

dimq(ν) =
τq(ν)

q − 1
, where τq(ν) = lim inf

m→∞

− log sm(ν, q)

m
.

For q = ∞, we set dim∞(ν) = τ∞(ν). The L∞-dimension is also known as the Frostman exponent
of ν. With this notation, we have the following corollary of Theorem 1.1.

Corollary 1.2. Let ν be as in Theorem 1.1. Then,

(1) For all q ∈ [2,∞] we have limn→∞ dimq(ν
∗n) = d.

(2) For every γ > 0, there is η = η(γ) > 0 and m0 = m0(γ, η) > 1 such that the following holds
for all integers m ≥ m0: For every Borel probability measure θ,

sm(θ, 2) > 2m(γ−d) =⇒ sm(θ ∗ ν) ≤ 2−ηmsm(θ, 2). (1.4)

Indeed, both statements hold true for any measure ν satisfying (1.2).

Proof. Part (1) follows directly for q = 2 from Theorem 1.1, in its equivalent form (1.3). Hence,
the case q = ∞ then follows by Young’s inequality; cf. [MS18, Lemma 5.2], which then yields the
claim for all other values of q. Part (2) follows from Theorem 1.1 similarly to the proof of [MS18,
Theorem 4.1]. □

We proceed now to discuss some prior results in harmonic analysis, fractal geometry, and dynam-
ical systems, and how Theorem 1.1 and its proof compare to them.

1.2. Prior results. We begin by comparing Theorem 1.1 to recent results in harmonic analysis.
Recall that a probability measure ν on Rd is called an s-Frostman measure, where s ∈ [0, d], if
µ(B(x, r)) ≤ rs for all x ∈ Rd and r > 0. In [Orp23], Orponen proved that if ν is an s-Frostman
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measure on the truncated parabola P := {(x, x2) : [−1, 1]}, then ∥ν̂∥4L4(B(R)) ≪ R2−2s for all
R ≥ 1. For s ∈ (0, 1) and p > 4 he was able to obtain an ε = ε(p, s) improvement ∥ν̂∥pLp(B(R)) ≪
R2−2s−ε. Orponen also related this problem to the sum-product phenomenon and the Borel subring
problem [Orp23, Section 1.2]. He conjectured that for every s ∈ [0, 1] and ε > 0 there exists some
p = p(ε, s) ≥ 1 such that for every s-Frostman measure on P, ∥ν̂∥pLp(B(R)) ≪ R2−min{3s,1+s}+pε,
see [Orp23, Conjecture 1.6]. Furthermore, exploiting the relation with iterated sum-sets, it was
shown in [Orp23, Example 1.8] that the threshold min{3s, 1+s} cannot be further improved in this
generality. Dasu and Demeter [DD24] later extended these results for s-Frostman measures ν that
are supported on the graph of a C3([−1, 1], R) function γ such that minx∈[−1,1] |γ′′(x)| > 0; they
established an Orponen-like bound of the form ∥ν̂∥p

L6(B(R))
≪ R2−2s−β where β = β(s), s ∈ (0, 1).

The conjectured bound from [Orp23, Conjecture 1.6] was then established by Orponen, Puliatti,
and Pyörälä [OPP24], along with further applications and analogies with the dimensions of iterated
sum-sets on P; some problems in this direction, however, still remain open [OPP24, Questions 1 and
2]. Finally, for measures ν supported on graphs of functions as in the work of Dasu and Demeter
[DD24], it was very recently shown by Demeter and Wang [DW25] that if ν is s-Frostman where
s ∈ (0, 12) then ∥ν̂∥6L6(B(R)) ≪ R2−2s− s

4
+ε for all ε > 0. See also [Yi24] for further research in this

direction.
To compare Theorem 1.1 to these results, we first note that all non-atomic self-similar measures

are s-Frostman; this was first proved by Feng and Lau [FL09] (Proposition 2.6). The precise
computation of the best possible s given the generating IFS is a subtle problem, that is still open
in general; see Shmerkin’s work [Shm19] for some recent progress on it. Nonetheless, Theorem
1.1 dramatically improves upon the results in [Orp23, DD24, OPP24, DW25] as it shows optimal
flattening regardless of the precise value of s, for arbitrary non-trapped or non-degenerate curves
in every dimension. In particular, we show that for self-similar measures the general threshold
[Orp23, Example 1.8] can be substantially improved. However, unlike [Orp23, OPP24] where the
key step involves a reduction to a problem about Furstenberg sets, or [DD24, DW25] that use various
decoupling arguments, the stationary structure of self-similar measures allows for a wider array of
tools. It is thus interesting to ask how much regularity the measure should enjoy so that it can
break the general threshold given in [Orp23, Example 1.8]. In the same spirit, one may ask whether
Theorem 1.1 holds true for non-atomic Ahlfors-David regular measures (note, though, that not all
self-similar measures have this property).

Let us now place Theorem 1.1 within recent literature on fractal geometry and dynamical systems.
It can be considered a variant of the Fourier decay problem, which asks about optimal pointwise
estimates for the decay rate of ν̂(ξ) when ν is a stationary measure. For self-similar measures, it is of
central importance to understand when have polynomial decay (ν̂(ξ) = O(∥ξ∥−α) for some α > 0)
due to e.g. the relation between this property and the absolute continuity of ν [Shm14]. Solomyak
[Sol21], extending the classical Erdős-Kahane argument, had shown that polynomial decay is generic
among self-similar measures, and a full characterization of the Rajchman property for them had been
given by Li-Sahlsten [Li22], Brémont [Bré21] (see also Varjú-Yu [VY22]), and Rapaport [Rap22].
However, the only known explicit examples of self-similar measures with polynomial decay are due
to Dai, Feng, and Wang [DFW07], a work that was recently extended by Streck [Str23]. We remark
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that there are many explicit examples of measures with logarithmic decay (ν̂(ξ) = O((log |ξ|)−α)

for some α > 0) under various Diophantine conditions, see e.g. [Li22, VY22, AHW22, BKS24].
Another closely related direction concerns pointwise decay rates for non-linear push-forwards of

self-similar measures. It was first observed by Kaufman [Kau84] that, among other things, if g is
any C2 diffeomorphism on [0, 1] such that g′′ > 0 then the pushforward of the Cantor-Lebesgue
measure on the middle thirds Cantor set does have polynomial Fourier decay (even though the
original measure is not even Rajchman). This was extended to all uniformly contracting self-similar
measures by Mosquera and Shmerkin [MS18], and then to all non-atomic self-similar measures by
Algom, Chang, Meng Wu, and Yu-Liang Wu [ACWW25], and simultaneously and independently by
Baker and Banaji [BB25]. We note that, combined with the earlier works of Algom, Rodriguez Hertz,
and Wang [ARW23] and Baker and Sahlsten [BS23], this shows that all self-conformal measures with
respect to non-affine real analytic IFSs have polynomial Fourier decay. These results were extended
to higher dimensions in various directions by Algom, Rodriguez Hertz, and Wang [ARW24], Baker,
Khalil, and Sahlsten [BKS24], and Banaji and Yu [BY25].

The proof of Theorem 1.1 is related to the approach of [ACWW25, BKS24], where the main tool
exploited is the following large deviations estimate for the Fourier transform. Let µ be a non-atomic
self-similar measure on R. Then,

∀ε > 0∃δ > 0 s.t. ∀T ≫ 1, we can cover {|ξ| ≤ T : |µ̂(ξ)| ≥ T−δ} by Oε(T
ε) intervals of size 1.

(1.5)
This was first observed by Kaufman [Kau84] for some Bernoulli convolutions. Tsujii [Tsu15] proved
(1.5) for all non-atomic self-similar measures. Mosquera and Shmerkin [MS18] proved effective
(quantitative) versions of (1.5); these in turn allow one to give explicit lower bounds on the Fourier
dimension of non-linear images of self-similar measures; see also [BY25] for related results. Note
that large deviation estimates of the form (1.5) are equivalent to the Lp-norm bounds in (1.2).

