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Abstract. We study the distribution of the Pollicott-Ruelle resonances for the geodesic flow on
geometrically finite locally symmetric spaces of negative curvature with respect to the Bowen-
Margulis-Sullivan measure of maximal entropy. Our main result shows that the Laplace transform
of the correlation function of smooth observables extends meromorphically to the entire complex
plane in the convex cocompact case and to a strip of explicit size beyond the imaginary axis in the
case the manifold admits cusps. The method is dynamical in nature and is based on constructing
anisotropic Banach spaces on which resolvents of the generator of the flow admit essential spectral
gaps of size depending only on the critical exponent and the ranks of the cusps of the manifold
(if any). A key ingredient is the construction of a Margulis function establishing quantitative
recurrence of orbits to compact sets when the manifold has cusps. Our analysis also yields a large
deviations estimate on the measure of the set of orbits which spend definite proportions of time
outside large compact sets.

1. Introduction

1.1. Pollicott-Ruelle resonances. Let X be the unit tangent bundle of a quotient of a real, com-
plex, quaternionic, or a Cayley hyperbolic space by a discrete, geometrically finite, non-elementary
group of isometries Γ. Denote by gt the geodesic flow on X and by mBMS the Bowen-Margulis-
Sullivan probability measure of maximal entropy for gt. Let δΓ be the critical exponent of Γ. We
refer the reader to Section 2 for definitions.

Given two bounded functions f and g on X , the associated correlation function is defined by

ρf,g(t) :=

∫
X
f ◦ gt · g dmBMS, t ∈ R.

Its (one-sided) Laplace transform is defined for any z ∈ C with positive real part Re(z) as follows:

ρ̂f,g(z) :=

∫ ∞
0

e−ztρf,g(t) dt.

Let δΓ denote the critical exponent of Γ and define

σ(Γ) :=

{
∞, if Γ is convex cocompact,

min {δΓ, 2δΓ − kmax, kmin} , otherwise,
(1.1)

where kmax and kmin denote the maximal and minimal ranks of parabolic fixed points of Γ respec-
tively; cf. Section 3.1 for the definition of the rank of a cusp.

The following is the main result of the article.

Theorem 1.1. Let r ∈ N. For all f, g ∈ Cr+2
c (X ), ρ̂f,g is analytic in the half plane Re(z) > 0 and

admits a meromorphic continuation to the half plane:

Re(z) > −min {r, σ(Γ)/2} ,

with 0 being the only pole on the imaginary axis. In particular, when Γ is convex cocompact and
f, g ∈ C∞c (X ), ρ̂f,g admits a meromorphic extension to the entire complex plane.
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Theorem 1.1 is deduced from an analogous result on the meromorphic continuation of the family
of resolvent operators z 7→ R(z),

R(z) :=

∫ ∞
0

e−ztLt dt : Cc(X )→ C(X ), (1.2)

defined initially for z with large enough Re(z), where Lt is the transfer operator given by f 7→ f ◦gt;
cf. Theorem 6.4 for a precise statement. Analogous results regarding resolvents were obtained for
Anosov flows in [GLP13] and Axiom A flows in [DG16,DG18] leading to a resolution of a conjecture
of Smale on the meromorphic continuation of the Ruelle zeta function; cf. [Sma67]. We refer the
reader to [GLP13] for a discussion of the history of the latter problem.

1.2. Exponential recurrence from the cusp. Our proof of Theorem 1.1 also yields the following
exponential decay result on the measure of the set of orbits with long cusp excursions, which is of
independent interest. Denote by N+ the expanding horospherical group associated to gt for t > 0,
the orbits of which give rise to the strong unstable foliation. Let N+

r be the r-ball around identity
in N+ (cf. Section 2.5 for definition of the metric on N+). Finally, let Ω ⊆ X be the non-wandering
set for the geodesic flow; i.e. the closure of the set of its periodic orbits.

Theorem 1.2. Let σ(Γ) be as in (1.1) and let 0 < β < σ(Γ)/2 be given. For every ε > 0, there
exists a compact set K ⊆ Ω and T0 > 0 such that the following holds for all T > T0, 0 < θ < 1 and
x ∈ Ω. Let χK be the indicator function of K. Then,

µux

(
n ∈ N+

1 :

∫ T

0
χK(gtnx) dt ≤ (1− θ)T

)
�β,x,ε e

−(βθ−ε)Tµux(N+
1 ).

The implicit constant is uniform as x varies in any fixed compact set.

The reader is referred to Theorem 7.13 for a stronger and more precise statement. Theorem 1.2
implies that the Hausdorff dimension of the set of points in N+

1 x whose forward orbit asymptotically
spends all of its time in the cusp is at most σ(Γ)/2. This bound is not sharp and can likely be
improved using a refinement of our methods. We hope to return to this problem in future work.

1.3. Outline of the argument. The article has several parts that can be read independently of
one another. For the convenience of the reader, we give a brief outline of those parts.

The first part consists of Sections 2-5. After recalling some basic facts in Section 2, we prove a
key doubling result, Proposition 3.1, in Section 3 for the conditional measures of mBMS along the
strong unstable foliation.

In Section 4, we construct a Margulis function which shows, roughly speaking, that generic orbits
with respect to mBMS are biased to return to the thick part of the manifold. In Section 5, we prove
a statement on average expansion of vectors in linear representations which is essential for our
construction of the Margulis function. The main difficulty in the latter result in comparison with
the classical setting lies in controlling the shape of sublevel sets of certain polynomials in order to
estimate their measure with respect to conditional measures of mBMS along the unstable foliation.

The second part consists of Sections 6 and 7. In Section 6, we define anisotropic Banach spaces
arising as completions of spaces of smooth functions with respect to a dynamically relevant norm
and study the norm of the transfer operator as well as the resolvent in their actions on these spaces
in Section 7. The proof of Theorem 1.1 is completed in Section 7. The approach of these two
sections follows closely the ideas of [GL06, GL08, AG13], originating in [BKL02]. Theorem 1.2 is
deduced from this analysis in Section 7.7.
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2. Preliminaries

We recall here some background and definitions on geometrically finite manifolds.

2.1. Geometrically finite manifolds. The standard reference for the material in this section
is [Bow93]. Suppose G is the group of orientation preserving isometries of a real, complex, quater-
nionic or Cayley hyperbolic space, denoted Hd

K, of dimension d ≥ 2, where K ∈ {R,C,H,O}. In
the case K = O, then d = 2.

Fix a basepoint o ∈ Hd
K. Then, G acts transitively on Hd

K and the stabilizer K of o is a maximal

compact subgroup of G. We shall identify Hd
K with K\G. Denote by A = {gt : t ∈ R} a 1-parameter

subgroup of G inducing the geodesic flow on the unit tangent bundle of Hd
K. Let M < K denote

the centralizer of A inside K so that the unit tangent bundle T1Hd
K may be identified with M\G.

In Hopf coordinates, we can identify T1Hd
K with R × (∂Hd

K × ∂Hd
K \ ∆), where ∂Hd

K denotes the
boundary at infinity and ∆ denotes the diagonal.

Let Γ < G be an infinite discrete subgroup of G. The limit set of Γ, denoted ΛΓ, is the set of
limit points of the orbit Γ · o on ∂Hd

K. Note that the discreteness of Γ implies that all such limit
points belong to the boundary. Moreover, this definition is independent of the choice of o in view
of the negative curvature of Hd

K. We often use Λ to denote ΛΓ when Γ is understood from context.
We say Γ is non-elementary if ΛΓ is infinite.

The hull of ΛΓ, denoted Hull(ΛΓ), is the smallest convex subset of Hd
K containing all the geodesics

joining points in ΛΓ. The convex core of the manifold Hd
K/Γ is the smallest convex subset containing

the image of Hull(ΛΓ). We say Hd
K/Γ is geometrically finite (resp. convex cocompact) if the closed

1-neighborhood of the convex core has finite volume (resp. is compact), cf. [Bow93]. The non-
wandering set for the geodesic flow is the closure of the set of vectors in the unit tangent bundle
whose orbit accumulates on itself. In Hopf coordinates, this set, denoted Ω, coincides with the
projection of R× (ΛΓ × ΛΓ −∆) mod Γ.

A useful equivalent definition of geometric finiteness is that the limit set of Γ consists entirely of
radial and bounded parabolic limit points; cf. [Bow93]. This characterization of geometric finiteness
will be of importance to us and so we recall here the definitions of these objects.

A point ξ ∈ Λ is said to be a radial point if any geodesic ray terminating at ξ returns infinitely
often to a bounded subset of Hd

K/Γ. The set of radial limit points is denoted by Λr.
Denote by N+ the expanding horospherical subgroup of G associated to gt, t ≥ 0. A point p ∈ Λ

is said to be a parabolic point if the stabilizer of p in Γ, denoted by Γp, is conjugate in G to an
unbounded subgroup of MN+. A parabolic limit point p is said to be bounded if (Λ− {p}) /Γp is
compact. An equivalent charachterization is that p ∈ Λ is parabolic if and only if any geodesic ray
terminating at p eventually leaves every compact subset of Hd

K/Γ. The set of parabolic limit points
will be denoted by Λp.

Given g ∈ G, we denote by g+ the coset of P−g in the quotient P−\G, where P− = N−AM is
the stable parabolic group associated to {gt : t ≥ 0}. Similarly, g− denotes the coset P+g in P+\G.
Since M is contained in P±, such a definition makes sense for vectors in the unit tangent bundle
M\G. Geometrically, for v ∈M\G, v+ (resp. v−) is the forward (resp. backward) endpoint of the
geodesic determined by v on the boundary of Hd

K. Given x ∈ G/Γ, we say x± belongs to Λ if the
same holds for any representative of x in G; this notion being well-defined since Λ is Γ invariant.

Notation. Throughout the remainder of the article, we fix a discrete non-elementary geometrically
finite group Γ of isometries of some (irreducible) rank one symmetric space Hd

K and denote by X

the quotient G/Γ, where G is the isometry group of Hd
K.
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2.2. Standard horoballs. Since parabolic points are fixed points of elements of Γ, Λ contains
only countably many such points. Moreover, Γ contains at most finitely many conjugacy classes of
parabolic subgroups. This translates to the fact that Λp consists of finitely many Γ orbits.

Let {p1, . . . , ps} ⊂ ∂Hd
K be a maximal set of nonequivalent parabolic fixed points under the action

of Γ. As a consequence of geometric finiteness of Γ, one can find a finite disjoint collection of open
horoballs H1, . . . ,Hs ⊂ Hd

K with the following properties (cf. [Bow93]):

(1) Hi is centered on pi, for i = 1, . . . , s.
(2) HiΓ ∩HjΓ = ∅ for all i 6= j.
(3) For all i ∈ {1, . . . , s} and γ1, γ2 ∈ Γ

Hiγ1 ∩Hiγ2 6= ∅ =⇒ Hiγ1 = Hiγ2, γ
−1
1 γ2 ∈ Γpi .

(4) Hull(ΛΓ) \ (
⋃s
i=1HiΓ) is compact mod Γ.

Remark 2.1. We shall assume throughout the remainder of the article that our fixed basepoint o
lies outside these standard horoballs, i.e.

o /∈
s⋃
i=1

HiΓ.

2.3. Conformal Densities and the BMS Measure. The critical exponent, denoted δΓ, is de-
fined to be the infimum over all real number s ≥ 0 such that the Poincaré series

PΓ(s, o) :=
∑
γ∈Γ

e−sdist(o,γ·o) (2.1)

converges. We shall simply write δ for δΓ when Γ is understood from context. The Busemann
function is defined as follows: given x, y ∈ Hd

K and ξ ∈ ∂Hd
K, let γ : [0,∞)→ Hd

K denote a geodesic
ray terminating at ξ and define

βξ(x, y) = lim
t→∞

dist(x, γ(t))− dist(y, γ(t)).

A Γ-invariant conformal density of dimension s is a collection of Radon measures
{
νx : x ∈ Hd

K
}

on
the boundary satisfying

γ∗νx = νγx, and
dνy
dνx

(ξ) = esβξ(x,y), ∀x, y ∈ Hd
K, ξ ∈ ∂Hd

K, γ ∈ Γ.

Given a pair of conformal densities {µx} and {νx} of dimensions s1 and s2 respectively, we can
form a Γ invariant measure on T1Hd

K, denoted by mµ,ν as follows: for x = (ξ1, ξ2, t) ∈ T1Hd
K

dmµ,ν(ξ1, ξ2, t) = es1βξ1 (o,x)+s2βξ2 (o,x) dµo(ξ1) dνo(ξ2) dt. (2.2)

Moreover, the measure mµ,ν is invariant by the geodesic flow.
When Γ is geometrically finite and K = R, Patterson [Pat76] and Sullivan [Sul79] showed

the existence of a unique (up to scaling) Γ-invariant conformal density of dimension δΓ, denoted{
µPS
x : x ∈ Hd

R
}

. Geometric finiteness also implies that the measure mµPS,µPS
descends to a finite

measure of full support on Ω and is the unique measure of maximal entropy for the geodesic flow.
This measure is called the Bowen-Margulis-Sullivan (BMS for short) measure and is denoted mBMS.

Since the fibers of the projection from G/Γ to T1Hd
K/Γ are compact and parametrized by the

group M , we can lift such a measure to one G/Γ, also denoted mBMS, by taking locally the product
with the Haar probability measure on M . Since M commutes with the geodesic flow, this lift is
invariant under the group A. We refer the reader to [Rob03] and [PPS15] and references therein
for details of the construction in much greater generality than that of Hd

K.
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2.4. Stable and unstable foliations and leafwise measures. The fibers of the projection
G → T1Hd

K are given by the compact group M , which is the centralizer of A inside the maximal

compact group K. In particular, we may lift mBMS to a measure on G/Γ, also denoted mBMS,
and given locally by the product of mBMS with the Haar probability measure on M . The leafwise
measures of mBMS on N+ orbits are given as follows:

dµux(n) = e
δΓβ(nx)+ (o,nx)

dµPS
o ((nx)+). (2.3)

They satisfy the following equivariance property under the geodesic flow:

µugtx = eδtAd(gt)∗µ
u
x. (2.4)

Moreover, it follows readily from the definitions that for all n ∈ N+,

(n)∗µ
u
nx = µux, (2.5)

where (n)∗µ
u
nz is the pushforward of µunz under the map u 7→ un from N+ to itself. Finally, since M

normalizes N+ and leaves mBMS invariant, this implies that these conditionals are Ad(M)-invariant:

µumx = Ad(m)∗µ
u
x, m ∈M. (2.6)

2.5. Cygan metrics. We recall the definition of the Cygan metric on N+, denoted dN+ . These
metrics are right invariant under translation by N+, and satisfy the following convenient scaling
property under conjugation by gt. For all r > 0, if N+

r denotes the ball of radius r around identity
in that metric and t ∈ R, then

Ad(gt)(N
+
r ) = N+

etr. (2.7)

To define the metric, we need some notation which we use throughout the article. For x ∈ K,
denote by x̄ its K-conjugate and by |x| :=

√
x̄x its modulus. This modulus extends to a norm on

Kn by setting

‖u‖2 :=
∑
i

|ui|2, u = (u1, . . . , un) ∈ Kn.

We let ImK denote those x ∈ K such that x̄ = −x. For example, ImK is the pure imaginary
numbers and the subspace spanned by the quaternions i, j and k in the cases K = C and K = H
respectively. For u ∈ K, we write Re(u) = (u+ ū)/2 and Im(u) = (u− ū)/2.