A general criterion implying that (1.5) holds for arbitrary Borel probability measures (not nec-
essarily self-similar) was established in [Kha23]. Namely, it is shown that ν satisfies (1.2) if for all
ε > 0, there is δ > 0 such that for all proper affine subspaces W , we have

ν(W (δr) ∩B(x, r)) ≤ ε ν (B(x,O(r))) , (1.6)

for all x ∈ supp(ν) outside an exponentially small exceptional set, and all but a small proportion of
scales r > 0; cf. [Kha23, Cor. 1.7 and 6.4] for precise statements. Here, W (δr) and B(x, r) denote
the δr-neighborhood of W and the r-ball around x respectively.

The proof this result involves producing conditions on measures that are not L2-improving in the
sense of (1.4), generalizing Shmerkin’s 1-dimensional inverse theorem [Shm19] to higher dimensions;
cf. [Kha23, Prop. 11.10]. In particular, it is shown that large subsets in the supports of such
measures must locally concentrate near proper subspaces at many scales. A similar result was
recently obtained by Shmerkin in [Shm25], where the local structure of the non-improved measure
θ in (1.4) was also described. In both instances, the proof relies on Hochman’s inverse theorem for
entropy [Hoc15] and the asymmetric Balog-Szemerédi-Gowers Lemma [TV06]. To obtain (1.2), this
multi-scale concentration is ruled out using (1.6) through induction on scales [Kha23, Cor. 6.4].
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A natural question is to find weaker non-concentration conditions than (1.6) under which (1.5)
(and hence (1.2)) can be shown to hold. This question served as one of the major motivations of
this work. In this vein, Theorem 1.1 provides a natural class of examples where the local non-
concentration estimate (1.6) fails on large sets at every scale (due to local concentration of curves
along their tangent lines), while the flattening estimate (1.2) holds. In particular, such local con-
centration is a serious obstacle to carrying out the approach of [Kha23], and indeed, our proof of
Theorem 1.1 uses different techniques.

1.3. On the proof of Theorem 1.1. The proof of Theorem 1.1 consists of two main parts,
corresponding to two ranges of frequencies which we now introduce. For R ≥ 1 and ε > 0, let

CR,ε
def
=
{
(θ, ζ) ∈ R× Rd−1 : |θ|ε ≤ ∥ζ∥ ≤ R

}
,

ER,ε
def
=
{
(θ, ζ) ∈ R× Rd−1 : ∥ζ∥ ≤ |θ|ε ≤ Rε

}
.

In particular, we have the following decomposition of B(R):

B(R) = CR,ε

⋃
ER,ε. (1.7)

To describe the first ingredient, let d ≥ 1 and define the moment curve

Vd(x)
def
= (x, x2, . . . , xd) if d ≥ 2, and V1(x) = x otherwise.

Theorem 1.3. Let µ be a non-atomic self-similar measure on R. Let d ≥ 2 and assume that

∀ε > 0 ∃p > 1 ∀R > 0 :
∥∥∥V̂d−1µ

∥∥∥p
Lp(B(R))

= Oε(R
ε). (1.8)

Let g : U → Rd−1 be a map defined on an open neighborhood U of supp(µ), such that Q(x) =

(x, g(x)) is either a non-trapped analytic curve, or a Cd+1 non-degenerate curve. Let ν = Qµ be the
pushforward of µ to the graph of g. Then, for every ε > 0, there is p0 = p0(µ, g, ε) > 1 such that
for all p ≥ p0, we have ∫

CR,ε

|ν̂(ξ)|p dξ = Oε(R
ε).

The following is the second main ingredient in our proof which handles the region ER,ε.

Proposition 1.4. Let µ ∈ P(R) be a non-atomic self-similar measure and d ≥ 2. Let g : U → Rd−1

be a C1-map defined on an open neighborhood U of supp(µ). For Q(x) = (x, g(x)), let ν = Qµ be
the pushforward of µ to the graph of g. Then, for every ε > 0, there exists p = p(ε, µ) > 1 such that
for all R ≥ 1, we have ∫

ER,ε

|ν̂(ξ)|p dξ = Oε,µ(R
ε).

First, let us show how Theorem 1.1 follows quickly from Theorem 1.3 and Proposition 1.4.

Proof of Theorem 1.1 assuming Theorem 1.3 and Prop. 1.4. We proceed by induction on
the ambient dimension d. By Tsujii’s Theorem (Corollary 2.9) for d = 2, and by induction for
d > 2, we may assume that Hypothesis (1.8) holds for ν = Vd−1µ, where Vd−1 is the moment curve
in Rd−1. By replacing µ with an affine image of smaller diameter, and replacing U with a smaller
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neighborhood if necessary, we may assume, after an affine change of coordinates, that Q(x) takes
the form (x, g(x)), for a map g : U → Rd−1 as in Theorem 1.3. Hence, in view of (1.7), Theorem
1.3 and Proposition 1.4 together imply Theorem 1.1. □

Next, we describe the ideas behind the above two intermediate results, beginning with Proposition
1.4. Here, the main observation is that, via the coordinate relation in ER,ε and the Lipchitz
continuity of ν̂, we can fully reduce it to an estimate about the Fourier transform of µ itself (Lemma
4.3). This estimate is then obtained in Lemma 4.4, where the end-game step follows from Tsujii’s
large deviations estimate (1.5) (Corollary 2.9). The details are given in Section 4.

The key to the proof of Theorem 1.3 is the following proposition providing polynomial pointwise
decay in a large region of of frequencies, from which Theorem 1.3 follows immediately; cf. Corollary
3.7 for this deduction.

Proposition 1.5. Let µ be a non-atomic self-similar measure on R. Let d ≥ 2 and assume that
the flattening estimate (1.8) holds for Vd−1µ. Let g : U → Rd−1 be as in Theorem 1.3. For Q(x) =

(x, g(x)), let ν = Qµ be the pushforward of µ to the graph of g. Then, there exists γ = γ(µ, g) > 0

such that for every ξ = (θ, ζ) ∈ R× Rd−1 with ζ ̸= 0, we have |ν̂(ξ)| ≪ ∥ζ∥−γ.

Proposition 1.5 is closely related to the aforementioned pointwise Fourier decay results for non-
linear pushforwards of self-similar measures obtained in [ACWW25, BB25], as well as to forthcoming
work of Banaji and Yu for pushforwards of self-similar measures on Rk to graphs of analytic maps
g : Rk → Rk+d. We give a somewhat different proof of this result here, which we believe will be
useful for future generalizations of Theorem 1.1.

It remains to explain the proof of Proposition 1.5. First, via Taylor expansion and a change of
coordinates, we will deduce Proposition 1.4 from the special case Q(x) = Vd(x), where Vd(x) is the
moment curve. This deduction is carried out in Section 3.2.

The special case of the moment curve is carried out in Proposition 3.1. The key observation in
the proof of the latter, which is based upon a construction of Feng and Käenmäki [FK18, Lemma
3.1], is that the pushed self-similar measure ν = Vdµ is, in fact, self-affine: that is, there exist
Ai ∈ GL(Rd) with ∥Ai∥ < 1, and bi ∈ Rd, such that for Fi(x) = Aix+ bi, we have

ν =
n∑

i=1

pi · Fiµ.

See Lemma 2.10 below for the precise statement. Note that the probability vector p is the same
one that is used to define µ.

This observation is then used to express the Fourier coefficient ν̂(ξ) as an average over many
Fourier coefficients of the original measure µ. Roughly speaking, since the derivative of Vd is
essentially given by a copy of Vd−1, the set of frequencies we average over arise from a projection of
Vd−1µ in a suitable direction determined by the original frequency ξ.

We then take advantage of our inductive flattening hypothesis (1.8) to ensure that all projections
admit a uniform lower bound on their upper Frostman exponent. Indeed, the latter property in fact
holds for any measure satisfying (1.8); cf. Theorem 2.4. It is likely that such Frostman bounds could
be verified directly without appealing to (1.8); cf. [KLW04, Theorems 2.1(b) and 2.3] for special
cases of this statement.
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The Frostman bound on the projections of Vd−1µ in turn ensures that our average is sampled
along a well-separated set of frequencies, thus enabling us to apply Tsujii’s large deviations estimate
(1.5) to conclude the proof.

1.4. Notation. Throughout the article, given two quantities A and B, we use the Vinogradov
notation A ≪ B to mean that there exists a constant C ≥ 1, possibly depending on the self-similar
measure µ, ambient dimension d, and the analytic map g, such that |A| ≤ CB. In particular,
we suppress these dependencies except when we wish to emphasize them. We write A ≪x,y B to
indicate that the implicit constant depends on parameters x and y. We also write A = Ox(B) to
mean A ≪x B. Finally, we write A ≍x B to mean A ≪x B and B ≪x A. For x ∈ R,

e(x)
def
= e2πix.

Finally, for v ∈ Rn, ∥v∥ denotes the max norm.
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and Amlan Banaji for comments on an earlier draft. O.K. acknowledges NSF support under grants
DMS-2337911 and DMS-2247713. A.A. is supported by Grant No. 2022034 from the United States
- Israel Binational Science Foundation (BSF), Jerusalem, Israel.

2. Preliminaries

2.1. Self-similar measures. Let

Φ = {fi(x) = λix+ ti}i∈I , |I| = n > 1,

be a finite set of invertible strictly contracting similitudes preserving a compact interval J ⊆ R
(often we will work with J = [0, 1]). In particular, 0 < |λi| < 1 for all i ∈ I. We call Φ a self-similar
IFS (Iterated Function System). It is well known that there exists a unique compact non-empty
set K = KΦ ⊆ J such that

K =
⋃
i∈I

fi(K).

The set K is called the attractor of Φ, and the self-similar set generated by it. We always make
the assumption that there exist i, j ∈ I such that the fixed point of fi differs from that of fj ; this
is known to imply that K is infinite (in fact, has positive Hausdorff dimension).

Next, let p = (p1, . . . ,pn) be a (strictly positive) probability vector: For all i we have pi > 0,
and

∑
i pi = 1. Then it is well known that there exists a unique Borel probability measure µ such

that
µ =

∑
i

pi · fiµ, where fiµ is the push forward of µ by fi.

The measure µ is called a self-similar measure, and is supported on K. Occasionally we will use
the notation weighted IFS and write the pair (Φ,p) to indicate a self-similar IFS paired with a
probability vector. Under our assumptions (K is infinite and p is strictly positive) the measure µ

is known to be non-atomic. Thus, all self-similar measures considered in this paper are non-atomic.
We next define cut-sets related with Φ and µ. For more details about this, see e.g. [BP17,

Chapter 2]. For ω = ω1 . . . ωn ∈ In, n ∈ N, we define fω := fω1 ◦ . . . fωn .



8 AMIR ALGOM AND OSAMA KHALIL

Definition 2.1. Let Φ = {fi(x) = λix+ ti}i∈I be a self-similar IFS on R, and let τ ∈ (0, 1). The
cut-set corresponding to τ is defined by

Pτ :=
{
ω = (ω1, . . . , ωk) ∈ I∗ : |λω1 · . . . λωk

| < τ yet
∣∣λω1 · . . . λωk−1

∣∣ ≥ τ
}
.

Given a probability vector p, and a self-similar measure µ associated to (Φ,p), we set

µτ
def
=
∑
ω∈Pτ

pωδtω ,

where
tω = fω(0) for ω ∈ Pτ .

We record a number of standard facts regarding cut-sets. See e.g. [ACWW25, Lemma 2.2] for a
closely related discussion.

Lemma 2.2. Let µ be a non-atomic self-similar measure on R with respect to the weighted IFS
(Φ,p). If τ ∈ (0, 1) is sufficiently small then:

(1) We have

µ =
∑
ω∈Pτ

pω · fωµ, where pω =

|ω|∏
i=1

pi, and fω = fω1 ◦ · · · ◦ fω|ω| .

In particular,
µ̂ =

∑
ω∈Pτ

pω · f̂ωµ.

(2) Let Λτ ⊆ (−1, 1) denote the set

Λτ := {rω : ω ∈ Pτ}, where rω = rω1 · . . . rω|ω| .

Then, #Λτ ≪ (− log τ)n+1, where n = |Φ|.

Proof. The proof of Part (1) follows from a standard stopping time type argument, see e.g. [BP17,
Definition 2.2.3 and Lemma 2.2.4].

As for the numerical estimate in Part (2), let us first estimate, for m ∈ N

|{rη : η ∈ Im}| .

That is, we count how many different contraction ratios the maps in the IFS

Φm := {fη : η ∈ Im}

can admit. Note that for any map fη(x) = rη ·x+ tη ∈ Φm, rη only depends on the amount of times
each ri appears in η, for i ∈ A. So, writing

ni = ni(η) = |{1 ≤ j ≤ m : ηj = i}| ,

we have

log |rη| =
n∑

i=1

ni log |ri| , and
n∑

i=1

ni = m.
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By a standard combinatorial argument, there are at most(
n+m− 1

m

)
different possible values for this sum. It follows that

|{rη : η ∈ Am}| ≤ O (mn) ,

where the implicit constant is bounded independently of m.
Finally, since mini∈A |ri| > 0, there exists some d ∈ N such that: For all τ > 0 and all ω ∈ AN,

max { |ω| : ω ∈ Pτ} ≤ −d · log τ.

Thus, by definition

Pτ ⊆
[− log τ ]+1⋃

i=1

{
rη : η ∈ Id·i

}
,

where [− log τ ] is the integer part of − log τ . So, via our previous estimates,

|{rη : η ∈ Pτ}| ≤
[− log τ ]+1∑

i=1

O ((d · i)n) ≤ ([− log τ ]+1)·O ((d · ([− log τ ] + 1))n) = O
(
(− log τ)n+1

)
.

This is the required bound. □

2.2. Frostman exponents of projections and discretizations. Let µ be a non-atomic self-
similar measure on R for an IFS Φ and a strictly positive probability vector p. We require the
following uniform estimate on the Frostman exponent of projections of pushforwards of the discrete
measures µτ to non-degenerate curves. For an affine subspace W ⊂ Rd and ε > 0, we denote by
W (ε) be the open ε-neighborhood of W .

Proposition 2.3. Let µ ∈ P(R) be a non-atomic self-similar measure. Let d ≥ 1 and let g : U → Rd

be a Lipschitz continuous map defined on an open neighborhood U of supp(µ). Let Q(x) = (x, g(x))

and τ ∈ (0, 1) and consider the measures ν, ντ ∈ P(Rd+1) defined by

ν := Qµ, and ντ := Qµτ .

Suppose that ν satisfies (1.2). Then, there are β, ϱ > 0 and C ≥ 1 such that for every proper affine
subspace W ⊂ Rd we have

ντ (W (ε)) ≤ Cεβ, for all ε > τϱ.

Proposition 2.3 is a rather direct consequence of the following Theorem:

Theorem 2.4 ([Kha23, Theorem 6.23]). Let ν be a compactly supported probability measure on Rd

satisfying (1.2). Then, there are β > 0 and C ≥ 1 such that ν(W (ε)) ≤ Cεβ for all proper affine
subspaces W ⊂ Rd and ε > 0.

Remark 2.5. The statement of Theorem 2.4 is different from the reference [Kha23, Theorem 6.23],
however the proof of the latter is written for measures satisfying (1.2).