The Lie algebra n+ of N+ splits under Ad(gt) into eigenspaces as n+
α ⊕n+

2α, where n+
2α = 0 if and

only if K = R. Moreover, we have the identification n+
α
∼= Kd−1 and n+

2α
∼= Im(K) as real vector

spaces; cf. [Mos73, Section 19]. We denote by ‖·‖′ the following quasi-norm on n+:

‖(u, s)‖′ :=
(
‖u‖4 + |s|2

)1/4
, (u, s) ∈ n+

α ⊕ n+
2α. (2.8)

With this notation, the distance of n := exp(u, s) to identity is given by:

dN+(n, id) := ‖(u, s)‖′ . (2.9)

Given n1, n2 ∈ N+, we set dN+(n1, n2) = dN+(n1n
−1
2 , id).

2.6. Local stable holonomy. We recall the definition of (stable) holonomy maps. We give a
simplified discussion of this topic which is sufficient in our homogeneous setting. Let x = u−y for
some y ∈ Ω and u− ∈ N−2 . Since the product map N− × A ×M × N+ → G is a diffeomorphism
near identity, we can choose the norm on the Lie algebra so that the following holds. We can find
maps p− : N+

1 → P− = N−AM and u+ : N+
2 → N+ so that

nu− = p−(n)u+(n), ∀n ∈ N+
2 . (2.10)

Then, it follows by (2.3) that for all n ∈ N+
2 , we have

dµuy(u+(n)) = e
−δβ(nx)+ (u+(n)y,nx)

dµux(n).
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Moreover, by further scaling the metrics if necessary, we can ensure that these maps are diffeomor-
phisms onto their images. In particular, writing Φ(nx) = u+(n)y, we obtain the following change
of variables formula: for all f ∈ C(N+

2 ),∫
f(n) dµux(n) =

∫
f((u+)−1(n))e

δβΦ−1(ny)+ (ny,Φ−1(ny))
dµuy(n). (2.11)

Remark 2.2. To avoid cluttering the notation with auxiliary constants, we shall assume that the
N− component of p−(n) belongs to N−2 for all n ∈ N+

2 whenever u− belongs to N−1 .

2.7. Notational convention. Throughout the article, given two quantities A and B, we use the
Vinogradov notation A � B to mean that there exists a constant C ≥ 1, possibly depending on
Γ and the dimension of G, such that |A| ≤ CB. In particular, this dependence on Γ is suppressed
in all of our implicit constants, except when we wish to emphasize it. The dependence on Γ may
include for instance the diameter of the complement of our choice of cusp neighborhoods inside Ω
and the volume of the unit neighborhood of Ω. We write A �x,y B to indicate that the implicit
constant depends parameters x and y. We also write A = Ox(B) to mean A�x B.

3. Doubling Properties of Leafwise Measures

The goal of this section is to prove the following useful consequence of the global measure formula
on the doubling properties of the leafwise measures. The result is an immediate consequence of
Sullivan’s shadow lemma in the case Γ is convex cocompact. In particular, the content of the
following result is the uniformity, even in the case Ω is not compact. The argument is based on the
topological transitivity of the geodesic flow when restricted to Ω.

Define the following exponents:

∆ := min {δ, 2δ − kmax, kmin} ,
∆+ := max {δ, 2δ − kmin, kmax} . (3.1)

where kmax and kmin denote the maximal and minimal ranks of parabolic fixed points of Γ respec-
tively. If Γ has no parabolic points, we set kmax = kmin = δ, so that ∆ = ∆+ = δ.

Proposition 3.1 (Global Doubling and Decay). For every 0 < σ ≤ 5, x ∈ N−2 Ω and 0 < r ≤ 1,
we have

µux(N+
σr)�

{
σ∆ · µux(N+

r ) ∀0 < σ ≤ 1, 0 < r ≤ 1,

σ∆+ · µux(N+
r ) ∀σ > 1, 0 < r ≤ 5/σ.

Remark 3.2. The above proposition has very different flavor when applied with σ < 1, compared
with σ > 1. In the former case, we obtain a global rate of decay of the measure of balls on the
boundary, centered in the limit set. In the latter case, we obtain the so-called Federer property for
our leafwise measures.

Remark 3.3. The restriction that r ≤ 5/σ in the case σ > 1 allows for a uniform implied constant.
The proof shows that in fact, when σ > 1, the statement holds for any 0 < r ≤ 1, but with an
implied constant depending on σ.

3.1. Global Measure Formula. Our basic tool in proving Proposition 3.1 is the extension of
Sullivan’s shadow lemma known as the global measure formula, which we recall in this section.

Given a parabolic fixed point p ∈ Λ, with stabilizer Γp ⊂ Γ, we define the rank of p to be twice
the critical exponent of the Poincaré series PΓp(s, o) associated with Γp; cf. (2.1).

Given ξ ∈ ∂Hd
K, we let [oξ) denote the geodesic ray. For t ∈ R+, denote by ξ(t) the point at

distance t from o on [oξ). For x ∈ Hd
K, define the O(x) to be the shadow of unit ball B(x, 1) in Hd

K
on the boundary as viewed from o. More precisely,

O(x) :=
{
ξ ∈ ∂Hd

K : [oξ) ∩B(x, 1) 6= ∅
}
.
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Shadows form a convenient, dynamically defined, collection of neighborhoods of points on the
boundary.

The following generalization of Sullivan’s shadow lemma gives precise estimates on the measures
of shadows with respect to Patterson-Sullivan measures.

Theorem 3.4 (Theorem 3.2, [Sch04]). There exists C = C(Γ, o) ≥ 1 such that for every ξ ∈ Λ and
all t > 0,

C−1 ≤ µPS
o (O(ξ(t)))

e−δted(t)(k(ξ(t))−δ) ≤ C,

where

d(t) = dist(ξ(t),Γ · o),
and k(ξ(t)) denotes the rank of a parabolic fixed point p if ξ(t) is contained in a standard horoball
centered at p and otherwise k(ξ(t)) = δ.

A version of Theorem 3.4 was obtained earlier for real hyperbolic spaces in [SV95] and for complex
and quaternionic hyperbolic spaces in [New03].

3.2. Proof of Proposition 3.1. Assume that σ ≤ 1, the proof in the case σ > 1 is similar.
Fix a non-negative C∞ bump function ψ supported inside N+

1 and having value identically 1 on
N+

1/2. Given ε > 0, let ψε(n) = ψ(Ad(g− log ε)(n)). Note that the condition that ψε(id) = ψ(id) = 1

implies that for x ∈ X with x+ ∈ Λ,

µux(ψε) > 0, ∀ε > 0. (3.2)

Note further that for any r > 0, we have that χN+
r
≤ ψr ≤ χN+

2r
.

First, we establish a uniform bound over x ∈ Ω. Consider the following function fσ : Ω→ (0,∞):

fσ(x) = sup
0<r≤1

µux(ψσr)

µux(ψr)
.

We claim that it suffices to prove that

fσ(x)� σ∆, (3.3)

uniformly over all x ∈ Ω and 0 < σ ≤ 1. Indeed, fix some 0 < r ≤ 1 and 0 < σ ≤ 1. By enlarging
our implicit constant if necessary, we may assume that σ ≤ 1/4. From the above properties of ψ,
we see that

µux(N+
σr) ≤ µux(ψ(4σ)(r/2))� σ∆µux(ψr/2) ≤ σ∆µux(N+

r ).

Hence, it remains to prove (3.3). By [Rob03, Lemme 1.16], for each given r > 0, the map
x 7→ µux(ψσr)/µ

u
x(ψr) is a continuous function on Ω. Indeed, the weak-∗ continuity of the map

x 7→ µux is the reason we work with bump functions instead of indicator functions directly. Moreover,
continuity of these functions implies that fσ is lower semi-continuous.

The crucial observation regarding fσ is as follows. In view of (2.4), we have for t ≥ 0,

fσ(gtx) = sup
0<r≤e−t

µux(ψσr)

µux(ψr)
≤ fσ(x).

Hence, for all B ∈ R, the sub-level sets Ω<B := {fσ < B} are invariant by gt for all t ≥ 0. On
the other hand, the restriction of the (forward) geodesic flow to Ω is topologically transitive. In
particular, any invariant subset of Ω with non-empty interior must be dense in Ω. Hence, in view
of the lower semi-continuity of fσ, to prove (3.3), it suffices to show that fσ satisfies (3.3) for all x
in some open subset of Ω.

Recall we fixed a basepoint o ∈ Hd
K belonging to the hull of the limit set. Let xo ∈ G denote

a lift of o whose projection to G/Γ belongs to Ω. Let E denote the unit neighborhood of xo. We



8 OSAMA KHALIL

show that E ∩ Ω ⊂
{
fσ � σ∆

}
. Without loss of generality, we may further assume that σ < 1/2,

by enlarging the implicit constant if necessary.
First, note that the definition of the conditional measures µux immediately gives

µux|N+
4
� µPS

o |(N+
4 ·x)

+ , ∀x ∈ E.

It follows that

µPS
o ((N+

r · x)+)� µux(ψr)� µPS
o ((N+

2r · x)+),

for all 0 ≤ r ≤ 2 and x ∈ E. Hence, it will suffice to show that for all 0 < σ < 1,

µPS
o ((N+

σr · x)+)

µPS
o ((N+

r · x)+)
� σ∆.

To this end, there is a constant C1 ≥ 1 such that the following holds; cf. [Cor90, Theorem 2.2]1.
For all x ∈ E, if ξ = x+, then, the shadow Sr = {(nx)+ : n ∈ N+

r } satisfies

O(ξ(| log r|+ C1)) ⊆ Sr ⊆ O(ξ(| log r| − C1)), ∀0 < r ≤ 2. (3.4)

Here, and throughout the rest of the proof, if s ≤ 0, we use the convention

O(ξ(s)) = O(ξ(0)) = ∂Hd
K.

Fix some arbitrary x ∈ E and let ξ = x+. To simplify notation, set for any t, r > 0,

tσ := max {| log σr| − C1, 0} , tr := | log r|+ C1,

d(t) := dist(ξ(t),Γ · o), k(t) := k(ξ(t)),

where k(ξ(t)) is as in the notation of Theorem 3.4.
By further enlarging the implicit constant, we may assume for the rest of the argument that

− log σ > 2C1.

This insures that tσ ≥ tr and avoids some trivialities.
Let 0 < r ≤ 1 be arbitrary. We define constants σ0 := σ ≤ σ1 ≤ σ2 ≤ σ3 := 1 as follows. If

ξ(tσ) is in the complement of the cusp neighborhoods, we set σ1 = σ. Otherwise, we define σ1 by
the property that ξ(| log σ1r|) is the first point along the geodesic segment joining ξ(tσ) and ξ(tr)
(traveling from the former point to the latter) meets the boundary of the horoball containing ξ(tσ).
Similarly, if ξ(tr) is outside the cusp neighborhoods, we set σ2 = 1. Otherwise, we define σ2 by
the property that ξ(| log σ2r|) is the first point along the same segment, now traveling from ξ(tr)
towards ξ(tσ), which intersects the boundary of the horoball containing ξ(tr). Define

tσ0 := tσ, tσ3 := tr, tσi := | log σir| for i = 1, 2.

In this notation, we first observe that k(tσ1) = k(tσ2) = δ. In particular, Theorem 3.4 yields

µPS
o (Sσ1r)

µPS
o (Sσ2r)

�
(
σ1

σ2

)δ
.

Note further that since geodesics in Hd
K are unique distance minimizers, we have that the distance

between ξ(tσi) and ξ(tσi+1) is equal to |tσi−tσi+1 |, for i = 0, 2. Moreover, by our choice of basepoint
o and standard horoballs (cf. Remark 2.1), we have that

Γ · o ∩
s⋃
j=1

Hj = ∅.

1The quoted result in [Cor90] is stated in terms of the so-called Carnot-Caratheodory metric dcc on N+, which enjoys
the same scaling property in (2.7). In particular, this metric is Lipschitz equivalent to the Cygan metric in (2.9) by
compactness of the unit sphere in the latter and continuity of the map n 7→ dcc(n, id).
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Let H(σ0) denote the element of the collection of standard horoballs Γ · Hj , j = 1, . . . , s, which
contains the point ξ(tσ0) if the latter point is inside a cusp neighborhood, and otherwise set H(σ0)
to be the unit ball around o. Then, there is a constant C2 ≥ 1, depending only on on the constant
C1 as well as the distance between the orbit Γ · o and the standard horoballs Hj , such that

d(tσ0) ≤ dist(ξ(tσ0), ∂H(σ0)) + dist(∂H(σ0),Γ · o)
≤ dist(ξ(tσ0), ξ(tσ1)) + dist(∂H(σ0),Γ · o) ≤ − log(σ0/σ1) + C2,

where ∂H(σ0) denotes the boundary of H(σ0). Similarly, we also get that

d(tσ3) ≤ dist(ξ(tσ2), ξ(tσ3)) + C2 ≤ − log(σ2/σ3) + C2.

Hence, it follows using Theorem 3.4 and the above discussion that

µPS
o (Sσ0r)

µPS
o (Sσ1r)

�
(
σ0

σ1

)δ
ed(tσ0 )(k(tσ0 )−δ) �


(
σ0
σ1

)2δ−k(tσ0 )
if k(tσ0) ≥ δ,(

σ0
σ1

)δ
otherwise.

Similarly, we obtain

µPS
o (Sσ2r)

µPS
o (Sσ3r)

�
(
σ2

σ3

)δ
e−d(tσ3 )(k(tσ3 )−δ) �


(
σ2
σ3

)k(tσ3 )
if k(tσ3) ≤ δ,(

σ2
σ3

)δ
otherwise.

In all cases, we get for i = 0, 1, 2 that

µPS
o (Sσir)

µPS
o (Sσi+1r)

�
(

σi
σi+1

)∆

,

where ∆ is as in the statement of the proposition. Therefore, using the following trivial identity

µPS
o (Sσr)

µPS
o (Sr)

=
µPS
o (Sσ0r)

µPS
o (Sσ1r)

µPS
o (Sσ1r)

µPS
o (Sσ2r)

µPS
o (Sσ2r)

µPS
o (Sr)

,

we see that f(x) � σ∆. As x ∈ E was arbitrary, we find that E ⊂
{
fσ � σ∆

}
, thus concluding

the proof in the case σ ≤ 1. Note that in the case σ > 1, the constants σi satisfy σi/σi+1 ≥ 1,
so that combining the 3 estimates requires taking the maximum over the exponents, yielding the
bound with ∆+ in place of ∆ in this case.

Now, let r ∈ (0, 1] and suppose x = u−y for some y ∈ Ω and u− ∈ N−2 . By [Cor90, Theorem 2.2],
the analog of (3.4) holds, but with shadows from the viewpoint of x and y, in place of the fixed
basepoint o. Recalling the map n 7→ u+(n) in (2.10), one checks that this implies that this map is
Lipschitz on N+

1 with respect to the Cygan metric, with Lipschitz constant � C1. Moreover, the
Jacobian of the change of variables associated to this map with respect to the measures µux and µuy
is bounded on N+

1 , independently of y and u−; cf. (2.11) for a formula for this Jacobian. Hence,
the estimates for x ∈ N−2 Ω follow from their counterparts for points in Ω.

4. Margulis Functions In Infinite Volume

We construct Margulis functions on Ω which allow us to obtain quantitative recurrence estimates
to compact sets. Our construction is similar to the one in [BQ11] in the case of lattices in rank 1
groups. We use geometric finiteness of Γ to establish the analogous properties more generally. The
idea of Margulis functions originated in [EMM98].

Throughout this section, we assume Γ is a non-elementary, geometrically finite group containing
parabolic elements. The following is the main result of this section. A similar result in the special
case of quotients of SL2(R) follows from combining Lemma 9.9 and Proposition 7.6 in [MO23].
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Theorem 4.1. Let ∆ > 0 denote the constant in (3.1). For every 0 < β < ∆/2, there exists a
proper function Vβ : N−1 Ω→ R+ such that the following holds. There is a constant c ≥ 1 such that

for all x ∈ N−1 Ω and t ≥ 0,

1

µux(N+
1 )

∫
N+

1

Vβ(gtnx) dµux(n) ≤ ce−βtVβ(x) + c.