Proof of Proposition 2.3. First, since the IFS is uniformly contracting, for some γ > 0 we have

|µτ (φ)− µ(φ)| ≪ τγ ∥φ∥Lip ,



10 AMIR ALGOM AND OSAMA KHALIL

for any Lipschitz function φ, where ∥φ∥Lip is the Lipschitz constant of φ. This follows for instance
by straightforward adaptation of the argument of [Hut81, Theorem 4.4.1(ii)] to averages over general
cut-sets. Hence, the same bound holds for ν and ντ in place of µ and µτ . To conclude the proof,
let B ⊂ Rd be a large ball containing the supports of ν and ντ for all τ ∈ (0, 1). Let φ be a
Lipschitz function that is identically 1 on W (ε) ∩ B and vanishing outside W (2ε). In particular,
∥φ∥Lip ≪ ε−1. Combined with Theorem 2.4, we obtain

ντ (W (ε)) ≤ ν(φ) +O(ε−1τγ) ≤ ν(W (2ε)) +O(ε−1τγ) = O(εβ + ε−1τγ),

for some α > 0. The above bound is thus O(εβ) whenever ε > τγ/(1+β). □

We also recall the following fact, due to Feng and Lau [FL09], that non-atomic self-similar mea-
sures are always upper Frostman (Hölder) regular. See [GKM22] for a more recent and more general
version.

Proposition 2.6 ([FL09, Proposition 2.2]). Let µ be a non-atomic self-similar measure on R. Then,
there exists some s0 = s0(µ) > 0 such that

sup
x∈R

µ (B(x, r)) ≪µ rs0 , for all r > 0.

In particular, there is ϱ > 0 such that for every τ ∈ (0, 1), we have that

sup
x∈R

µτ (B(x, r)) ≪µ rs0 , for all r > τϱ,

where µτ is the discretization of µ defined in Def. 2.1.

Remark 2.7. The reference [FL09, Proposition 2.2] proves the first assertion of Prop. 2.6. The
second assertion concerning the discrete measures µτ follows from the first by the same argument
in the proof of Proposition 2.3, or from [GKM22].

2.3. Tsujii’s large deviations estimate and its consequences. In this section, we recall a
result of Tsujii that plays a key role in our analysis.

Theorem 2.8 ([Tsu15]). Let µ be a non-atomic self-similar measure on R. Then for every ε > 0

there exists some c0 = c0(ε, µ) such that for all t ≫ 1

Leb
({

ξ ∈ (−et, et) : |µ̂(ξ)| ≥ |ξ|−c0
})

≤ etε.

Theorem 2.8 immediately implies the following version of Theorem 1.1 for the self-similar measure
µ itself.

Corollary 2.9. Let µ be a non-atomic self-similar measure on R and let B(R) be the R-ball around
0. Then,

∀ε > 0 ∃p ∈ N : ∥µ̂∥pLp(B(R)) = Oε(R
ε).

Moreover, for every ε > 0, there is δ > 0 so that the set of ξ ∈ B(R) with |µ̂(ξ)| > R−δ can be
covered with Oε,µ(R

ε) intervals of length 1.
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Proof. Let ε > 0 and let p ∈ N to be chosen later. Applying Theorem 2.8 with t = logR and letting
c0 be as in the Theorem, we see that∫ R

−R
|µ̂(ξ)|p dξ ≤

∫
{ξ∈B(R): |µ̂(ξ)|<|ξ|−c0}

|µ̂(ξ)|p dξ +Rε ≤
∫ R

−R
|ξ|−c0·p dξ +Rε = O(R−c0·p+1) +Rε.

Taking p ≫ 1 in a manner that depends on c0, we obtain the first conclusion. The second conclusion
follows from Theorem 2.8 using the fact that µ̂ is Lipschitz and hence is slowly varying on small
intervals; cf. [ACWW25, Corollary 2.5] for a detailed proof. □

2.4. Self-similar sets and measures on the moment curve. A key observation in our analysis
is that if we are push a self-similar set (resp. measure) to the moment curve (x, x2, ..., xℓ) then the
resulting set is, in fact, a self-affine set (resp. measure). The proof is based upon a construction of
Feng and Käenmäki [FK18, Lemma 3.1]:

Lemma 2.10. Suppose KΦ is a self-similar set generated by the IFS Φ = {fi(x) = λi · x + ti}ni=1

on [0, 1]. Let Pℓ(x) = (x, x2, ..., xℓ). Then Pℓ(K) is the attractor of the self affine IFS

Ψ :=

{
Fi(x) = Ai · x−Ai

(
− ti
λi

,

(
− ti
λi

)2

, . . . ,

(
− ti
λi

)ℓ
)}

,

where

Ai =


λici,1,1 0 0 . . . 0

λ2
i ci,2,1 λ2

i ci,2,2 0 . . . 0

λ3
i ci,3,1 λ3

i ci,3,2 λ3
i ci,3,3 . . . 0

...
...

...
. . .

...
λℓ
ici,ℓ,1 λℓ

ici,ℓ,2 λn
i ci,ℓ,3 . . . λℓ

ici,ℓ,ℓ

 ,

and ci,k,j :=

(
k

j

)
·
(
ti
λi

)k−j

for (i, k, j) ∈ {1, ..., n} × {1, ..., ℓ}2.

We remark that a direct computation shows that if maxi |λi| < 1
22ℓ

√
ℓ

then ||Ti|| < 1 for all i,
whence the IFS Ψ will be uniformly contracting. Clearly we can induce the original IFS to achieve
this (assuming as we may that ℓ is given). So, in application, we can assume without the loss of
generality that Ψ is a uniformly contracting IFS.

Proof. Let x ∈ R. Then for every 1 ≤ k ≤ ℓ and 1 ≤ i ≤ n we have(
x−

(
− ti
λi

))k

=
k∑

j=1

ci,k,j

(
xj −

(
− ti
λi

)j
)
.

It follows that for every 1 ≤ i ≤ n and x ∈ R we have

Fi(x, x
2, . . . , xℓ) = Ti

(
x−

(
− ti
λi

)
, x2 −

(
− ti
λi

)2

, . . . , xℓ −
(
− ti
λi

)ℓ
)

=

(
λ

(
x−

(
− ti
λi

))
, λ2

(
x2 −

(
− ti
λi

))2

, . . . , λℓ

(
x−

(
− ti
λi

))ℓ
)

=
(
λi · x+ ti, (λi · x+ ti)

2 , . . . , (λi · x+ ti)
ℓ
)
.
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It follows that, writing K̃ = Pℓ(K), for every i ∈ {1, ..., n}, we have

Ti(K̃) =
{(

fi(x), f2
i (x), . . . , f

ℓ
i (x)

)
: x ∈ K

}
Therefore,

n⋃
i=1

Fi(K̃) =
n⋃

i=1

{(
fi(x), f

2
i (x), . . . , f

ℓ
i (x)

)
: x ∈ K

}
= {Pℓ(x) : x ∈ K} = Pℓ(K) = K̃.

The proof is complete. □

Corollary 2.11. Let µ ∈ P([0, 1]) be a self-similar measure with respect to the self-similar IFS
Φ = {fi(x) = λi ·x+ ti}ni=1 and the probability vector p. Then ν = Pℓµ is a self-affine measure with
respect to the IFS Ψ defined in Lemma 2.10, and the same probability vector p.

Proof. This is a direct consequence of the previous Lemma and its proof. □

2.5. Basic properties of analytic maps. The following lemma is a consequence of finiteness of
the number of zeros of non-identically vanishing analytic maps in a compact interval, combined with
upper Frostman regularity of self-similar measures.

Lemma 2.12. Let g : U → Rd−1 be an analytic map defined on an open neighborhood U of [0, 1],
and so that its graph is not contained in a proper affine subspace of Rd. Let G(x) denote the
((d−1)×(d−1))-matrix [g(2)(x)g(3)(x) · · · g(d)(x)]. Then, for all sufficiently small δ > 0, depending
on g, there exists a set E = E(δ) ⊆ [0, 1] such that:

(1) E is a union of Og(1)-many intervals.
(2) There exist c1 ≥ 1, depending only on g, such that

min {|det(G(x))| : x ∈ [0, 1] \ E} ≫g δc1 ,

where det denotes the matrix determinant.

Proof. Since x 7→ D(x)
def
= det(G(x)) is analytic, it either vanishes identically, or has finitely many

zeros in [0, 1]. Moreover, it is known (cf. [BD10]) that identical vanishing of D(x) is equivalent to
the graph of g being contained in a proper affine subspace, and thus, D can only vanish at finitely
many points. Let Z = {x ∈ [0, 1] : D(x) = 0} be this finite set. Let Z(δ) be the δ-neighborhood of Z.
Then, Z(δ) is a union of Og(1) intervals for all small enough δ. Here, the implicit constant depends
only on (the number and order of vanishing of zeros of) D. Finally, it is a standard consequence of
the properties of zeros of real analytic functions that there exists some c1 = c1(g) ≥ 1 such that

min
{
|D(y)| : y ∈ [0, 1] \ Z(δ)

}
≫g δc1 .

This completes the proof by taking E = Z(δ). □

2.6. Moment sums vs Fourier transforms. Recall the definition of the dyadic partitions Dm

and moment sums given in the introduction. For x ∈ Rd, we denote by Dm(x) the unique element
of Dm containing x.

The following lemma is a consequence of Plancherel’s theorem, and relates Fourier analytic prop-
erties of measures to moment sums of their discretizations.
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Lemma 2.13. Let µ be a compactly supported Borel probability measure on Rd. Then, for every
R > 1, letting m = [log2R] ∈ N be the integer part of log2R, we have

sm(µ, 2) ≍ 2−dm ∥µ̂∥2L2(B(R)) ,

where B(R) denotes the R-ball around the origin.

Proof. The proof follows similar lines to [FNW02, Proof of Claim 2.8], where the inequality

2−dm ∥µ̂∥2L2(B(R)) ≪ sm(µ, 2)

was essentially proved for d = 1; cf. [Kha23, Eq. (6.28) and (6.29)]. It can also be deduced by a
very similar argument to the one we give below for the reverse inequality.

Let φ be a Schwartz function on Rd satisfying φ ≥ 1 on the unit ball B(1), φ̂ ≥ 0, and supp(φ̂) ⊂
B(1); cf. [Mat15, Example 3.2] for a construction of such function. For R > 1, let φR(x) = Rdφ(Rx).
Then, φ̂R(ξ) = φ̂(ξ/R).

Note that φ̂R ≪φ 1 on supp(φ̂R) ⊂ B(R). Hence, by Plancherel’s formula, we have∫
Rd

|φR ∗ µ|2 dx ≃
∫
Rd

|φ̂R ∗ µ|2 dξ =

∫
Rd

|φ̂R|2|µ̂|2 dξ ≪
∫
B(R)

|µ̂|2 dξ.

On the other hand, we have

φR ∗ µ(x) = Rd

∫
φ(R(x− y)) dµ(y) ≥ Rdµ(B(x, 1/R)).

And, hence, we get

R2d

∫
µ(B(x, 1/R))2 dx ≪ ∥µ̂∥2L2(B(R) . (2.1)

It remains to bound the left-hand side of (2.1) from below using a suitable moment sum. To this
end, let m = [log2R] ∈ N, and let m′ = m + Od(1) ∈ N be such that for every cube P ∈ Dm′ and
every x ∈ P , we have

B(x, 1/R) ⊇ P.

This yields the lower bound∫
µ(B(x, 1/R))2 dx =

∑
P∈Dm′

∫
P
µ(B(x, 1/R))2 dx ≫ 2−dm′ ∑

P∈Dm′

µ(P )2,

where we used the fact that each P has Lebesgue measure ≍ 2−dm′ in the last inequality. Moreover,
by the Cauchy-Schwartz inequality, and the fact that each Q ∈ Dm contains Od(1) boxes P ∈ Dm′ ,
we get

∑
P∈Dm′

µ(P )2 =
∑

Q∈Dm

∑
P∈Dm′ ,P⊆Q

µ(P )2 ≫d

∑
Q∈Dm

 ∑
P∈Dm′ ,P⊆Q

µ(P )

2

=
∑

Q∈Dm

µ(Q)2.

Combining the above estimates, we obtain

R2d2−dm′
sm(µ, 2) ≪ ∥µ̂∥2L2(B(R) .

This implies the desired inequality sm(µ, 2) ≪ 2−dm ∥µ̂∥2L2(B(R)) since m′ = m+Od(1). □
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3. Uniform pointwise Fourier decay away from the first coordinate

The goal of this Section is to prove Theorem 1.3. The key step, Proposition 1.5, is to show that
for a self-similar measure pushed to a non-degenerate curve ν as in Theorem 1.1, there is an α > 0

such that: |ν̂(θ, ζ)| ≪ ∥ζ∥−α for every ξ = (θ, ζ) ∈ R× Rd−1, with ζ ̸= 0. In the general context of
Theorem 1.1, this will take care of the case when ∥ζ∥ ≫ |θ|ε. We begin with the moment curve.

3.1. The case of moment curves. Let d ≥ 2 and recall the moment curves Vd:

Vd(x) = (x, x2, . . . , xd).

Proposition 3.1. Let µ be a non-atomic self-similar measure for a uniformly contracting weighted
IFS (Φ,p) on R. Let d ≥ 2 and assume that Vd−1µ satisfies the flattening estimate (1.8). Let
ν = Vdµ. Then, there exists α > 0 such that for every ξ = (θ, ζ) ∈ R × Rd−1 with ζ ̸= 0, we have
|ν̂(ξ)| ≪ ∥ζ∥−α.

Proof of Proposition 3.1. By replacing µ with an affine image of itself, we shall assume its
support is contained in [0, 1]. Let Φ = {fi : fi(x) = λix+ ti}i∈I . Apply Corollary 2.11 to find the
IFS Ψ = {Fi : i ∈ I} on Rd so that each Fi is of the form Fi(x) = Aix + vi for some vi ∈ Rd, and
for some contracting lower triangular matrices Ai as in the corollary.

Let ξ = (θ, ζ) ∈ R × Rd−1 be a frequency with ∥ζ∥ > 1. Fix a parameter ϱ ∈ (0, 1/2) to be
chosen using Lemma 3.3 below. By abuse of notation, we use Pζ to denote the cut-set Pτ defined
in Definition 2.1 for τ = ∥ζ∥−(1−ϱ). That is,

Pζ
def
= P∥ζ∥−(1−ϱ)

Let Λζ = {λω : ω ∈ Pζ} denote the set of all contraction ratios of the maps in the one-dimensional
IFS Φ corresponding to words in Pζ . For λ ∈ Λζ , define a measure γλ on Rd−1 by

γλ =
∑

ω∈Pζ ,λω=λ

pωδ(2tω ,3t2ω ,...,dt
d−1
ω ).

Note that γλ is not a probability measure in general, as in may have total mass less than 1. Denote
by γ̌λ the image of γλ under the map x 7→ −x.

Lemma 3.2. We have

|ν̂(ξ)|2 ≤ #Λ2
ζ ×

∑
λ∈Λζ

∫
|µ̂(λζ · y)| d(γλ ∗ γ̌λ)(y) +O(#Λ2

ζ × ∥ζ∥2ϱ−1),

where γλ ∗ γ̌λ is the additive convolution of the two measures.

Proof. By Lemma 2.2, we obtain

ν̂(ξ) =
∑
ω∈Pζ

pω

∫
e(⟨ξ, Fω(x)⟩) dν(x) =

∑
λ∈Λζ

∫  ∑
ω∈Pζ ,λω=λ

pωe(⟨ξ, Fω(x)⟩)

 dν(x).