Our key tool in establishing Theorem 4.1 is Proposition 4.2, which is a statement regarding
average expansion of vectors in linear represearntations of G. The fractal nature of the conditional
measures µux poses serious difficulties in establishing this latter result.

4.1. Construction of Margulis functions. Let p1, . . . , pd ∈ Λ be a maximal set of inequivalent
parabolic fixed points and for each i, let Γi denote the stabilizer of pi in Γ. Let Pi < G denote the
parabolic subgroup of G fixing pi. Denote by Ui the unipotent radical of Pi and by Ai a maximal
R-split torus inside Pi. Then, each Ui is a maximal connected unipotent subgroup of G admitting
a closed (but not necessarily compact) orbit from identity in G/Γ. As all maximal unipotent
subgroups of G are conjugate, we fix elements hi ∈ G so that hiUih

−1
i = N+. Note further that G

admits an Iwasawa decomposition of the form G = KAiUi for each i, where K is our fixed maximal
compact subgroup.

Denote by W the adjoint representation of G on its Lie algebra. The specific choice of repre-
sentation is not essential for the construction, but is convenient for making some parameters more
explicit. We endow W with a norm that is invariant by K.

Let 0 6= v0 ∈W denote a vector that is fixed by N+. In particular, v0 is a highest weight vector
for the diagonal group A (with respect to the ordering determined by declaring the roots in N+ to
be positive). Let vi = hiv0/ ‖hiv0‖. Note that each of the vectors vi is fixed by Ui and is a weight
vector for Ai. In particular, there is an additive character χi : Ai → R such that

a · vi = eχi(a)vi, ∀a ∈ Ai. (4.1)

We denote by A+
i the subsemigroup of Ai which expands Ui (i.e. the positive Weyl chamber deter-

mined by Ui). We let αi : Ai → R denote the simple root of Ai in Lie(Ui). Then,

χi = χKαi, χK =

{
1, if K = R,
2 if K = C,H,O.

(4.2)

Given β > 0, we define a function Vβ : G/Γ→ R+ as follows:

Vβ(gΓ) := max
w∈

⋃d
i=1 gΓ·vi

‖w‖−β/χK . (4.3)

The fact that Vβ(gΓ) is indeed a maximum will follow from Lemma 4.6.

4.2. Linear expansion. The following result is our key tool in establishing the contraction esti-
mate on Vβ in Theorem 4.1.

Proposition 4.2. For every 0 ≤ β < ∆/2, there exists C = C(β) ≥ 1 so that for all t > 0,
x ∈ N−1 Ω, and all non-zero vectors v in the orbit G · v0 ⊂W , we have

1

µux(N+
1 )

∫
N+

1

‖gtn · v‖−β/χK dµux(n) ≤ Ce−βt ‖v‖−β/χK .

We postpone the proof of Proposition 4.2 to Section 5. Let π+ : W →W+ denote the projection
onto the highest weight space of gt. The difficulty in the proof of Proposition 4.2 beyond the case
G = SL2(R) lies in controlling the shape of the subset of N+ on which ‖π+(n · v)‖ is small, so that
we may apply the decay results from Proposition 3.1, that are valid only for balls of the form N+

ε .
We deal with this problem by using a convexity trick. A suitable analog of the above result holds
for any non-trivial linear representation of G.
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The following proposition establishes several geometric properties of the functions Vβ which are
useful in proving, and applying, Theorem 4.1. This result is proved in Section 4.4.

Proposition 4.3. Suppose Vβ is as in (4.3). Then,

(1) For every x in the unit neighborhood of Ω, we have that

inj(x)−1 �Γ V
χK/β
β (x),

where inj(x) denotes the injectivity radius at x. In particular, Vβ is proper on Ω.
(2) For all g ∈ G and all x ∈ X,

‖g‖−β Vβ(x) ≤ Vβ(gx) ≤
∥∥g−1

∥∥β Vβ(x).

(3) There exists a constant ε0 > 0 such that for all x = gΓ ∈ X, there exists at most one vector
v ∈

⋃
i gΓ · vi satisfying ‖v‖ ≤ ε0.

4.3. Proof of Theorem 4.1. In this section, we use Proposition 4.3 to translate the linear ex-
pansion estimates in Proposition 4.2 into a contraction estimate for the functions Vβ.

Let t0 > 0 be be given and define

ω0 := sup
n∈N+

1

max
{
‖gt0n‖

1/χK ,
∥∥(gt0n)−1

∥∥1/χK
}
,

where ‖·‖ denotes the operator norm of the action of G on W . Then, for all n ∈ N+
1 and all x ∈ X,

we have

ω−1
0 V1(x) ≤ V1(gt0nx) ≤ ω0V1(x), (4.4)

where V1 = Vβ for β = 1.
Let ε0 be as in Proposition 4.3(3). Suppose x ∈ X is such that V1(x) ≤ ω0/ε0. Then, by (4.4),

for any β > 0, we have that

1

µux(N+
1 )

∫
N+

1

Vβ(gt0nx) dµux(n) ≤ B0 := (ω2
0ε
−1
0 )β. (4.5)

Now, suppose x ∈ N−1 Ω is such that V1(x) ≥ ω0/ε0 and write x = gΓ for some g ∈ G. Then,

by Proposition 4.3(3), there exists a unique vector v? ∈
⋃
i gΓ · vi satisfying V1(x) = ‖v?‖−1/χK .

Moreover, by (4.4), we have that V1(gt0nx) ≥ 1/ε0 for all n ∈ N+
1 . And, by definition of ω0, for

all n ∈ N+
1 , ‖gt0nv?‖

1/χK ≤ ε0. Thus, applying Proposition 4.3(3) once more, we see that gt0nv? is
the unique vector in

⋃
i gt0ngΓ · vi satisfying

Vβ(gt0nx) = ‖gt0nv?‖
−1/χK , ∀n ∈ N+

1 .

Moreover, since the vectors vi all belong to the G-orbit of v0, it follows that v? also belongs to
G · v0. Thus, we may apply Proposition 4.2 as follows. Fix some β > 0 and let C = C(β) ≥ 1 be
the constant in the conclusion of the proposition. Then,

1

µux(N+
1 )

∫
N+

1

Vβ(gt0nx)dµux =
1

µux(N+
1 )

∫
N+

1

‖gt0nv?‖
−β/χK dµux ≤ Ce−βt0 ‖v?‖

−β/χK = Ce−βt0Vβ(x).

Combining this estimate with (4.5), we obtain for any fixed t0,

1

µux(N+
1 )

∫
N+

1

Vβ(gt0nx) dµux(n) ≤ Ce−βt0Vβ(x) +B0, (4.6)

for all x ∈ Ω. We claim that there is a constant c1 = c1(β) > 0 such that, if t0 is large enough,
depending on β, then

1

µux(N+
1 )

∫
N+

1

Vβ(gkt0nx) dµux(n) ≤ ck1e−βkt0Vβ(x) + 3c1B0, (4.7)
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for all k ∈ N. By Proposition 4.3, this claim completes the proof since Vβ(gty)� Vβ(gbt/t0ct0y), for
all t ≥ 0 and y ∈ X, with an implied constant depending only on t0 and β.

The proof of (4.7) is by now a standard argument, with the key ingredient in carrying it out
being the doubling estimate Proposition 3.1. We proceed by induction. Let k ∈ N be arbitrary and
assume that (4.7) holds for such k. Let

{
ni ∈ Ad(gkt0)(N+

1 ) : i ∈ I
}

denote a finite collection of

points in the support of µugkt0x
such that N+

1 ni covers the part of the support inside Ad(gkt0)(N+
1 ).

We can find such a cover with uniformly bounded multiplicity, depending only on N+. That is∑
i∈I

χN+
1 ni

(n)� χ∪iN+
1 ni

(n), ∀n ∈ N+.

Let xi = nigkt0x. By (4.6), and a change of variable, cf. (2.4) and (2.5), we obtain

eδkt0
∫
N+

1

Vβ(g(k+1)t0nx) dµux ≤
∑
i∈I

∫
N+

1

Vβ(gt0nxi) dµ
u
xi ≤

∑
i∈I

µuxi(N
+
1 )
(
Ce−βt0Vβ(xi) +B0

)
.

It follows using Proposition 4.3 that µuy(N+
1 )Vβ(y)�

∫
N+

1
Vβ(ny) dµuy(n) for all y ∈ X. Hence,∫

N+
1

Vβ(g(k+1)t0nx) dµux(n)� e−δkt0
∑
i∈I

∫
N+

1

(
Ce−βt0Vβ(nxi) +B0

)
dµuxi(n).

Note that since gt expands N+ by at least et, we have

Ak := Ad(g−kt0)

(⋃
i

N+
1 ni

)
⊆ N+

2 .

Using bounded multiplicity property of the cover, for any non-negative function ϕ, we have∑
i∈I

∫
N+

1

ϕ(nxi) dµ
u
xi =

∫
N+

ϕ(ngkt0x)
∑
i∈I

χN+
1 ni

(n) dµugkt0x
�
∫
⋃
iN

+
1 ni

ϕ(ngkt0x) dµugkt0x
.

Changing variables back so the integrals take place against µux, we obtain

e−δkt0
∑
i∈I

∫
N+

1

(
Ce−βt0Vβ(nxi) +B0

)
dµuxi �

∫
Ak

(
Ce−βt0Vβ(gkt0nx) +B0

)
dµux

≤ Ce−βt0
∫
N+

2

Vβ(gkt0nx) dµux +B0µ
u
x(N+

2 ).

To apply the induction hypothesis, we again pick a cover of N+
2 by balls of the form N+

1 n, for a
collection of points n ∈ N+

2 in the support of µux. We can arrange for such a collection to have a
uniformly bounded cardinality and multiplicity. By essentially repeating the above argument, and
using our induction hypothesis for k, in addition to the doubling property in Prop. 3.1, we obtain

Ce−βt0
∫
N+

2

Vβ(gkt0nx) dµux +B0µ
u
x(N+

2 )� (Cck1e
−β(k+1)t0Vβ(x) + 2B0Ce

−βt0 +B0)µux(N+
1 ),

where we also used Prop. 4.3 to ensure that Vβ(nx) � Vβ(x), for all n ∈ N+
3 . Taking c1 to be

larger than the product of C with all the uniform implied constants accumulated thus far in the
argument, we obtain

1

µux(N+
1 )

∫
N+

1

Vβ(g(k+1)t0nx) dµux(n) ≤ ck+1
1 e−β(k+1)t0Vβ(x) + 2c1e

−βt0B0 + c1B0.

This completes the proof.
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4.4. Geometric properties of Margulis functions and proof of Proposition 4.3. In this
section, we give a geometric interpretation of the functions Vβ which allows us to prove Proposi-
tion 4.3. Item (2) follows directly from the definitions, so we focus on the remaining properties.

The data in the definition of Vβ allows us to give a linear description of cusp neighborhoods as
follows. Given g ∈ G and i, write g = kau for some k ∈ K, a ∈ Ai and u ∈ Ui. Geometrically, the
size of the A component in the Iwasawa decomposition G = KAiUi corresponds to the value of the
Busemann cocycle |βpi(Kg, o)|, where Kg is the image of g in K\G; cf. [BQ16, Remark 6.5] and
the references therein for the precise statement. This has the following consequence. We can find
0 < εi < 1 such that ∥∥Ad(a)|Lie(Ui)

∥∥ < εi ⇐⇒ Kg ∈ Hpi , (4.8)

where Hpi is the standard horoball based at pi in Hd
K
∼= K\G.

The functions Vβ(x) roughly measure how far into the cusp x is. More precisely, we have the
following lemma.

Lemma 4.4. The restriction of Vβ to any bounded neighborhood of Ω is a proper map.

Proof. In view of Property (2) of Proposition 4.3, it suffices to prove that Vβ is proper on Ω.
Now, suppose that for some sequence gn ∈ G, we have gnΓ tends to infinity in Ω. Then, since
Γ is geometrically finite, this implies that the injectivity radius at gnΓ tends to 0. Hence, after
passing to a subsequence, we can find γn ∈ Γ such that gnγn belongs to a single horoball among
the horoballs constituting our fixed standard cusp neighborhood; cf. Section 2.2. By modifying γn
on the right by a fixed element in Γ if necessary, we can assume that Kgnγn converges to one of
the parabolic points pi (say p1) on the boundary of Hd

K
∼= K\G.

Moreover, geometric finiteness implies that (ΛΓ \ {p1})/Γ1 is compact. Thus, by multiplying
gnγn by an element of Γ1 on the right if necessary, we may assume that (gnγn)− belongs to a fixed
compact subset of the boundary, which is disjoint from {p1}.

Thus, for all large n, we can write gnγn = knanun, for kn ∈ K, an ∈ Ai and un ∈ Ui, such
that the eigenvalues of Ad(an) are bounded above; cf. (4.8). Moreover, as (gnγn)− belongs to a
compact set that is disjoint from {p1} and (gnγn)+ → p1, the set {un} is bounded. To show that
Vβ(gnΓ)→∞, since Ui fixes vi and K is a compact group, it remains to show that an contracts vi
to 0. Since gnγn is unbounded in G while kn and un remain bounded, this shows that the sequence
an is unbounded. Upper boundedness of the eigenvalues of Ad(an) thus implies the claim. �

Remark 4.5. The above lemma is false without restricting to Ω in the case Γ has infinite covolume
since the injectivity radius is not bounded above on G/Γ. Note also that this lemma is false in the
case Γ is not geometrically finite, since the complement of cusp neighborhoods inside Ω is compact
if and only if Γ is geometrically finite.

The next crucial property of the functions Vβ is the following linear manifestation of the existence
of cusp neighborhoods consisting of disjoint horoballs. This lemma implies Proposition 4.3(3).

Lemma 4.6. There exists a constant ε0 > 0 such that for all x = gΓ ∈ X, there exists at most one
vector v ∈

⋃
i gΓ · vi satisfying ‖v‖ ≤ ε0.

Remark 4.7. The constant ε0 roughly depends on the distance from a fixed basepoint to the cusp
neighborhoods.

Proof of Lemma 4.6. Let g ∈ G and i be given. Write g = kau, for some k ∈ K, a ∈ Ai and u ∈ Ui.
Since Ui fixes vi and the norm on W is K-invariant, we have ‖g · vi‖ = ‖a · vi‖ = eχi(a); cf. (4.1).
Moreover, since W is the adjoint representation, we have∥∥Ad(a)|Lie(Ui)

∥∥ � eχi(a),

and the implied constant, denoted C, depends only on the norm on the Lie algebra.
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Let 0 < εi < 1 be the constants in (4.8) and define ε0 := mini εi/C. Let x = gΓ ∈ G/Γ. Suppose
that there are elements γ1, γ2 ∈ Γ and vectors vi1 , vi2 in our finite fixed collection of vectors vi
such that

∥∥gγj · vij∥∥ < ε0 for j = 1, 2. Then, the above discussion, combined with the choice of

εi in (4.8), imply that Kgγj belongs to the standard horoball Hj in Hd
K based at pij . However,

this implies that the two standard horoballs H1γ
−1
1 and H2γ

−1
2 intersect non-trivially. By choice of

these standard horoballs, this implies that the two horoballs Hjγ
−1
j are the same and that the two

parabolic points pij are equivalent under Γ. In particular, the two vectors vi1 , vi2 are in fact the

same vector, call it vi0 . It also follows that γ−1
1 γ2 sends H to itself and fixes the parabolic point it

is based at. Thus, γ−1
1 γ2 fixes vi0 by definition. But, then, we get that

gγ2 · vi0 = gγ1(γ−1
1 γ2) · vi0 = gγ1 · vi0 .

This proves uniqueness of the vector in
⋃
i gΓ ·vi of norm ≤ ε0, if it exists, and concludes the proof.

�

The following lemma verifies Proposition 4.3(1) relating the injectivity radius to Vβ.

Lemma 4.8. For all x in the unit neighborhood of Ω, we have

inj(x)−1 �Γ V
χK/β
β (x),

where χK is given in (4.2).

Proof. Let x ∈ Ω and set x̃0 = Kx. Let x0 ∈ K\G ∼= Hd
K denote a lift of x̃0. Then, x0 belongs to

the hull of the limit set of Γ; cf. Section 2.
Since inj(·)−1 and Vβ are uniformly bounded above and below on the complement of the cusp

neighborhoods inside Ω, it suffices to prove the lemma under the assumption that x0 belongs to
some standard horoball H based at a parabolic fixed point p. We may also assume that the lift x0

is chosen so that p is one of our fixed finite set of inequivalent parabolic points {pi}.
Geometric finiteness of Γ implies that there is a compact subset Kp of ∂Hd

K\ {p}, depending
only on the stabilizer Γp in Γ, with the following property. Every point in the hull of the limit
set is equivalent, under Γp, to a point on the set of geodesics joining p to points in Kp. Thus,
after adjusting x0 by an element of Γp if necessary, we may assume that x0 belongs to this set.
In particular, we can find g ∈ G so that x0 = Kg and g can be written as kau in the Iwasawa
decomposition associated to p, for some k ∈ K, a ∈ Ap, and u ∈ Up2 with the property that Ad(a)
is contracting on Up and u is of uniformly bounded size.

Note that it suffices to prove the statement assuming the injectivity radius of x is sufficiently
small, depending only on the metric on G, while the distance of x0 to the boundary of the cusp
horoball Hp is at least 1. Now, let γ ∈ Γ be a non-trivial element such that x0γ is at distance
at most 2inj(x) from x0. Then, this implies that both x0 and x0γ belong to Hp. Let v = γ − id.
In view of the discreteness of Γ, we have that ‖v‖ � 1. Since the exponential map is close to an
isometry near the origin, we see that

dist(gγg−1, id) �
∥∥gγg−1 − id

∥∥ =
∥∥gvg−1

∥∥ = ‖Ad(au)(v)‖ ≥ eχKα(a) ‖Ad(u)(v)‖ ,

where χK is given in (4.2) and we used K-invariance of the norm. Here, α is the simple root of Ap
in the Lie algebra of Up and eχKα(a) is the smallest eigenvalue of Ad(a) on the Lie algebra of the
parabolic group stabilizing p. Note that since x0 belongs to Hp, α(a) is strictly negative.

Recalling that u belongs to a uniformly bounded neighborhood of identity in G and that ‖v‖ � 1,

it follows that dist(gγg−1, id)� eχKα(a). Since γ was arbitrary, this shows that the injectivity radius
at x satisfies the same lower bound.

2The groups Ap and Up were defined at the beginning of the section.
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Finally, let vp ∈ {vi} denote the vector fixed by Up. Using the above Iwasawa decomposition,

we see that V
1/β
β (x) ≥ ‖avp‖−1/χK = e−χp(a)/χK , where χp is the character on Ap determined by vp,

cf. (4.1). This concludes the proof in view of (4.2) and the fact that χp = χKα. �

Finally, we record the following useful quantitative form of Lemma 4.4 which follows by similar
arguments to those discussed in this section. We leave the details to the reader.

Lemma 4.9. For all x in a bounded neighborhood of Ω, we have edist(x,o) � Vβ(x)Oβ(1).

5. Shadow Lemmas, Convexity, and Linear Expansion

The goal of this section is to prove Proposition 4.2 estimating the average rate of expansion of
vectors with respect to leafwise measures. This completes the proof of Theorem 4.1.

5.1. Proof of Proposition 4.2. We may assume without loss of generality that ‖v‖ = 1. Let W+

denote the highest weight subspace of W for A+ = {gt : t > 0}. Denote by π+ the projection from
W onto W+. In our choice of representation W , the eigenvalue of A+ in W+ is eχKt, , where χK is
given in (4.2). It follows that

1

µux(N+
1 )

∫
N+

1

‖gtn · v‖−β/χK dµux(n) ≤ e−βt 1

µux(N+
1 )

∫
N+

1

‖π+(n · v)‖−β/χK dµux(n).

Hence, it suffices to show that, for a suitable choice of β, the integral on the right side is uniformly
bounded, independently of v and x (but possibly depending on β).

For simplicity, set βK = β/χK. A simple application of Fubini’s Theorem yields∫
N+

1

‖π+(n · v)‖−βK dµux(n) =

∫ ∞
0

µux

(
n ∈ N+

1 : ‖π+(n · v)‖βK ≤ t−1

)
dt.

For v ∈W , we define a polynomial map on N+ by n 7→ pv(n) := ‖π+(n · v)‖2 and set

S(v, ε) :=
{
n ∈ N+ : pv(n) ≤ ε

}
.

To apply Proposition 3.1, we wish to efficiently estimate the radius of a ball in N+ containing the
sublevel sets S

(
v, t−2/βK

)
∩N+

1 . We have the following claim.

Claim 5.1. There exists a constant C0 > 0, such that, for all ε > 0, the diameter of S(v, ε) ∩N+
1

is at most C0ε
1/4χK .

We show how this claim concludes the proof. By estimating the integral over [0, 1] trivially, we
get∫ ∞

0
µux

(
n ∈ N+

1 : ‖π+(n · v)‖βK ≤ t−1

)
dt ≤ µux(N+

1 ) +

∫ ∞
1

µux

(
S
(
v, t−2/βK

)
∩N+

1

)
dt. (5.1)

Claim 5.1 implies that if µux
(
S(v, ε) ∩N+

1

)
> 0 for some ε > 0, then S(v, ε) ∩N+

1 is contained

in a ball of radius 2C0ε
1/4χK , centered at a point in the support of the measure µux|N+

1
. Recalling

that βK = β/χK, we thus obtain∫ ∞
1

µux

(
S
(
v, t−2/βK

)
∩N+

1

)
dt ≤

∫ ∞
1

sup
n∈supp(µux)∩N+

1

µux

(
BN+

(
n, 2C0t

−1/2β
))

dt, (5.2)

where for n ∈ N+ and r > 0, BN+(n, r) denotes the ball of radius r centered at n.
To estimate the integral on the right side of (5.2), we use the doubling results in Proposition 3.1.

Note that if n ∈ supp(µux), then (nx)+ belongs to the limit set ΛΓ. Since x ∈ N−1 Ω by assumption,
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this implies that nx belongs to N−2 Ω for all n ∈ N+
1 in the support of µux; cf. Remark 2.2. Hence,

changing variables using (2.5) and applying Proposition 3.1, we obtain for all n ∈ supp(µux) ∩N+
1 ,

µux

(
BN+

(
n, 2C0t

−1/2β
))

= µunx

(
BN+

(
id, 2C0t

−1/2β
))
� t−∆/2βµunx(N+

1 ).

Moreover, for n ∈ N+
1 , we have, again by Proposition 3.1, that

µunx(N+
1 ) ≤ µux(N+

2 )� µux(N+
1 ).

Put together, this gives∫ ∞
1

sup
n∈supp(µux)∩N+

1

µux

(
BN+

(
n, 2C0t

−1/2β
))

dt� µux(N+
1 )

∫ ∞
1

t−∆/2β dt.

The integral on the right side above converges whenever β < ∆/2, which concludes the proof.

5.2. Preliminary facts. Towards the proof of Claim 5.1, we begin by recalling the Bruhat de-
composition of G. Denote by P− the subgroup MAN− of G.

Proposition 5.2 (Theorem 5.15, [BT65]). Let w ∈ G denote a non-trivial Weyl “element” satis-
fying wgtw

−1 = g−t. Then,

G = P−N+
⊔
P−w. (5.3)

We shall need the following result, which is yet another reflection in linear representations of G
of the fact that G has real rank 1.

Proposition 5.3. Let V be a normed finite dimensional representation of G, and v0 ∈ V be any
highest weight vector for gt (t > 0) with weight eλt for some λ ≥ 0. Let v be any vector in the orbit
G · v0 and define

G(v, V <λ(gt)) =

{
g ∈ G : lim

t→∞

log ‖gtgv‖
t

< λ

}
.

Then, there exists gv ∈ G such that

G(v, V <λ(gt)) ⊆ P−gv.

Proof. Let h ∈ G be such that v = hv0 and let g ∈ G(v, V <λ(gt)). By the Bruhat decomposition,
either gh = pn for some p ∈ P− and n ∈ N+, or gh = pw for some p ∈ P− and w being the
long Weyl “element”. Suppose we are in the first case, and note that N+ fixes v0 since it is a
highest weight vector for gt. Moreover, Ad(gt)(p) converges to some element in G as t tends to
∞. Since gtgv = eλtAd(gt)(p)v0, we see that log ‖gtgv‖ /t→ λ as t tends to ∞, thus contradicting
the assumption that g belongs to G(v, V <λ(gt)). Hence, gh must belong to P−w. This implies the
conclusion by taking gv := wh−1.

�

The following immediate corollary is the form we use this result in our arguments.

Corollary 5.4. Let the notation be as in Proposition 5.3. Then, N+ ∩G(v, V <λ(gt)) contains at
most one point.

Proof. Recall the Bruhat decomposition of G in Proposition 5.2. Let gv ∈ G be as in Proposition 5.3
and suppose that n0 ∈ P−gv ∩N+. Let p0 ∈ P− be such that n0 = p0gv.

First, assume gv = pvnv for some pv ∈ P− and nv ∈ N+. Then, n0 = p0pvnv and, hence,
n0n

−1
v ∈ P− ∩N+ = {id}. In particular, n0 = nv, and the claim follows in this case.

Now assume that gv = pvw for some pv ∈ P−, so that n0 = p0pvw ∈ P−w ∩ N+. This is a
contradiction, since the latter intersection is empty as follows from the Bruhat decomposition.

�
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5.3. Convexity and proof of Claim 5.1. Let B1 ⊂ Lie(N+) denote a compact convex set whose
image under the exponential map contains N+

1 and denote by B2 a compact convex set containing
B1 in its interior.

Define n+
1 to be the unit sphere in the Lie algebra n+ of N+ in the following sense:

n+
1 :=

{
u ∈ n+ : dN+(exp(u), id) = 1

}
,

where dN+ is the Cygan metric on N+; cf. Sec. 2.5. Given u, b ∈ n+, define a line `u,b : R→ n+ by

`u,b(t) := tu+ b,

and denote by L the space of all such lines `u,b such that u ∈ n+
1 . We endow L with the topology

inherited from its natural identification with its n+
1 × n+. Then, the subset L(B1) of all such lines

such that b belongs to the compact set B1 is compact in L.
Recall that a vector v ∈ W is said to be unstable if the closure of the orbit G · v contains 0.

Highest weight vectors are examples of unstable vectors. Let N denote the null cone of G in W ,
i.e., the closed cone consisting of all unstable vectors. Let N1 ⊂ N denote the compact set of unit
norm unstable vectors. Note that, for any v ∈ N , the restriction of pv to any ` ∈ L is a polynomial
in t of degree at most that of pv. We note further that the function

ρ(v, `) := sup {pv(`(t)) : `(t) ∈ B2}

is continuous and non-negative on the compact space N1 × L(B1). We claim that

ρ? := inf {ρ(v, `) : (v, `) ∈ N1 × L(B1)}

is strictly positive. Indeed, by continuity and compactness, it suffices to show that ρ is non-
vanishing. Suppose not and let (v, `) be such that ρ(v, `) = 0. Since B1 is contained in the interior
of B2, the intersection

I(`) := {t ∈ R : `(t) ∈ B2}

is an interval (by convexity of B2) with non-empty interior. Since pv(`(·)) is a polynomial vanishing
on a set of non-empty interior, this implies it vanishes identically. On the other hand, Corollary 5.4
shows that pv has at most 1 zero in all of n+, a contradiction.

Positivity of ρ? has the following consequence. Our choice of the representation W implies that
the degree of the polynomial pv is at most 4χK, where χK is given in (4.2). This can be shown by
direct calculation in this case.3 By the so-called (C,α)-good property (cf. [Kle10, Proposition 3.2]),
we have for all ε > 0

| {t ∈ I(`) : pv(`(t)) ≤ ε} | ≤ Cd (ε/ρ?)
1/4χK |I(`)|,

where Cd > 0 is a constant depending only on the degree of pv, and | · | denotes the Lebesgue
measure on R.

To use this estimate, we first note that the length of the intervals I(`) is uniformly bounded over
L(B1). Indeed, suppose for some u = (uα, u2α), b ∈ n+ and ` = `u,b ∈ L(B1), I(`) has endpoints
t1 < t2 so that the points `(ti) belong to the boundary of B2. Recall that the Lie algebra n+ of N+

decomposes into gt eigenspaces as n+
α ⊕ n+

2α, where n+
2α = 0 if and only if K = R. Set x1 = `(t1)

and x2 = `(t2). Since N+ is a nilpotent group of step at most 2, the Campbell-Baker-Hausdorff
formula implies that exp(x2) exp(−x1) = exp(Z), where Z ∈ n+ is given by

Z = x2 − x1 +
1

2
[x2,−x1] = (t2 − t1)u+

1

2
(t2 − t1)[b, u].

3In general, such a degree can be calculated from the largest eigenvalue of gt in W ; for instance by restricting the
representation to suitable subalgebras of the Lie algebra of G that are isomoprhic to sl2(R) and using the explicit
description of sl2(R) representations.
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Note that since n+
2α is the center of n+, [b, u] = [b, uα] belongs to n+

2α. Hence, we have by (2.9) that

dN+(exp(x1), exp(x2)) =

(
(t2 − t1)4 ‖uα‖4 + (t22 − t21)2

∥∥∥∥u2α +
1

2
[b, u]

∥∥∥∥2
)1/4

.

Since exp(u) is at distance 1 from identity, at least one of ‖uα‖ and ‖u2α‖ is bounded below by
10−1. Moreover, we can find a constant θ ∈ (0, 10−2) so that for all b ∈ B1 and all yα ∈ n+

α with
‖yα‖ ≤ θ such that ‖[b, yα]‖ ≤ 10−2. Together this implies that

min
{
t2 − t1, (t22 − t21)1/2

}
� diam (B1) ,

where diam (B1) denotes the diameter of B1. This proves that |I(`)| = t2 − t1 � 1, where the
implicit constant depends only on the choice of B1. We have thus shown that

| {t ∈ I(`) : pv(`(t)) ≤ ε} | � ε1/4χK . (5.4)

We now use our assumption that v belongs to the G orbit of a highest weight vector v0. Since
v0 is a highest weight vector, it is fixed by N+. Hence, the Bruhat decomposition, cf. (5.3) with
the roles of P− and P+ reversed, implies that the orbit G · v0 can be written as

G · v0 = P+ · v0

⊔
P+w · v0,

where w is the long Weyl “element”. Recall that P+ = N+MA, where M is the centralizer of
A = {gt} in the maximal compact group K. In particular, M preserves eigenspaces of A and
normalizes N+. Recall further that the norm on W is chosen to be K-invariant.

First, we consider the case v ∈ P+w · v0 and has unit norm. For v′ ∈ W , we write [v′] for its
image in the projective space P(W ). Then, since w · v0 is a joint weight vector of A, we see that
the image of P+w · v0 in P(W ) has the form N+M · [w · v0]. Setting v1 := w · v0, we see that

S(nm · v1, ε) = S(mv1, ε) · n−1 = Ad(m−1)(S(v1, ε)) · n−1, (5.5)

where we implicitly used the fact that M commutes with the projection π+ and preserves the norm
on W . Since the metric on N+ is right invariant under translations by N+ and is invariant under
Ad(M), the above identity implies that it suffices to estimate the diameter of S(v1, ε) ∩ N+

1 in
the case v ∈ P+w · v0. Similarly, in the case v ∈ P+ · v0, it suffices to estimate the diameter of
S(v0, ε) ∩N+

1 .