Hence, by Cauchy-Schwarz and Jensen inequalities,

|ν̂(ξ)|2 ≤ #Λ2
ζ ×

∑
λ∈Λζ

∫ ∣∣∣∣∣∣
∑

ω∈Pζ ,λω=λ

pωe(⟨ξ, Fω(x)⟩)

∣∣∣∣∣∣
2

dν(x). (3.1)
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Expanding the square, we obtain

|ν̂(ξ)|2 ≤ #Λ2
ζ ×

∑
λ∈Λζ

∑
ω1,ω2∈Pζ ,
λω1=λ=λω2

2∏
j=1

pωj

∣∣∣∣∫ e(⟨ξ(Aω1 −Aω2), x⟩) dν(x)
∣∣∣∣ .

Let C1
ω1,ω2

denote the first column of the matrix Aω1 − Aω2 . By Lemma 2.10, we have for all
x ∈ supp(ν), and all λ ∈ Λζ , and ω1, ω2 ∈ Pζ with λω1 = λ = λω2 , that

⟨ξ(Aω1 −Aω2), x⟩ = (ζ · C1
ω1,ω2

)x1 +O(λ2 ∥ζ∥)).

It follows that, as the projection of ν on the first coordinate is our original measure µ,∣∣∣∣∫ e(⟨ξ(Aω1 −Aω2), x⟩) dν(x)
∣∣∣∣ = |µ̂(ζ · C1

ω1,ω2
) +O(λ2 ∥ζ∥)).

To simplify notation, for ω⃗ = (ω1, ω2) ∈ P 2
ζ , we write pω⃗ =

∏2
j=1 pωj . Recall that for all λ ∈ Λζ ,

we have λ ≍ ∥ζ∥−(1−ϱ). Hence, by combining the last estimate with the fact that the Fourier
transform is Lipschitz continuous, we obtain

|ν̂(ξ)|2 ≤ #Λ2
ζ ×

∑
λ∈Λζ

∑
(ω1,ω2)∈P 2

ζ ,

λω1=λ=λω2

pω⃗|µ̂
(
ζ · C1

ω1,ω2

)
|+O(#Λ2

ζ × ∥ζ∥2ϱ−1).

Next, for ζ = (ζ1, . . . , ζd−1), we have by Lemma 2.10

ζ · C1
ω1,ω2

=
d∑

k=2

λk(tk−1
ω1

− tk−1
ω2

)ζk−1.

For λ ∈ Λζ recall the definition of the measures γλ and γ̌λ given before the Lemma. Then, the
above bound can be rewritten as follows

|ν̂(ξ)|2 ≤ #Λ2
ζ ×

∑
λ∈Λζ

∫
|µ̂(λζ · y)| d(γλ ∗ γ̌λ)(y) +O(#Λ2

ζ × ∥ζ∥2ϱ−1),

This was our claim. □

We will need a uniform Frostman estimate on the projections of the various measures γλ. This
is how we select the value of ϱ > 0 that appears in the definition of Pζ , and it is the only point in
the proof where the assumption on Vd−1µ is used.

Lemma 3.3. There are constants C ≥ 1, β > 0 and 0 < ϱ < 1/2, depending only on µ and d, such
that γλ(W (ε)) ≤ Cεβ for all proper affine subspaces W and all ε > ∥ζ∥−ϱ.

Proof. By our assumption,

∀ε > 0 ∃p > 1 ∀R > 0 :
∥∥∥V̂d−1µ

∥∥∥p
Lp(B(R))

= Oε(R
ε).

Since the curve
Ṽd−1(x) = (2x, 3x2, . . . , dxd−1)
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is a linear image of Vd−1, it follows that the measure ν̃
def
= Ṽd−1µ also satisfies this property. Hence,

by Proposition 2.3, there are β > 0 and ϱ > 0 such that for every τ > 0 the discrete measure

ν̃τ =
∑
ω∈Pτ

pωδ(2tω ,3t2ω ,...,dt
d−1
ω )

give mass O(εβ) to ε-neighborhoods of proper affine subspaces whenever ε > τϱ. Moreover, without
loss of generality, the parameter ϱ may be taken < 1/2. Note that γλ(A) ≤ ν̃τ (A) for all Borel
sets A and all λ ∈ Λζ . Putting τ = ∥ζ∥−(1−ϱ), the claim follows upon noting that ∥ζ∥−ϱ ≥ τϱ =

∥ζ∥−ϱ(1−ϱ). □

We are now in position to complete the proof of Proposition 3.1.
Let C ≥ 1 be such that the supports of all the measures γλ ∗ γ̌λ are contained a ball of radius

C around the origin. Let λ ∈ Λζ . By Corollary 2.9, for every ε > 0 there is δ > 0 so that for
|z| ≤ C ∥λζ∥,

|µ̂(z)| ≪ ∥λζ∥−δ

except for a set B ⊆ R of frequencies z that is a union of Oε(∥λζ∥ε) intervals of length 1. Since
every λ, λ′ ∈ Λζ are λ ≍ λ′, we may assume this property (and B in particular) is independent of
the choice of λ.

Fix ε = β/2, for β as in Lemma 3.3. Hence, recalling that λ ≍ ∥ζ∥−(1−ϱ) for all λ ∈ Λζ , via
Lemma 3.2 and the bounds above, we obtain

|ν̂(ξ)|2 ≤ #Λ2
ζ ×

∑
λ∈Λζ

γλ ∗ γ̌λ ({y : λζ · y ∈ B}) +O(#Λ3
ζ × ∥ζ∥−ϱδ +#Λ2

ζ × ∥ζ∥2ϱ−1).

Fix a unit-length interval I = (a − 1/2, a + 1/2) ⊆ B for some a ∈ R, and consider the affine
hyperplane Wa = {x : λζ · x = a}. An elementary computation then shows that if y is such that
λζ · y ∈ I, then y ∈ Wa(∥λζ∥−1). Thus, noting that

γλ ∗ γ̌λ(A) =

∫
γλ(A+ z) dγλ(z) for any Borel set A,

we obtain

γλ ∗ γ̌λ({y : λζ · y ∈ I}) ≤ sup
W=Wa+z

γλ(W (∥λζ∥−1)) ≤ C ∥λζ∥−β ,

where the supremum runs over all translations of Wa, and we applied Lemma 3.3 in the last in-
equality.

Putting together the above estimates, we arrive at the bound

|ν̂(ξ)|2 ≪ #Λ3
ζ × ∥ζ∥(ε−β)ϱ +#Λ3

ζ × ∥ζ∥−ϱδ +#Λ2
ζ × ∥ζ∥2ϱ−1 .

Finally, by Lemma 2.2, we have #Λζ ≪ (log ∥ζ∥)A, where A = #Φ+1. Recalling that ε = β/2 and
ϱ < 1/2, this bound completes the proof. □

3.2. General non-affine curves, and proof of Proposition 1.5. The goal of this section is to
deduce Proposition 1.5 from Proposition 3.1. The deduction is via Taylor expansion and a change
of coordinates. Recall the notation Vd set before Proposition 3.1.
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Proof of Proposition 1.5. We give the proof in the case Q(x) is a non-trapped analytic curve.
The proof in the case Q is a Cd+1 non-degenerate curve is very similar, and in fact simpler, due to
the non-vanishing of the determinant in (1.1) over an entire neighborhood of supp(µ).

As usual, by replacing µ with an affine image of itself, we shall assume its support is contained in
[0, 1]. Let Φ = {fi : fi(x) = λix+ ti}i∈I . Let α > 0 be the exponent provided by Proposition 3.1.
Fix a frequency ξ = (θ, ζ) ∈ R× Rd−1, with ∥ζ∥ > 1, and define

τ = ∥ζ∥−(1+α)/(1+d(1+α)) .

Let Pτ be the cut-set defined in Def. 2.1. Without loss of generality, we shall assume over the course
of the proof that ∥ζ∥ is sufficiently large, depending only on g and µ.

Let ϱ > 0 be the parameter provided by Proposition 2.6. Let ε = ε(α, g, d) ∈ (0, ϱ) to be chosen
at the end of the proof to be sufficiently small depending only on g, the ambient dimension d, and
the exponent α, and let

δ = τ ε.