Let S̃(v, ε) = logS(v, ε) denote the pre-image of S(v, ε) in the Lie algebra n+ of N+ under the
exponential map. By Corollary 5.4, for any non-zero v ∈ N , either S(v, ε) is empty for all small
enough ε, or there is a unique global minimizer of pv(·) on N+, at which pv vanishes. In either

case, for any given v ∈ N \{0} in the null cone, the set S̃(v, ε) is convex for all small enough ε > 0,

depending on v. Let s0 > 0 be such that S̃(v, ε) is convex for v ∈ {v0, v1} and for all 0 ≤ ε ≤ s0.

Fix some v ∈ {v0, v1} and ε ∈ [0, s0]. Suppose that x1 6= x2 ∈ S̃(v, ε) ∩ B1. Let r denote the
distance dN+(x1, x2). Let u′ = x2−x1, u = u′/r and b = x1. Set ` = `u,b and note that `u,b(0) = x1

and `u,b(r) = x2. Since B1 is convex, the set S̃(v, ε) ∩B1 is also convex. Hence, the entire interval

(0, r) belongs to the set on the left side of (5.4) and, hence, that r � ε1/4χK . Since x1 and x2 were

arbitrary, this shows that the diameter of S̃(v, ε) ∩B1 is O(ε1/4χK) as desired.

6. Anisotropic Banach Spaces and Transfer Operators

In this section, we define the Banach spaces on which the transfer operator and resolvent asso-
ciated to the geodesic flow have good spectral properties.

The transfer operator, denoted Lt, acts on continuous functions as follows:

Ltf := f ◦ gt, f ∈ C(X), t ∈ R. (6.1)
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For z ∈ C, the resolvent R(z) : Cc(X)→ C(X) is defined formally as follows:

R(z)f :=

∫ ∞
0

e−ztLtf dt.

If Γ is not convex cocompact, we fix a choice of β > 0 so that Theorem 4.1 holds and set V = Vβ.
If Γ is convex cocompact, we take V = Vβ ≡ 1 and we may take β as large as we like in this case.
Note that the conclusion of Theorem 4.1 holds trivially with this choice of V . In particular, we
shall use its conclusion throughout the argument regardless of whether Γ admits cusps.

Denote by Ck+1
c (X)M the subspace of Ck+1

c (X) consisting of M -invariant functions, where M is
the centralizer of the geodesic flow inside the maximal compact group K. In particular, Ck+1

c (X)M

is naturally identified with the space of Ck+1
c functions on the unit tangent bundle of Hd

K/Γ;
cf. Section 2. The following is the main result of this section.

Theorem 6.1 (Essential Spectral Gap). Let k ∈ N be given. Then, there exists a seminorm ‖·‖k
on Ck+1

c (X)M , non-vanishing on functions whose support meets Ω, and such that for every z ∈ C,
with Re(z) > 0, the resolvent R(z) extends to a bounded operator on the completion of Ck+1

c (X)M

with respect to ‖·‖k and having spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) is bounded above by 1/(Re(z) + σ0), where

σ0 := min {k, β} .
In particular, if Γ is convex cocompact, we can take σ0 = k.

By the completion of a topological vector space V with respect to a seminorm ‖·‖, we mean the
Banach space obtained by completing the quotient topological vector space V/W with respect to
the induced norm, where W is the kernel of ‖·‖.

The proof of Theorem 6.1 occupies Sections 6 and 7.

6.1. Anisotropic Banach Spaces. We construct a Banach space of functions on X containing
C∞ functions satisfying Theorem 6.1.

Given r ∈ N, let V−r denote the space of all Cr vector fields on N+ pointing in the direction of
the Lie algebra n− of N− and having norm at most 1. More precisely, V−r consists of all Cr maps
v : N+ → n−, with Cr norm at most 1. Similarly, we denote by V0

r the set of Cr vector fields
v : N+ → a := Lie(A), with Cr norm at most 1. Note that if ω ∈ a is the vector generating the
flow gt, i.e. gt = exp(tω), then each v ∈ V0

r is of the form v(n) = φ(n)ω, for some φ ∈ Cr(N+) such
that ‖φ‖Cr(N+) ≤ 1. Define

Vr = V−r ∪ V0
r .

For v ∈ Lie(G), denote by Lv the differential operator on C1(X) given by differentiation with
respect to the vector field generated by v. Hence, for ϕ ∈ C1(G/Γ),

Lvϕ(x) = lim
s→0

ϕ(exp(sv)x)− ϕ(x)

s
.

For each k ∈ N, we define a norm on Ck(N+) functions as follows. Letting V+ be the unit
ball in the Lie algebra of N+, 0 ≤ ` ≤ k, and φ ∈ Ck(N+), we define c`(φ) to be the supre-
mum of |Lv1 · · ·Lv`(φ)| over N+ and all tuples (v1, . . . , v`) ∈ (V+)`. We define ‖φ‖Ck to be∑k

`=0 c`(φ)/(2``!). One then checks that for all φ1, φ2 ∈ Ck(N+), we have

‖φ1φ2‖Ck ≤ ‖φ1‖Ck ‖φ2‖Ck . (6.2)

Following [GL06, GL08], we define a norm on Ck+1
c (X) as follows. Given f ∈ Ck+1

c (X), k, `
non-negative integers, γ = (γ1, . . . , γ`) ∈ V`k+` (i.e. ` tuple of Ck+` vector fields) and x ∈ X, define

ek,`,γ(f ;x) :=
1

V (x)
sup

1

µux
(
N+

1

) ∣∣∣∣∣
∫
N+

1

φ(n)Lγ1(n) · · ·Lγ`(n)(f)(gsnx) dµux(n)

∣∣∣∣∣ , (6.3)
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where the supremum is taken over all s ∈ [0, 1] and all functions φ ∈ Ck+`(N+
1 ) which are compactly

supported in the interior of N+
1 and having ‖φ‖Ck+`(N+

1 ) ≤ 1.

For γ ∈ V`k+`+1, we define e′k,`,γ(f ;x) analogously to ek,`,γ(f ;x), but where we take s = 0 and

take the supremum over φ ∈ Ck+`+1(N+
1/10) instead4 of Ck+`(N+

1 ). Given r > 0, set

Ω−r := N−r Ω. (6.4)

We define
ek,`,γ(f) := sup

x∈Ω−
1

ek,`,γ(f ;x), ek,`(f) = sup
γ∈V`k+`

ek,`,γ(f). (6.5)

Finally, we define ‖f‖k and ‖f‖′k by

‖f‖k := max
0≤`≤k

ek,`(f), ‖f‖′k := max
0≤`≤k−1

sup
γ∈V`k+`+1,x∈Ω−

1/2

e′k,`,γ(f ;x). (6.6)

Note that the (semi-)norm ‖f‖′k is weaker than ‖f‖k since we are using more regular test functions
and vector fields, and we are testing fewer derivatives of f .

Remark 6.2. Since the suprema in the definition of ‖·‖k are restricted to points on Ω−1 , ‖·‖k
defines a seminorm on Ck+1

c (X)M . Moreover, since Ω−1 is invariant by gt for all t ≥ 0, the kernel of
this seminorm, denoted Wk, is invariant by Lt. The seminorm ‖·‖k induces a norm on the quotient

Ck+1
c (X)M/Wk, which we continue to denote ‖·‖k.

Definition 6.3. We denote by Bk the Banach space given by the completion of the quotient
Ck+1
c (X)M/Wk with respect to the norm ‖·‖k, where Ck+1

c (X)M denotes the subspace consisting
of M -invariant functions.

Note that since ‖·‖′k is dominated by ‖·‖k, ‖·‖
′
k descends to a (semi-)norm on Ck+1

c (X)M/Wk

and extends to a (semi-)norm on Bk, again denoted ‖·‖′k.
The following is a reformulation of Theorem 6.1 in the above setup.

Theorem 6.4. For all z ∈ C, with Re(z) > 0, and for all k ∈ N, the operator R(z) extends to
a bounded operator on Bk with spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) acting on Bk is bounded above by 1/(Re(z) + σ0), where

σ0 := min {k, β} .
In particular, if Γ is convex cocompact, we can take σ0 = k.

6.2. Hennion’s Theorem and Compact Embedding. Our key tool in estimating the essential
spectral radius is the following refinement of Hennion’s Theorem, based on Nussbaum’s formula.

Theorem 6.5 (cf. [Hen93] and Lemma 2.2 in [BGK07]). Suppose that B is a Banach space with
norm ‖·‖ and that ‖·‖′ is a seminorm on B so that the unit ball in (B, ‖·‖) is relatively compact in
‖·‖′. Suppose R is a bounded operator on B such that for some n ∈ N, there exist constants r > 0
and C > 0 satisfying

‖Rnv‖ ≤ rn ‖v‖+ C ‖v‖′ , (6.7)

for all v ∈ B. Then, the essential spectral radius of R is at most r.

The following proposition, roughly speaking, verifies the compactness assumption of Theorem 6.5
for ‖·‖k and ‖·‖′k.
Proposition 6.6. Let K ⊆ X be such that

sup {V (x) : x ∈ K} <∞.
Then, every sequence fn ∈ Ck+1

c (X)M , such that fn is supported in K and has ‖fn‖k ≤ 1 for all

n, admits a Cauchy subsequence in ‖·‖′k.

4The restriction on the supports allows us to handle non-smooth conditional measures; cf. proof of Prop. 6.6.
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6.3. Proof of Proposition 6.6. We adapt the arguments in [GL06,GL08] with the main difference
being that we bypass the step involving integration by parts over N+ since our conditionals µux
need not be smooth in general. The idea is to show that since all directions in the tangent space
of X are accounted for in the definition of ‖·‖k (differentiation along the weak stable directions

and integration in the unstable directions), one can estimate ‖·‖′k using finitely many coefficients
ek(f ;xi). More precisely, we first show that there exists C ≥ 1 so that for all sufficiently small
ε > 0, there exists a finite set Ξ ⊂ Ω so that for all f ∈ Ck+1

c (X)M , which is supported in K,

‖f‖′k ≤ Cε ‖f‖k + C sup

∫
N+

1

φLv1 · · ·Lv`f dµ
u
xi , (6.8)

where the supremum is over all 0 ≤ ` ≤ k−1, all (v1, . . . , v`) ∈ V`k+`+1, all functions φ ∈ Ck+`+1(N+
2 )

with ‖φ‖Ck+`+1 ≤ 1 and all xi ∈ Ξ.

First, we show how (6.8) completes the proof. Let fn ∈ Ck+1
c (K) be as in the statement.

Let ε > 0 be small enough so that (6.8) holds. Since Ck+`+1(N+
2 ) is compactly included inside

Ck+`(N+
2 ), we can find a finite collection {φj : j} ⊂ Ck+`(N+

2 ) which is ε dense in the unit ball of

Ck+`+1(N+
2 ). Similarly, we can find a finite collection of vector fields {(vm1 , . . . , vm` ) : m} ⊂ V`k+`

which is ε dense in V`k+`+1 in the Ck+`+1 topology. Then, we can find a subsequence, also denoted
fn, so that the finitely many quantities{∫

N+
1

φjLvm1 · · ·Lvm` fn dµ
u
xi : i, j,m

}
converge. Together with (6.8), this implies that

‖fn1 − fn2‖
′
k � ε,

for all large enough n1, n2, where we used the fact that ‖fn‖k ≤ 1 for all n. As ε was arbitrary, one
can extract a Cauchy subequence by a standard diagonal argument. Thus, it remains to prove (6.8).

Fix some f ∈ Ck+1
c (X)M which is supported inside K. Let an arbitrary tuple γ = (v1, . . . , v`) ∈

V`k+`+1 be given and set

ψ = Lv1 · · ·Lv`f.
Let φ ∈ Ck+`+1(N+

1/10) and write Q = N+
1/10. To estimate e′k,`,γ(f ; z) using the right side of (6.8),

we need to estimate integrals of the form

1

V (z)

1

µuz
(
N+

1

) ∫
N+

1

φ(n)ψ(nz) dµuz (n), (6.9)

for all z ∈ Ω−1/2.

Denote by ρ : X → [0, 1] a smooth function which is identically one on the 1-neighborhood Ω1

of Ω and vanishes outside its 2-neighborhood. Note that if f is supported outside of Ω1, then the
integral in (6.9) vanishes for all z and the estimate follows. The same reasoning implies that

‖ρf‖k = ‖f‖k , ‖ρf‖′k = ‖f‖′k .

Hence, we may assume that f is supported inside the intersection of K with Ω1. In particular, for
the remainder of the argument, we may replace K with (the closure of) its intersection with Ω1.

This discussion has the important consequence that we may assume that K is a compact set in
light of Proposition 4.3. Let K1 denote the 1-neighborhood of K and fix some z ∈ K1 ∩ Ω−1/2. By

shrinking ε, we may assume it is smaller than the injectivity radius of K1. Hence, we can find a
finite cover B1, . . . , BM of K1∩Ω−1/2 with flow boxes of radius ε and with centers Ξ := {xi} ⊂ Ω−1/2.

Step 1: We first handle the case where z belongs to the same unstable manifold as one of the
xi’s. Note that we may assume that Q intersects the support of µuz non-trivially, since otherwise
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the integral in question is 0. Let u ∈ Q be one point in this intersection and let x = uz. Thus,
by (2.5), we get∫

N+
1

φ(n)ψ(nz) dµuz (n) =

∫
Q
φ(n)ψ(nz) dµuz (n) =

∫
Qu−1

φ(nu)ψ(nx) dµux(n).

Let φu(n) := φ(nu). Then, φu is supported inside Qu−1. Moreover, since u ∈ Q, Qu := Qu−1 is a
ball of radius 1/10 containing the identity element. Hence, Qu−1 ⊂ N+

1 and, thus,∫
Qu

φ(nu)ψ(nx) dµux(n) =

∫
N+

1

φu(n)ψ(nx) dµux(n).

Fix some ε > 0. We may assume that ε < 1/10. Note that x belongs to the 1-neighborhood of
K. Then, x = u−1

2 xi for some i and some u2 ∈ N+
ε , by our assumption in this step that z belongs

to the unstable manifold of one of the xi’s. By repeating the above argument with z, u, x, Q and
φ replaced with x, u2, xi, Qu and φu respectively, we obtain∫

N+
1

φu(n)ψ(nx) dµux(n) =

∫
Quu

−1
2

φu(nu2)ψ(nxi) dµ
u
xi(n).

Note that Qu is contained in the ball of radius 1/5 centered around identity. Since u2 ∈ N+
ε and

ε < 1/10, we see that Quu
−1
2 ⊂ N+

1 . It follows that∫
N+

1

φu(n)ψ(nxi) dµ
u
xi(n) =

∫
N+

1

φu2u(n)ψ(nxi) dµ
u
xi(n),

where φu2u(n) = φu(nu2) = φ(nu2u). The function φu2u satisfies ‖φu2u‖Ck+`+1 = ‖φ‖Ck+`+1 ≤ 1.

Finally, let ϕ1, ϕ2 : N+ → [0, 1] be non-negative bump C0 functions where ϕ1 ≡ 1 on N+
1 and while

ϕ2 is equal to 1 at identity and its support is contained inside N+
1 . Since y 7→ µuy(ϕi) is continuous

for i = 1, 2, by [Rob03, Lemme 1.16], and is non-zero on Ω−1 , we can find, by compactness of K1, a
constant C ≥ 1, depending only on K (and the choice of ϕ1, ϕ2), such that

1/C ≤ µuy
(
N+

1

)
≤ C, ∀y ∈ K1 ∩ Ω−1 . (6.10)

Hence, recalling that ψ = Lv1 · · ·Lv`f and that V (z)� 1, we conclude that the integral in (6.9) is
bounded by the second term in (6.8).