Let E = E(δ) ⊂ [0, 1] be the set provided by Lemma 2.12 and let

P ′
τ = {ω ∈ Pτ : fω(0) ∈ E} .

For a word ω ∈ I∗, we write νω for the pushforward of fωµ under x 7→ (x, g(x)).

Lemma 3.4. For the Frostman exponent s0 of µ we have

|ν̂(ξ)| ≤
∑

ω∈Pτ\P ′
τ

pω|ν̂ω(ξ)|+Og,µ (δ
s0) .

Proof. By stationarity of µ (Lemma 2.2) and the triangle inequality, we have

|ν̂(ξ)| ≤
∑

ω∈Pτ\P ′
τ

pω|ν̂ω(ξ)|+
∑
ω∈P ′

τ

pω.

By Lemma 2.12, E is a union of Og(1) δ-intervals. Therefore, by Proposition 2.6, since δ > τϱ, for
the Frostman exponent s0 of µ we have

|ν̂(ξ)| ≤
∑

ω∈Pτ\P ′
τ

pω|ν̂ω(ξ)|+
∑
ω∈P ′

τ

pω =
∑

ω∈Pτ\P ′
τ

pω|ν̂ω(ξ)|+Og,µ (δ
s0) .

The proof is complete. □

Thus, it remains to estimate the sum over Pτ \ P ′
τ .

Lemma 3.5. If τ is sufficiently small then for every ω ∈ Pτ we have, writing fω(x) = λωx+ tω,

|ν̂ω(ξ)| ≤
∣∣∣∣∫ e(⟨ξω, Vd(λωx)⟩) dµ(x)

∣∣∣∣+O(∥ζ∥ τd+1).

Here, given a frequency ξ = (θ, ζ) ∈ R× Rd−1, we define ξω := (θω, ζω), where

θω := θ + ⟨ζ, g′(tω)⟩, ζω :=
(
⟨ζ, g′′(tω)⟩/2, . . . , ⟨ζ, g(d)(tω)⟩/d!

)
.

Proof. Note that
diam(supp(fωµ)) ≍ τ for every ω ∈ Pτ .
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We assume τ is small enough so that g can be written as a power series in a neighborhood of tω
that contains supp(fωµ). By considering the Taylor expansion of g about tω, we see that for every
x ∈ supp(fωµ),

⟨ξ, (x, g(x))⟩ = ζ · g(tω) + ξω · Vd(x− tω) +O(∥ζ∥ τd+1),

where we recall that Vd(y) = (y, y2, . . . , yd) is the moment curve. Hence, by the Lipchitz continuity
of the Fourier transform, we obtain the bound

|ν̂ω(ξ)| ≤
∣∣∣∣∫ e(⟨ξω, Vd(x− tω)⟩) dfωµ(x)

∣∣∣∣+O(∥ζ∥ τd+1).

Recalling that fω(x) = λωx+ tω thus yields

|ν̂ω(ξ)| ≤
∣∣∣∣∫ e(⟨ξω, Vd(λωx)⟩) dµ(x)

∣∣∣∣+O(∥ζ∥ τd+1).

This proves the Lemma □

Let x ∈ [0, 1] and ω ∈ Pτ . We define two (d− 1)× (d− 1) matrices G(x), Dω via

G(x) is the ((d− 1)× (d− 1)) matrix with kth column given by the vector g(k+1)(x)

and

Dω is the (d− 1)× (d− 1) diagonal matrix with kth diagonal entry λk+1
ω /(k + 1)!.

Let Fω(x) = Dω ·G(x). When ω is fixed we simply write F (x). Note that

⟨ξω, Vd(rωx)⟩ = ⟨(λωθω, ζ · F (tω)), Vd(x)⟩.

Hence, by Proposition 3.1 and Lemma 3.5, we obtain for some α > 0

|ν̂ω(ξ)| ≪ ∥ζ · F (tω)∥−α + ∥ζ∥ τd+1. (3.2)

Recall the definition of Pτ ′ from before Lemma 3.4.

Lemma 3.6. There is C ≥ 1, depending only on g, such that for every ω ∈ Pτ \ P ′
τ

∥ζ · F (x)∥ ≥ ∥ζ ·Dω∥ |det(G(x)|/C,

uniformly over x ∈ [0, 1] and ζ ∈ Rd−1, where det(−) is the matrix determinant.

Proof. Let σmin(x) denote the singular value of smallest magnitude of G(x). Then

∥ζ · F (x)∥ ≥ σmin(x) ∥ζ ·Dω∥ .

Note that σmin(x) is non-zero in view of Lemma 2.12 and the choice of ω ∈ Pτ ′ . Moreover,

σmin(x) ≥ |det(G(x)|/C(x), where C(x) = the product of all the other singular values of G(x).

Hence, since the singular values of G(x) are non-vanishing and vary continuously with x, C(x) is
uniformly bounded above over x ∈ [0, 1]. This implies the Lemma. □
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We can now complete the proof. Let ω ∈ Pτ \Pτ ′ . Note that ∥ζ ·Dω∥ ≫ ∥ζ∥λd
ω. Hence, by (3.2),

Lemma 3.6 and Lemma 2.12, we obtain

|ν̂ω(ξ)| ≪ δ−αc1 ∥ζ ·Dω∥−α + ∥ζ∥ τd+1 ≪ δ−αc1λ−dα
ω ∥ζ∥−α + ∥ζ∥ τd+1,

where c1 = c1(g) ≥ 1 is the exponent provided by Lemma 2.12. Recalling that λω ≍ τ , we obtain

|ν̂ω(ξ)| ≪ δ−αc1τ−dα ∥ζ∥−α + ∥ζ∥ τd+1 ≤ δ−αc1(τ−dα ∥ζ∥−α + ∥ζ∥ τd+1).

Setting β = α/(d(1 + α) + 1), by our choice of τ the above bound becomes

|ν̂ω(ξ)| ≪ δ−αc1 ∥ζ∥−β .

Recall that δ = τ ε. Thus, taking ε sufficiently small, depending on α and c1, we can ensure that
δ−αc1 ∥ζ∥−β is at most ∥ζ∥−β/2. Hence, the result follows by combining the above bound with
Lemma 3.4. □

3.3. Average decay away from the first coordinate, and proof of Theorem 1.3. Proposi-
tion 1.5 yields the following Corollary, which is a more precise form of Theorem 1.3.

Corollary 3.7. Let µ, g, and ν be as in Theorem 1.3. For R ≥ 1 and ε > 0, let

CR,ε =
{
(θ, ζ) ∈ R× Rd−1 : |θ|ε ≤ ∥ζ∥ ≤ R

}
.

Let γ > 0 be the parameter provided by Proposition 1.5. Then, for p > d3/γε2,∫
CR,ε

|ν̂(ξ)|p dξ = O(Rε).

Proof. Let δ = ε/d. Let DR,δ = CR,δ \
{
ξ : ∥ξ∥ ≤ Rδ

}
. Then, applying Proposition 1.5 on DR,ε,

using its notations and the trivial bound |ν̂(−)| ≤ 1 on its complement, we get∫
CR,ε

|ν̂(ξ)|p dξ =

∫
DR,ε

|ν̂(ξ)|p dξ +O(Rε) ≪
∫
{ξ=(θ,ζ)∈DR,δ}

∥ζ∥−γp dξ +Rε.

Finally, note that, on DR,δ, ∥ζ∥ ≫ ∥ξ∥δ > Rδ2 . The corollary follows since DR,δ has measure
O(Rd). □

4. Average Decay Near the First Coordinate: Proof of Proposition 1.4

The purpose of this Section is to prove the following estimate on the average decay of curved
self-similar measures for frequencies with dominant first coordinate. This immediately yields Propo-
sition 1.4, which is the second main ingredient in the proof of Theorem 1.1. We recall the statement
of that proposition for the reader’s convenience.