Step 2: We reduce to the case where z is contained in the unstable manifolds of the xi’s. Let
i be such that z ∈ Bi. Set z1 = z and let z0 ∈ (N+

ε · xi) be the unique point in the intersection of
N+
ε · xi with the local weak stable leaf of z1 inside Bi. Let p−1 ∈ P− := MAN− be an element of

the ε neighborhood of identity P−ε in P− such that z1 = p−1 z0.
We will estimate the integral in (6.9) using integrals at z0. The idea is to perform weak stable

holonomy between the local strong unstable leaves of z0 and z1. To this end, we need some notation.
Let Y ∈ p− be such that p−1 = exp(Y ) and set

p−t = exp(tY ), zt = p−t z0,

for t ∈ [0, 1]. Let us also consider the following maps u+
t : N+

1 → N+ and p̃−t : N+
1 → P− defined

by the following commutation relations

np−t = p̃−t (n)u+
t (n), ∀n ∈ N+

1 .

Recall we are given a test function φ ∈ Ck+`+1(N+
1/10). We can rewrite the integral we wish to

estimate as follows:∫
N+

1

φ(n)ψ(nz1) dµuz1(n) =

∫
N+

1

φ(n)ψ(np−1 z0) dµuz1(n) =

∫
φ(n)ψ(p̃−1 (n)u+

1 (n)z0) dµuz1(n).
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Let U+
t ⊂ N+ denote the image of u+

t . Note that if ε is small enough, U+
t ⊆ N

+
2 for all t ∈ [0, 1].

We may further assume that ε is small enough so that the map u+
t is invertible on U+

t for all
t ∈ [0, 1] and write φt := φ ◦ (u+

t )−1. For simplicity, set

p−t (n) := p̃−t ((u+
t )−1(n)).

Write mt(n) ∈M and b−t (n) ∈ AN− for the components of p−t (n) along M and AN− respectively
so that

p−t (n) = mt(n)b−t (n).

We denote by Jt the Radon-Nikodym derivative of the pushforward of µuz1 by u+
t with respect to

µuzt ; cf. (2.11) for an explicit formula. Thus, changing variables using n 7→ u+
1 (n), and using the

M -invariance of f , we obtain∫
N+

1

φ(n)ψ(nz1) dµuz1 =

∫
φ1(n)ψ(p−1 (n)nz0)J1(n) dµuz0 =

∫
φ1(n)ψ̃1(b−1 (n)nz0)J1(n) dµuz0 ,

where ψ̃t is given by

ψ̃t := Lṽt1 · · ·Lṽt`f, ṽti(n) := Ad(mt((u
+
t )−1(n)))(vi((u

+
t )−1(n))).

Here, we recall that Ad(M) commutes with A and normalizes N− so that ṽti is a vector field with
the same target as vi.

Let b− denote the Lie algebra of AN− and denote by w̃′t : U+
t × [0, 1] → b− the vector field

tangent to the paths defined by b−t . More explicitly, w̃′t is given by the projection of tY to b−.
Denote w̃t(n) := Ad(mt(n))(w̃′t(n)). Then, using the M -invariance of f as above once more, we
can write

ψ(b−1 (n)nz0)− ψ(nz0)) =

∫ 1

0

∂

∂t
ψ̃t(b

−
t (n)nz0) dt =

∫ 1

0
Lw̃t(ψ̃t)(p

−
t (n)nz0) dt.

To simplify notation, let us set wt = w̃t ◦ u+
t , and

Ft := Lṽt1◦u
+
t
· · ·Lṽt`◦u+

t
f.

Using a reverse change of variables, we obtain for every t ∈ [0, 1] that∫
φ1(n)Lw̃t(ψ̃t)(p

−
t (n)nz0)J1(n) dµuz0 =

∫
(φ1J1) ◦ u+

t (n)Lwt(Ft)(p̃
−
t (n)u+

t (n)z0)J−1
t (n) dµuzt

=

∫
(φ1J1) ◦ u+

t (n) · Lwt(Ft)(nzt) · J−1
t (n) dµuzt(n),

where we used the identities p̃−t (n)u+
t (n) = np−t and zt = p−t z0. Let us write

Φt(n) := (φ1J1) ◦ u+
t (n) · J−1

t (n),

which we view as a test function5. Hence, the last integral above amounts to integrating ` + 1
weak stable derivatives of f against a Ck+` function. Moreover, since φ is supported in N+

1/10, we

may assume that ε is small enough so that Φt is supported in N+
1 for all t ∈ [0, 1], and meets

the requirements on the test functions in the definition of ‖f‖k. Since z = z1 belongs to Ω−1/2 by

assumption, we may further shrink ε if necessary so that the points zt all6 belong to Ω−1 . Thus,
decomposing wt into its A and N− components, and noting that ‖wt‖ � ε, we obtain the estimate∫

Φt(n) · Lwt(Ft)(nzt) dµuzt(n)� ε ‖f‖k V (zt)µ
u
zt(N

+
1 ). (6.11)

5The Jacobians are smooth maps as they are given in terms of Busemann functions; cf. (2.11).
6This type of estimate is the reason we use stable thickenings Ω−

r of Ω in the definition of the norm instead of Ω.
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To complete the argument, note that the integral we wish to estimate satisfies∫
N+

1

φ(n)ψ(nz1) dµuz1 =

∫
(φ1J1)(n)ψ(nz0) dµuz0 +

∫ 1

0

∫
Φt(n) · Lwt(Ft)(nzt) dµuzt(n) dt. (6.12)

Moreover, recall that z0 belongs to the same unstable manifold as some xi ∈ Ξ. Additionally, since
φ is supported in N+

1/10, by taking ε small enough, we may assume that φ1 is supported inside N+
1/5.

Hence, arguing similarly to Step 1, viewing φ1J1 as a test function, we can estimate the first term
on the right side above using the right side of (6.8).

The second term in (6.12) is also bounded by the right side of (6.8), in view of (6.11). Here we
are using that y 7→ µuy(N+

1 ) and y 7→ V (y) are uniformly bounded as y varies in the compact set
K1; cf. (6.10). This completes the proof of (6.8) in all cases, since φ and z were arbitrary.

7. The Essential Spectral Radius of Resolvents

In this section, we study the operator norm of the transfer operators Lt and the resolvents R(z)
on the Banach spaces constructed in the previous section. These estimates constitute the proof of
Theorem 6.1. With these results in hand, we deduce Theorem 1.1 at the end of the section.

7.1. Strong continuity of transfer operators. Recall that a collection of measurable subsets
{Bi} of a space Y is said to have intersection multiplicity bounded by a constant C ≥ 1 if for all
i, the number of sets Bj in the collection that intersect Bi non-trivially is at most C. In this case,
one has ∑

i

χBi(y) ≤ Cχ∪iBi(y), ∀y ∈ Y.

The following lemma implies that the operators Lt are uniformly bounded on Bk for t ≥ 0.

Lemma 7.1. For every k, ` ∈ N ∪ {0}, γ ∈ V`k+`, t ≥ 0, and x ∈ Ω−1 ,

ek,`,γ(Ltf ;x)�β e
−ε(γ)tek,`,γ(f)(e−βt + 1/V (x)),

where ε(γ) ≥ 0 is the number of stable derivatives determined by γ. In particular, ε(γ) = 0 if and
only if ` = 0 or all components of γ point in the flow direction.

Proof. Fix some x ∈ Ω and γ = (v1, . . . , v`) ∈ V`k+`. Since the Lie algebra of N− has the orthogonal
decomposition g−α⊕ g−2α, where α is the simple positive root in g with respect to gt, we have that
gt contracts the norm of each stable vector v ∈ V−k+` by at least e−t. It follows that for all v ∈ V−k+`

and w ∈ V0
k+`,

Lv(Ltf)(x) = e−tLv̄t(f)(gtx), Lw(Ltf)(x) = Lw(f)(gtx), (7.1)

for all f ∈ Ck+1(X)M , where vt = Ad(gt)(v) and v̄t = etvt if v ∈ V−k+` and v̄t = vt if v ∈ V0
k+`.

Moreover, we have ∥∥vt∥∥ ≤ e−t ‖v‖ ≤ e−t.
Let φ be a test function, f ∈ Ck+1(X)M , and set ψ = Lv̄t1 · · ·Lv̄t`f . Then, we get∣∣∣∣∣

∫
N+

1

φ(n)Lv1 · · ·Lv`(Ltf)(nx) dµux(n)

∣∣∣∣∣ = e−ε(γ)t

∣∣∣∣∣
∫
N+

1

φ(n)ψ(gtnx) dµux(n)

∣∣∣∣∣ .
Let {ρi : i ∈ I} be a partition of unity of Ad(gt)(N

+
1 ) so that each ρi is non-negative, C∞, and

supported inside some ball of radius 1 centered inside Ad(gt)(N
+
1 ). Such a partition of unity can

be chosen so that the supports of ρi have a uniformly bounded multiplicity7, depending only on

7Note that the analog of the classical Besicovitch covering theorem fails to hold for N+ with the Cygan metric when
N+ is not abelian; cf. [KR95, pg. 17]. Instead, such a partition of unity can be constructed using the Vitali covering
lemma with the aid of the right invariance of the Haar measure. To obtain a uniform bound on the multiplicity here
and throughout, it is important that such an argument is applied to balls with uniformly comparable radii.
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N+. Denote by I(Λ) the subset of indices i ∈ I such that there is ni ∈ N+ in the support of the
measure µugtx with the property that the support of ρi is contained in N+

1 · ni. In particular, for
i ∈ I \ I(Λ), ρiµ

u
gtx is the 0 measure. Then, using (2.4) to change variables, we obtain∫

Ad(gt)(N
+
1 )
φ(g−tngt)ψ(ngtx) dµugtx(n) =

∑
i∈I(Λ)

∫
N+

1 ·ni
ρi(n)φ(g−tngt)ψ(ngtx) dµugtx(n).

Setting xi = nigtx and changing variables using (2.5), we obtain∫
N+

1

φ(n)ψ(gtnx) dµux(n) = e−δt
∑
i∈I(Λ)

∫
N+

1

ρi(nni)φ(g−tnnigt)ψ(nxi) dµ
u
xi(n). (7.2)

The bounded multiplicity of the partition of unity implies that the balls N+
1 ·ni have intersection

multiplicity bounded by a constant C0, depending only on N+. Enlarging C0 if necessary, we may
also choose ρi so that ‖ρi‖Ck+` ≤ C0. In particular, C0 is independent of t and x.

For each i, let φ̄i(n) = ρi(nni)φ(g−tnnigt). Since ρi is chosen to be supported inside N+
1 ni, then

φ̄i is supported inside N+
1 . Moreover, since ρi is C∞, φ̄i is of the same differentiability class as

φ. Since conjugation by g−t contracts N+, we see that ‖φ ◦Ad(g−t)‖Ck+` ≤ ‖φ‖Ck+` ≤ 1 (note
that the supremum norm of φ ◦ Ad(g−t) does not decrease, and hence we do not gain from this
contraction). Hence, since ‖ρi‖Ck+` ≤ C0, (6.2) implies that

∥∥φ̄i∥∥Ck+` ≤ C0.

First, let us suppose that t ≥ 1. Then, using Remark 2.2, since x ∈ N−1 Ω, one checks that xi
belongs to N−1 Ω as well for all i. Hence, we obtain∣∣∣∣∣

∫
N+

1

φ(n)ψ(gtnx) dµux

∣∣∣∣∣ ≤ e−δt ∑
i∈I(Λ)

∣∣∣∣∣
∫
N+

1

φ̄i(n)ψ(nxi) dµ
u
xi

∣∣∣∣∣
≤ C0ek,`,γ(f) ‖φ ◦Ad(g−t)‖Ck+` e

−δt
∑
i∈I(Λ)

µuxi(N
+
1 )V (xi). (7.3)

By the log Lipschitz property of V provided by Proposition 4.3, and by enlarging C0 if necessary,
we have V (xi) ≤ C0V (nxi) for all n ∈ N+

1 . It follows that∑
i∈I(Λ)

µuxi(N
+
1 )V (xi) ≤ C0

∑
i∈I(Λ)

∫
N+

1

V (nxi) dµ
u
xi(n).

Recall that the balls N+
1 ·ni have intersection multiplicity at most C0. Moreover, since the support

of ρi is contained inside Ad(gt)(N
+
1 ), the balls N+

1 ni are all contained in N+
2 Ad(gt)(N

+
1 ). Hence,

applying the equivariance properties (2.4) and (2.5) once more yields∑
i∈I(Λ)

∫
N+

1

V (nxi) dµ
u
xi(n) ≤ C0

∫
N+

2 Ad(gt)(N
+
1 )
V (ngtx) dµugtx(n) ≤ C0e

δt

∫
N+

3

V (gtnx) dµux(n).

Here, we used the positivity of V and that Ad(g−t)(N
+
2 )N+

1 ⊆ N+
3 . Combined with (7.2) and the

contraction estimate on V , Theorem 4.1, it follows that∫
N+

1

φ(n)ψ(gtnx) dµux ≤ C3
0 (ce−βtV (x) + c)µux(N+

3 )ek,`,γ(f),

for a constant c ≥ 1 depending on β. By Proposition 3.1, we have µux(N+
3 ) ≤ C1µ

u
x(N+

1 ), for a
uniform constant C1 ≥ 1, which is independent of x. This estimate concludes the proof in view
of (7.1).
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Now, let s ∈ [0, 1] and t ≥ 0. If t + s ≥ 1, then the above argument applied with t + s in place
of t implies that∣∣∣∣∣

∫
N+

1

φ(n)Lv1 · · ·Lv`(Ltf)(gsnx) dµux

∣∣∣∣∣�β e
−ε(γ)tek,`,γ(f)(e−βtV (x) + 1)µux(N+

1 ),

as desired. Otherwise, if t+ s < 1, then by definition of ek,`,γ , we have that∣∣∣∣∣
∫
N+

1

φ(n)Lv1 · · ·Lv`(Ltf)(gsnx) dµux

∣∣∣∣∣ ≤ ek,`,γ(f)V (x)µux(N+
1 ).

Since t is at most 1 in this case, the conclusion of the lemma follows in this case as well.
�

As a corollary, we deduce the following strong continuity statement which implies that the
infinitesimal generator of the semigroup Lt is well-defined as a closed operator on Bk with dense
domain. When restricted to Ck+1

c (X)M , this generator is nothing but the differentiation operator
in the flow direction.

Corollary 7.2. The semigroup {Lt : t ≥ 0} is strongly continuous; i.e. for all f ∈ Bk,

lim
t↓0
‖Ltf − f‖k = 0.

Proof. For all f ∈ Ck+1
c (X)M , one easily checks that, since V (·)� 1 on any bounded neighborhood

of Ω, then

‖Ltf − f‖k � sup
0≤s≤1

‖Lt+sf − Lsf‖Ck(X) .

Moreover, since f belongs to Ck+1, the right side above inequality tends to 0 as t→ 0 by the mean
value theorem.

Now, let f be a general element of Bk and suppose that ‖Ltf − f‖k 9 0. Then, there is tn → 0

such that ‖Ltnf − f‖k → c 6= 0. For every j ∈ N, let fj ∈ Ck+1
c (X)M be such that ‖f − fj‖k < 1/j.

For each j, let nj be large enough such that
∥∥∥Ltnj fj − fj∥∥∥k < 1/j. Then,∥∥∥Ltnj f − f∥∥∥k ≤ ∥∥∥Ltnj f − Ltnj fj∥∥∥k +

∥∥∥Ltnj fj − fj∥∥∥k + ‖fj − f‖k .

The last two terms on the right side are each bounded by 1/j by construction. By Lemma 7.1, we

also have that
∥∥∥Ltnj f − Ltnj fj∥∥∥k is O(‖f − fj‖k). It follows that

∥∥∥Ltnj f − f∥∥∥k � 1/j → 0, which

contradicts the hypothesis that ‖Ltnf − f‖k → c 6= 0. �

7.2. Towards a Lasota-Yorke inequality for the resolvent. Recall that for all n ∈ N,

R(z)n =

∫ ∞
0

tn−1

(n− 1)!
e−ztLt dt, (7.4)

as follows by induction on n. The following corollary is immediate from Lemma 7.1 and the fact
that ∣∣∣∣∫ ∞

0

tn−1

(n− 1)!
e−zt dt

∣∣∣∣ ≤ ∫ ∞
0

tn−1

(n− 1)!
e−Re(z)t dt = 1/Re(z)n, (7.5)

for all z ∈ C with Re(z) > 0.

Corollary 7.3. For all n, k, ` ∈ N ∪ {0}, f ∈ Ck+1
c (X)M and z ∈ C with Re(z) > 0, we have

ek,`(R(z)nf ;x)�β ek,`(f)

(
1

(Re(z) + β)n
+
V (x)−1

Re(z)n

)
�β ek,`(f)/Re(z)n.

In particular, R(z) extends to a bounded operator on Bk with spectral radius at most 1/Re(z).
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Note that Lemma 7.1 does not provide contraction in the part of the norm that accounts for the
flow direction. In particular, the estimate in this lemma is not sufficient to control the essential
spectral radius of the resolvent. The following lemma provides the first step towards a Lasota-Yorke
inequality for resolvents for the coefficients ek,` when ` < k. The idea, based on regularization of
test functions, is due to [GL06]. The doubling estimates on conditional measures in Proposition 3.1
are crucial for carrying out the argument.

Lemma 7.4. For all t ≥ 2 and 0 ≤ ` < k, we have

ek,`(Ltf)�k,β e
−ktek,`(f) + e′k,`(f).

Proof. Fix some 0 ≤ ` < k. Let x ∈ Ω−1 and φ ∈ Ck+`(N+
1 ). Let (vi)i ∈ V`k+` and set F =

Lv1 · · ·Lv`f . We wish to estimate the following:

sup
0≤s≤1

∫
N+

1

φ(n)F (gt+snx) dµux.

To simplify notation, we prove the desired estimate for s = 0, the general case being essentially
identical.

Let ε > 0 to be determined and choose ψε to be a C∞ bump function supported inside N+
ε and

satisfying ‖ψε‖C1 � ε−1. Define the following regularization of φ

Mε(φ)(n) =

∫
N+ φ(un)ψε(u) du∫

N+ ψε(u) du
,

where du denotes the right-invariant Haar measure on N+. Recall the definition of the coefficients
cr above (6.2). Let 0 ≤ m < k + ` and (wj) ∈ (V+)m. Then,

|Lw1 · · ·Lwm(φ−Mε(φ))(n)| ≤
∫
|Lw1 · · ·Lwm(φ)(n)− Lw1 · · ·Lwm(φ)(un)|ψε(u) du∫

ψε(u) du

� cm+1(φ)

∫
dist(n, un)ψε(u) du∫

ψε(u) du
.

Now, note that if ψε(u) 6= 0, then dist(u, id) ≤ ε. Hence, right invariance of the metric on N+

implies that cm(φ−Mε(φ))� εcm+1(φ).
Moreover, we have that cm(Mε(φ)) ≤ cm(φ) for all 0 ≤ m ≤ k + `. It follows that ck+`(φ −

Mε(φ)) ≤ 2ck+`(φ). Finally, given (wi) ∈ (V+)k+`+1, integration by parts gives

Lw1 · · ·Lwk+`+1
(Mε(φ))(n) =

−
∫
N+ Lw2 · · ·Lwk+`+1

(φ)(un) · Lw1(ψε)(u) du∫
N+ ψε(u) du

.

In particular, since ‖ψε‖C1 � ε−1, we get ck+`+1(Mε(φ)) � ε−1ck+`(φ). Since gt expands N+ by
at least et, this discussion shows that for any t ≥ 0, if ‖φ‖Ck+` ≤ 1, then

‖(φ−Mε(φ)) ◦Ad(g−t)‖Ck+` � ε
k+`−1∑
m=0

e−mt

2m
+
e−(k+`)t

2k+`
,

‖Mε(φ) ◦Ad(g−t)‖Ck+`+1 �
k+∑̀
m=0

e−mt

2m
+
ε−1e−(k+`+1)t

2k+`+1
. (7.6)

Then, taking ε = e−kt, we obtain∫
N+

1

φ(n)F (gtnx) dµux =

∫
φ(n)F (gtnx) dµux

=

∫
(φ−Mε(φ))(n)F (gtnx) dµux +

∫
Mε(φ)(n)F (gtnx) dµux. (7.7)
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To estimate the second term, we recall that the test functions for the weak norm were required
to be supported inside N+

1/10. On the other hand, the support of Mε(φ) may be larger, but still

inside N+
1+ε. To remedy this issue, we pick a partition of unity {ρi : i ∈ I} of N+

2 , so that each
ρi is smooth, non-negative, and supported inside some ball of radius 1/20. We also require that
‖ρi‖Ck+`+1 �k 1. We can find such a partition of unity with bounded cardinality and multiplicity,
depending only on N+ (through its dimension and metric).

Similarly to Lemma 7.1, we denote by I(Λ) ⊆ I, the subset of those indices i such that there is
some ni ∈ N+ in the support of of µux so that the support of ρi is contained inside N+

1/10 · ni. In

particular, for i ∈ I \ I(Λ), ρiµ
u
x is the 0 measure.

Now, observe that the functions n 7→ ρi(nni)Mε(φ)(nni) are supported inside N+
1/10. Thus,

writing xi = nig1x, using a change of variable, and arguing as in the proof of Lemma 7.1, cf. (7.3),
we obtain∫

Mε(φ)(n)F (gtnx) dµux = e−δ
∑
i∈I(Λ)

∫
(ρiMε(φ)) ◦Ad(g−1)(n)F (gt−1ng1x) dµug1x

� e′k,`(f) ·
∑
i∈I(Λ)

‖(ρiMε(φ)) ◦Ad(g−t)‖Ck+`+1 · V (xi)µ
u
xi(N

+
1 ).

The point of replacing x with g1x is that since x belongs to N−1 Ω, g1x belongs to N−1/2Ω, which

satisfies the requirement on the basepoints in the definition of the weak norm.
Note that the bounded multiplicity property of the partition of unity, together with the doubling

property in Proposition 3.1, imply that∑
i∈I

µuxi(N
+
1 )� µux(N+

3 )� µux(N+
1 ).

Moreover, combining the Leibniz estimate (6.2) with (7.6), we see that the Ck+`+1 norm of
(ρiMε(φ)) ◦Ad(g−t) is Ok(1). Hence, by properties of the height function V in Proposition 4.3, it
follows that ∫

Mε(φ)(n)F (gtnx) dµux �k e
′
k,`(f)V (x)µux(N+

1 ).

Using a completely analogous argument to handle the issues of the support of the test function,
we can estimate the first term in (7.7) as follows:

1

V (x)µux(N+
1 )

∫
N+

1

(φ−Mε(φ))(n)F (gtnx) dµux �k e
−ktek,`(f).

Since (vi) ∈ V`k+`, x ∈ Ω−1 and φ ∈ Ck+`(N+
1 ) were all arbitrary, this completes the proof. �

It remains to estimate the coefficients ek,k. First, the following estimate in the case all the
derivatives point in the stable direction follows immediately from Lemma 7.1.

Lemma 7.5. For all γ = (vi) ∈ (V−2k)
k, we have

ek,k,γ(R(z)nf)�β
1

(Re(z) + k)n
ek,k(f).

Proof. Indeed, Lemma 7.1 shows that

ek,k,γ(Ltf)� e−ktek,k(f).

Moreover, induction and integration by parts give |
∫∞

0 tn−1e−(z+k)t/(n− 1)!dt| ≤ 1/(Re(z) + k)n.
This completes the proof. �
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To give improved estimates on the the coefficient ek,k,γ in the case some of the components
of γ point in the flow direction, the idea (cf. [AG13, Lem. 8.4] and [GLP13, Lem 4.5]) is to take
advantage of the fact that the resolvent is defined by integration in the flow direction, which provides
additional smoothing. This is leveraged through integration by parts to estimate the coefficient
ek,k by ek,k−1.

To see how such estimate can be turned into a gain on the norm of the resolvents, follow-
ing [AG13], we define the following equivalent norms to ‖·‖k. First, let us define the following
coefficients:

ek,`,s :=

{
ek,` 0 ≤ ` < k,

supγ∈(V−
2k)k ek,k,γ ` = k,

, ek,k,ω := sup
γ∈Vk2k\(V

−
2k)k

ek,k,γ .

Given B ≥ 1, define

‖f‖k,B,s :=

k∑
`=0

ek,`,s(f)

B`
, ‖f‖k,B,ω :=

ek,k,ω(f)

Bk
.

Finally, we set

‖f‖k,B := ‖f‖k,B,s + ‖f‖k,B,ω . (7.8)

Lemma 7.6. Let n, k ∈ N and z ∈ C with Re(z) > 0 be given. Then, if B is large enough,
depending on n, k, β and z, we obtain for all f ∈ Ck+1

c (X)M that

‖R(z)nf‖k,B,ω ≤
1

(Re(z) + k + 1)n
‖f‖k,B .

Proof. Fix an integer n ≥ 0. We wish to estimate integrals of the form∫
N+

1

φ(u)Lv1 · · ·Lvk
(∫ ∞

0

tne−zt

n!
Lt+sf dt

)
(ux) dµux(u)

=

∫
N+

1

φ(u)

∫ ∞
0

tne−zt

n!
Lv1 · · ·Lvk(Lt+sf)(ux) dt dµux(u),

with 0 ≤ s ≤ 1 and at least one of the vi pointing in the flow direction.
First, let us consider the case vk points in the flow direction. Then, vk(u) = ψk(u)ω, where ω

is the vector field generating the geodesic flow, for some function ψk in the unit ball of C2k(N+).
Hence, for a fixed u ∈ N+

1 , integration by parts in t, along with the fact that f is bounded, yields∫ ∞
0

tne−zt

n!
Lv1Lv2 · · ·Lvk(Lt+sf)(ux) dt

= ψk(u)z

∫ ∞
0

tne−zt

n!
Lv1 · · ·Lvk−1

(Lt+sf)(ux) dt− ψk(u)

∫ ∞
0

tn−1e−zt

(n− 1)!
Lv1 · · ·Lvk−1

(Lt+sf)(ux) dt

= ψk(u)zLv1 · · ·Lvk−1
(LsR(z)n+1f)(ux)− ψk(u)Lv1 · · ·Lvk−1

(LsRn(z)f)(ux).

Recall by Lemma 7.1 that ek,`(R(z)nf)�β ek,`(f)/Re(z)n for all n ∈ N; cf. Corollary 7.3. It follows
that

ek,k,γ(R(z)n+1f) ≤ ek,k−1(R(z)nf) + |z|ek,k−1(R(z)n+1f)�β

(
Re(z) + |z|
Re(z)n+1

)
ek,k−1(f).

In the case vk points in the stable direction instead, we note that LvLw = LwLv +L[v,w] for any
two vector fields v and w, where [v, w] is their Lie bracket. In particular, we can write Lv1 · · ·Lvk as
a sum of at most k terms involving k−1 derivatives in addition to one term of the form Lw1 · · ·Lwk ,
where wk points in the flow direction. Each of the terms with one fewer derivative can be bounded
by ek,k−1(R(z)n+1f) �β ek,k−1(f)/Re(z)n+1, while the term with k derivatives is controlled as in
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the previous case. Hence, taking the supremum over γ ∈ Vk2k \ (V−2k)
k and choosing B to be large

enough, we obtain the conclusion. �

7.3. Decomposition of the transfer operator according to recurrence of orbits. In order
to make use of the compact embedding result in Proposition 6.6, we need to localize our functions
to a fixed compact set. This is done with the help of the Margulis function V . In this section, we
introduce some notation and prove certain preliminary estimates for that purpose.

Recall the notation in Theorem 4.1. Let T0 ≥ 1 be a constant large enough so that eβT0 > 2.
We will enlarge T0 over the course of the argument to absorb various auxiliary uniform constants.
Define V0 by

V0 = e3βT0 . (7.9)

Let ρV0 ∈ C∞c (X) be a non-negative M -invariant function satisfying ρV0 ≡ 1 on the unit neighbor-
hood of {x ∈ X : V (x) ≤ V0} and ρV0 ≡ 0 on {V > 2V0}. Moreover, we require that ρV0 ≤ 1. Note
that since T0 is at least 1, we can choose ρV0 so that its C2k norm is independent of T0.

Let ψ1 = ρV0 and ψ2 = 1− ψ1. Then, we can write

LT0f = L̃1f + L̃2f,

where L̃if = LT0(ψif), for i ∈ {1, 2}. It follows that for all j ∈ N, we have

LjT0f =
∑

$∈{1,2}j
L̃$1 · · · L̃$jf =

∑
$∈{1,2}j

LjT0(ψ$f), ψ$ =

j∏
i=1

ψ$i ◦ g−(j−i)T0
. (7.10)

Note that if $i = 1 for some 1 ≤ i ≤ j, then, by Proposition 4.3, we have

sup
x∈supp(ψ$)

V (x) ≤ eβI$T0V0, I$ = j −max {1 ≤ i ≤ j : $i = 1} . (7.11)

The following lemma estimates the effect of multiplying by a fixed smooth function such as ψ$. To
formulate the lemma, we need the following definition.

Definition 7.7. Given ψ ∈ Cr(X), we use the notation ‖ψ‖uCr to denote the Cr-norm of ψ along
the unstable foliation. More precisely, we set

‖ψ‖uCr =

r∑
i=0

cui (ψ)

2ii!
, (7.12)

where cui (ψ) denotes the maximum of the sup norm of all order-i derivatives of ψ along directions
tangent to N+.

Lemma 7.8. Let ψ ∈ C2k(X) be given. Then, if B ≥ 1 is large enough, depending on k and
‖ψ‖C2k , we have

‖ψf‖k,B,s ≤ 2 ‖ψ‖uC2k(X) ‖f‖k,B,s ,

where ‖ψ‖uC2k(X) is defined in (7.12).

Proof. Given 0 ≤ ` ≤ k and 0 ≤ s ≤ 1, we wish to estimate integrals of the form∫
N+

1

φ(n)Lv1 · · ·Lv`(ψf)(gsnx) dµux(n).

The term Lv1 · · ·Lv`(ψf) can be written as a sum of 2` terms, each consisting of a product of an
order-i derivative of ψ by an order-(`− i) derivative of f , for 0 ≤ i ≤ `. Viewing the product of φ
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by an order-i derivative of ψ as a Ck+`−i test function, and using (6.2) to bound the Ck+`−i norm
of such a product, we obtain a bound of the form

B−`ek,`,s(ψf) ≤ B−1Ck,ψ

`−1∑
i=0

(
`

i

)
B−iek,i,s(f) +B−` ‖ψ‖uC2k ek,`,s(f)

≤ B−1Ck,ψ2k
`−1∑
i=0

B−iek,i,s(f) +B−` ‖ψ‖uC2k ek,`,s(f),

for a suitably large constant depending on k and the C2k-norm of ψ. Here, we note that the terms
that contribute to the ek,`,s(f) term in the above sum all have the form

∫
N+

1
φψLv1 · · ·Lv`(f) dµux.