Proposition 4.1. Let µ ∈ P(R) be a non-atomic self-similar measure and d ≥ 2. Let g : U → Rd−1

be a C1-map defined on an open neighborhood U of supp(µ). For Q(x) = (x, g(x)), let ν = Qµ be
the pushforward of µ to the graph of g. For R ≥ 1 and ε > 0, let

ER,ε =
{
(θ, ζ) ∈ R× Rd−1 : ∥ζ∥ ≤ |θ|ε ≤ Rε

}
.
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Then, for every ε > 0, there exists p = p(ε, µ) > 1 such that for all R ≥ 1, we have∫
ξ∈ER,ε

|ν̂(ξ)|p dξ = Oε,µ(R
ε).

The rest of this section is dedicated to the proof of Proposition 4.1. By replacing µ with an affine
image of itself, we shall assume its support is contained in [0, 1]. Let Φ = {fi(x) = λix+ ti}i∈I . As
before, for a word ω ∈ I∗, we write νω for the pushforward of fωµ under x 7→ (x, g(x)). Recall the
definition of the cut-set Pτ from Definition 2.1, and the notations set in Section 2.1.

Fix ε > 0 and let δ = ε/d. We also fix R > 1, which we shall assume to be sufficiently large
depending on ε and µ, and let

FR,ε = ER,ε \
{
(θ, ζ) ∈ ER,ε : |θ| ≤ Rδ

}
.

First, note that since ER,ε \ FR,ε has measure O(Rε) and |ν̂(−)| ≤ 1, we get∫
ER,ε

|ν̂(ξ)|p dξ ≤
∫
FR,ε

|ν̂(ξ)|p dξ +O(Rε). (4.1)

Hence, we focus on the region FR,ε. By Lemma 2.2, for every τ > 0 and every ξ ∈ Rd we have

ν̂(ξ) =
∑
ω∈Pτ

pων̂ω(ξ).

We have the following initial pointwise bound on terms of the above sum using the Fourier transform
of the original self-similar measure.

Lemma 4.2. For every τ ∈ (0, 1), ω ∈ Pτ , and ξ = (θ, ζ) ∈ R× Rd−1, we have

|ν̂ω(ξ)| ≤ |µ̂(λωθ)|+O(τ ∥ζ∥).

Proof. Note that, for every ω ∈ Pτ and x ∈ supp(µ), λω ≤ τ , since g is C1, we have g(fω(x)) =

g(fω(0))+O(τ). Thus, since fω(x) = λω ·x+ tω, and µ̂(−) is Lipschitz continuous, we get for every
frequency ξ = (θ, ζ) ∈ R× Rd−1 that

|ν̂ω(ξ)| =
∣∣∣∣∫ e((θfω(x) + ζ · g(tω)) dµ(x)

∣∣∣∣+O(∥ζ∥ τ) = |µ̂(λωθ)|+O(τ ∥ζ∥),

which is the claimed bound. □

The rest of the proof of Proposition 4.1 is broken down into the following two Lemmas. In what
follows, for n ∈ N, we let for

q
def
= 21/2ε, τn

def
= 2−n, Fn

R,ε
def
=
{
(θ, ζ) ∈ FR,ε : q

n ≤ |θ| < qn+1
}
. (4.2)

Lemma 4.3. For all integers p ≥ 2d2/ε, we have∫
FR,ε

|ν̂(ξ)|p dξ ≤
∑
n∈N

∫
Fn
R,ε

 ∑
ω∈Pτn

pω |µ̂(λωθ(ξ))|p
 dξ +Oε(1),

where θ(ξ) denotes the first coordinate of ξ.
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Proof. First, since FR,ε = ∪n∈NF
n
R,ε, we get∫

FR,ε

|ν̂(ξ)|p dξ ≤
∑
n∈N

∫
Fn
R,ε

|ν̂(ξ)|p dξ =
∑
n∈N

∫
Fn
R,ε

∣∣∣∣∣∣
∑

ω∈Pτn

pων̂ω(ξ)

∣∣∣∣∣∣
p

dξ.

Note that the outer sum runs over n with Rδ ≤ qn+1 ≤ qR. Applying Lemma 4.2 with τ = τn for
each n, we obtain∫

FR,ε

|ν̂(ξ)|p dξ ≤
∑
n∈N

∫
ξ=(θ,ζ)∈Fn

R,ε

∣∣∣∣∣∣
∑

ω∈Pτn

pω

[
|µ̂(λω · θ)|+O(2−n ∥ζ∥)

]∣∣∣∣∣∣
p

dξ.

By Jensen’s inequality, since p > 1 and
∑

ω∈Pτn
pω = 1, we obtain∣∣∣∣∣∣

∑
ω∈Pτn

pω

[
|µ̂(λω · θ)|+O(2−n ∥ζ∥)

]∣∣∣∣∣∣
p

≪ ∥ζ∥p · 2−np +
∑

ω∈Pτn

pω |µ̂(λω · θ)|p .

Integrating the second term over Fn
R,ε and summing over n ∈ N gives the first term of the claimed

bound. For the first term, note that for each ξ = (θ, ζ) ∈ Fn
R,ε, we have that ∥ζ∥ ≤ |θ|ε ≤ qε(n+1).

The choice of q in (4.2) also gives qε(n+1)2−n ≤ qε2−n/2.
Thus, using that FR,ε has measure O(Rd) and that the sum over n only involves terms satisfying

Rδ ≤ qn+1 ≤ Rq, we get∑
n∈N

∫
ξ=(θ,ζ)∈Fn

R,ε

∥ζ∥p · 2−np dξ ≪
∑

n∈N:qn+1≥Rδ

2−np/2Rd ≤ Rd−δp/2q.

Taking p ≥ 2d/δ = 2d2/ε, the above bound is Oε(1), thus completing the proof. □

The next lemma estimates the main term in the bound provided by Lemma 4.3. The key ingre-
dient is Corollary 2.9 on L2-flattening of self-similar measures.

Lemma 4.4. For all p ≫ε,µ 1, we have

∑
n∈N

∫
Fn
R,ε

 ∑
ω∈Pτn

pω |µ̂(λωθ(ξ))|p
 dξ = Oε,µ(R

ε(d+3)),

where θ(ξ) denotes the first coordinate of ξ.

Proof. Recalling the definition of Fn
R,ε in (4.2), since the integrand depends only on the first coor-

dinate of ξ, we get

∑
n∈N

∫
Fn
R,ε

 ∑
ω∈Pτn

pω |µ̂(λωθ(ξ))|p
 dξ ≪

∑
n∈N:Rδ≤qn+1≤Rq

qε(n+1)(d−1)
∑

ω∈Pτn

pω

∫ qn+1

qn
|µ̂(λωθ)|p dθ,

(4.3)

where, as in the proof of the previous lemma, we also used the fact that the outer sum on the
left-hand side runs over n ∈ N satisfying Rδ ≤ qn+1 ≤ Rq.
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Using the change of variable λωθ 7→ θ, and recalling that λω ≍ τn = 2−n for all ω ∈ Pτn , we get

(4.3) ≪
∑

n∈N:Rδ≤qn+1≤Rq

qε(n+1)(d−1)
∑

ω∈Pτn

pω

∫
|θ|≍(q/2)n

|µ̂(θ)|p 2n dθ

≪
∑

n∈N:Rδ≤qn+1≤Rq

qε(n+1)(d−1) × 2n ×
∫
|θ|≍(q/2)n

|µ̂(θ)|p dθ.

Now, by Corollary 2.9, if p is large enough, depending only on µ and ε, for each n, the inner integral
is Oµ,ε((q/2)

εn) . Thus, recalling that 2 = q2ε, we arrive at the bound

(4.3) ≪ε,µ

∑
n∈N:qn≤R

qεnd × 2n × qεn ≪ Rε(d+3),

which completes the proof of the lemma. □

Since ε was arbitrary, Proposition 4.1 now follows from the combination of (4.1) with Lemmas
4.3 and 4.4.
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