Summing over `, we obtain

‖ψf‖k,B,s =
k∑
`=0

1

B`
ek,`,s(ψf) ≤ B−1Ck,ψ2k

k∑
`=0

`−1∑
i=0

B−iek,i,s(f) + ‖ψ‖uC2k ‖f‖k,B,s

≤ (B−1Ck,ψ2kk + ‖ψ‖uC2k) ‖f‖k,B,s .

Taking B large enough completes the proof of the lemma. �

The above lemma allows us to estimate the norms of the operators L̃i, for i = 1, 2 as follows.

Lemma 7.9. There exists a constant Ck,β ≥ 1, depending only on β and ‖ρV0‖C2k , such that for
all large enough B ≥ 1, we have∥∥∥L̃1f

∥∥∥
k,B,s

≤ Ck,β ‖f‖k,B,s ,
∥∥∥L̃2f

∥∥∥
k,B,s

≤ Ck,βe−βT0 ‖f‖k,B,s .

Proof. The first inequality follows by Lemmas 7.1 and 7.8. The second inequality follows similarly
since

ψ2(gT0nx) 6= 0 =⇒ V (gT0nx) ≥ V0.

By Proposition 4.3, this in turn implies that, whenever ψ2(gT0nx) 6= 0 for some n ∈ N+
1 , then

V (x)� eβT0 , by choice of V0. �

7.4. Proof of Theorems 6.1 and 6.4. Theorem 6.1 follows at once from 6.4. Theorem 6.4
will follow upon verifying the hypotheses of Theorem 6.5. The boundedness assertion follows by
Corollary 7.3. It remains to estimate the essential spectral radius of the resolvent R(z).

Write z = a+ ib ∈ C. Fix some parameter 0 < θ < 1 and define

σ := min {k, βθ} .
Let 0 < ε < σ/5 be given. We show that for a suitable choice of r and B, the following Lasota-Yorke
inequality holds: ∥∥R(z)r+1f

∥∥
k,B
≤

‖f‖k,B
(a+ σ − 2ε)r+1

+ C ′k,β,B,r,T0
‖Ψr,θf‖′k , (7.13)

where C ′k,β,B,r,T0
≥ 1 is a constant depending on the parameters in its subscript, while Ψr,θ : X →

[0, 1] is a smooth function vanishing outside a sublevel set of the Margulis function V , and whose
support depends on r and θ.

First, we show how (7.13) implies the result. Hennion’s Theorem, Theorem 6.5, applied with the
norm ‖·‖ = ‖·‖k,B and the semi-norm ‖·‖′ = ‖Ψr,θ•‖′k, implies that the essential spectral radius of

R(z), with respect to the norm ‖·‖k,B, is at most 1/(a + σ − 2ε). Equivalence of the norms ‖·‖k
and ‖·‖k,B implies that the same estimate also holds for the essential spectral radius ρess(R(z))

with respect to ‖·‖k. Note that the compact embedding requirement follows by Proposition 6.6
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again by equivalence of the norms ‖·‖k and ‖·‖k,B. Since ε > 0 was arbitrary, this shows that

ρess(R(z)) ≤ 1/(a+ σ). Finally, as 0 < θ < 1 was arbitrary, we obtain that

ρess(R(z)) ≤ 1

Re(z) + σ0
,

completing the proof.
To show (7.13), let an integer r ≥ 0 be given and Jr ∈ N to be determined. Using (7.10) and a

change of variable, we obtain

R(z)r+1f =

∫ ∞
0

tre−zt

r!
Ltf dt

=

∫ T0

0

tre−zt

r!
Ltf dt+

∫ ∞
(Jr+1)T0

tre−zt

r!
Ltf dt+

Jr∑
j=1

∫ (j+1)T0

jT0

tre−zt

r!
Ltf dt.

First, by Lemma 7.6, if B is large enough, depending on r, k and z, we obtain∥∥R(z)r+1(z)f
∥∥
k,B,ω

≤ 1

(a+ k + 1)r+1
‖f‖k,B .

It remains to estimate
∥∥R(z)r+1f

∥∥
k,B,s

. Note that
∫ T0

0
tre−at

r! dt ≤ T r+1
0 /r!. Hence, taking r large

enough, depending on k, a, β and T0, and using Lemma 7.1, we obtain for any B ≥ 1,∥∥∥∥∫ T0

0

tre−zt

r!
Ltf dt

∥∥∥∥
k,B,s

�β ‖f‖k,B
∫ T0

0

tre−at

r!
dt ≤ 1

(a+ k + 1)r+1
‖f‖k,B .

Similarly, taking Jr to be large enough, depending on k, a, β, and r, we obtain for any B ≥ 1,∥∥∥∥∥
∫ ∞

(Jr+1)T0

tre−zt

r!
Ltf dt

∥∥∥∥∥
k,B,s

�β ‖f‖k,B
∫ ∞

(Jr+1)T0

tre−at

r!
dt ≤ 1

(a+ k + 1)r+1
‖f‖k,B .

To estimate the remaining term in R(z)r+1f , let 1 ≤ j ≤ Jr and $ = ($i)i ∈ {1, 2}j be given.
Let θ$ denote the number of indices i such that $i = 2. Then, it follows from Lemma 7.1 and
induction on Lemma 7.9 that

‖Lt+jT0(ψ$f)‖k,B,s �β ‖LjT0(ψ$f)‖k,B,s =
∥∥∥L̃$1 ◦ · · · ◦ L̃$jf

∥∥∥
k,B,s

≤ Cjk,βe
−βθ$T0 ‖f‖k,B,s ,

(7.14)

where Ck,β is the constant provided by Lemma 7.9. We shall assume that Ck,β is taken than the
implicit constant in the first inequality.

Suppose θ$ ≥ θj. Then, by taking T0 to be large enough so that Cj+1
k,β ≤ e

εjT0 , we obtain

‖Lt+jT0(ψ$f)‖k,B,s ≤ e
−(βθ−ε)jT0 ‖f‖k,B,s .

The case θ$ < θj is addressed in the following lemma. Its proof is given in Section 7.4.1 below and
is an application of Lemmas 7.1, 7.4, and 7.8.

Lemma 7.10. Assume B ≥ 1 is chosen large enough, depending on k and r, and that T0 ≥ 1 is
chosen large enough depending k, β and ε. Then, there exists a sublevel set Kr,θ of the Margulis
function V and a smooth function Ψr,θ : X → [0, 1] vanishing outside the unit neighborhood of Kr,θ

so that the following hold. For all 1 ≤ j ≤ Jr, and all $ ∈ {1, 2}j with θ$ < θj, we have

‖Lt+jT0(ψ$f)‖k,B,s ≤ e
−(k−ε)(t+jT0) ‖f‖k,B,s + Ck,β,B,r,T0 ‖Ψr,θf‖′k ,

for a suitably large constant Ck,β,B,r,T0 ≥ 1.
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Putting the above estimates together, we obtain∥∥∥∥∥∥
Jr∑
j=1

∫ (j+1)T0

jT0

tre−zt

r!
Ltf dt

∥∥∥∥∥∥
k,B,s

≤
Jr∑
j=1

e−ajT0
∑

$∈{1,2}j

∫ T0

0

(t+ jT0)re−at

r!
‖Lt+jT0(ψ$f)‖k,B,s dt

≤ ‖f‖k,B,s
Jr∑
j=1

e−(a+σ−ε)jT0

∫ T0

0

(t+ jT0)re−at

r!
dt

+ Ck,β,B,r,T0 ‖Ψrf‖′k
Jr∑
j=1

2je−ajT0

∫ T0

0

(t+ jT0)re−at

r!
dt

≤ e(σ−ε)T0 ‖f‖k,B,s
∫ Jr

1

tre−(a+σ−ε)t

r!
dt+ C ′k,β,B,r,T0

‖Ψrf‖′k ,

where we take C ′k,β,B,r,T0
≥ 1 to be a constant large enough so that the last inequality holds.

Next, we note that∫ Jr

1

tre−(a+σ−ε)t

r!
dt ≤

∫ ∞
0

tre−(a+σ−ε)t

r!
dt =

1

(a+ σ − ε)r+1
.

Thus, taking r to be large enough depending on a and T0, and combining the estimates on∥∥R(z)r+1f
∥∥
k,B,ω

and
∥∥R(z)r+1f

∥∥
k,B,s

, we obtain (7.13) as desired.

7.4.1. Proof of Lemma 7.10. Let $ ∈ {1, 2}j be such that θ$ < θj. By Lemma 7.4, for all
0 ≤ ` < k, we have

ek,`(Lt+jT0(ψ$f))�k,β e
−k(t+jT0)ek,`(ψ$f) + e′k,`(ψ$f),

where we may assume that T0 is at least 2 so that the hypothesis of Lemma 7.4. For the coefficient
ek,k, Lemma 7.1 shows that for any γ ∈ (V−2k)

k, we have

ek,k,γ(Lt+jT0(ψ$f))�β e
−k(t+jT0)ek,k,s(ψ$f).

Hence, summing over `, we obtain

‖Lt+jT0(ψ$f)‖k,B,s ≤ Ck,βe
−k(t+jT0) ‖ψ$f‖k,B,s + Ck,β,B ‖ψ$f‖′k ,

for suitable constants Ck,β ≥ 1 and Ck,β,B ≥ 1 depending on the parameters in their respective
subscripts.

Our next task is to remove the dependence over $ in the right side of the above estimate. By
taking B large enough, depending on the maximum over 1 ≤ j ≤ Jr and $ ∈ {1, 2}j of the
C2k-norm of the functions ψ$, we may apply Lemma 7.8 to get

‖ψ$f‖k,B,s ≤ 2 ‖ψ$‖uC2k ‖f‖k,B,s ,

where the unstable norm ‖·‖uC2k is defined in (7.12).
By the formula (7.10) for ψ$, the functions ψ$ are given by a product of j functions of the

form ρV0 and 1 − ρV0 composed by g−t for suitable t > 0. Since composition by g−t, t > 0, is
non-expanding on the unstable norm ‖·‖uC2k , we get

‖ψ$‖uC2k ≤ ‖ρV0‖
j
C2k .

By enlarging the constant Ck,β if necessary, we may assume it is larger than 2 ‖ρV0‖C2k . Thus, we
obtain the bound:

‖Lt+jT0(ψ$f)‖k,B,s ≤ C
j+1
k,β e

−k(t+jT0) ‖f‖k,B,s + Ck,β,B ‖ψ$f‖′k .

To put the term ‖ψ$f‖′k in a form where we can apply Hennion’s Theorem 6.5, we take advantage
of the bound θ$ < θj. To this end, note that the bound θ$ < θj and the formula (7.11) for the
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support of ψ$ imply that there is a sublevel set Kr,θ of the Margulis function V , depending only

on θ and Jr, such that the following holds. For every 1 ≤ j ≤ Jr and all $ ∈ {1, 2}j with θ$ < θj,
the function ψ$ is supported inside Kr,θ. Let Ψr,θ : X → [0, 1] denote a smooth bump function
which is identically 1 on Kr,θ and vanishes outside the unit neighborhood of Kr,θ. Then, for every
$ with θ$ < θj, we have that ψ$ = ψ$Ψr,θ. Hence, arguing as in the proof of Lemma 7.8 with

‖·‖′k in place of ‖·‖k,B,s, we obtain

‖ψ$f‖′k = ‖ψ$Ψr,θf‖′k �k,T0,Jr ‖Ψr,θf‖′k .
Here, the dependence of the implicit constant arises from the norm ‖ψ$‖C2k . Hence, taking T0

large enough so that Cj+1
k,β ≤ e

εk(t+jT0), and combining the above estimates, we obtain

‖Lt+jT0(ψ$f)‖k,B,s ≤ e
−(k−ε)(t+jT0) ‖f‖k,B,s + Ck,β,B,r,T0 ‖Ψr,θf‖′k ,

for a suitably large constant Ck,β,B,r,T0 ≥ 1.

7.5. Proof of Theorem 1.1. Recall the notation in the statement of the theorem. We note that
switching the order of integration in the definition of the Laplace transform shows that

ρ̂f,g(z) =

∫
R(z)(f)g dmBMS, Re(z) > 0.

In particular, the poles of ρ̂f,g form a subset of the set of poles the resolvent R(z).
On the other hand, Corollary 7.2 implies that the infinitesimal generator X of the semigroup Lt

is well-defined as a closed operator on Bk with dense domain. Moreover, R(z) coincides with the
resolvent operator (X−zid)−1 associated to X, whenever z belongs to the resolvent set (complement
of the spectrum) of X.

We further note that the spectra of X and R(z) are related by the formula σ(X) = z−1/σ(R(z)).
In particular, by Theorem 6.4, in the half plane Re(z) > −σ0, the poles of R(z) coincide with the
eigenvalues of X. In view of this relationship between the spectra, the fact that the imaginary axis
does not contain any poles for the resolvent, apart from 0, follows from the mixing property of the
geodesic flow with respect to mBMS as shown in Lemma 7.11 below.

Finally, we note that in the case Γ has cusps, β was an arbitrary constant in (0,∆/2), so that
we may take σ0 in the conclusion of Theorem 6.4 to be the minimum of k and ∆/2 in this case.
This completes the proof of Theorem 1.1.

7.6. Resonances on the imaginary axis. In this section, we study the intersection of the spec-
trum of X with the imaginary axis.

Lemma 7.11. The intersection of the spectrum of X with the imaginary axis consists only of the
eigenvalue 0 which has algebraic multiplicity one.

First, we need the following lemma relating our norms to correlation functions.

Lemma 7.12. For all f, ϕ ∈ C2
c (X)M , we have that

∫
f · ϕ dmBMS �ϕ ‖f‖′1, where the implied

constant depends on ‖ϕ‖C2 and the injectivity radius of its support.

Proof. Using a partition of unity, we may assume ϕ is supported inside a flow box. The implied
constant then depends on the number of elements of the partition of unity needed to cover the
support of ϕ. Inside each such flow box, the measure mBMS admits a disintegration in terms of
the conditional measures µux averaged against a suitable measure on the transversal to the strong
unstable foliation. Thus, the lemma follows by definition of the norm by viewing the restriction of
ϕ to each local unstable leaf as a test function. �

Proof of Lemma 7.11. In what follows, we endow elements ϕ of C2
c (X) with the norm ‖ϕ‖′C2 given

by multiplying the C2-norm of ϕ with a suitable power of the reciprocal of the injectivity radius of
its support so that ‖ϕ‖′C2 dominates the implicit constant depending on ϕ in Lemma 7.12. Such
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power exists by the proof of the lemma. The dual space C2
c (X)∗ is endowed with the corresponding

dual norm.
First, we note that, since Bk ⊆ B1 for all k ≥ 1, it suffices to prove the lemma for the action

of X on B1. Let Φ : B1 → C2
c (X)∗ denote the linear map which extends the mapping f 7→

(ϕ 7→
∫
fϕ dmBMS) from C2

c (X)M to the dual space C2
c (X)∗. The fact that this mapping extends

continuously to B1 follows by Lemma 7.12. We claim that Φ is injective. This claim is routine in
the absence of cusps, and we briefly outline why it also holds in general.

To prove this claim, note first that the coefficients e1,0(·;x) and e1,1(·;x) extend from C2
c to

define seminorms on B1. In particular, given any f ∈ B1 and fn ∈ C2
c (X)M tending to f in B1,

we have e1,`(f ;x) = limn→∞ e1,`(fn;x) for ` = 0, 1 and for every x ∈ N−1 Ω. Since the coefficient
e1,`(f) is defined by taking a supremum over x, it follows that we can find a sequence xm ∈ N−Ω
such that e1,`(f ;xm) converges to e1,`(f). In particular, we obtain

e1,`(f) = lim
m→∞

lim
n→∞

e1,`(fn;xm). (7.15)

Now, suppose f ∈ B1 is in the kernel of Φ and let fn ∈ C2
c (X)M be a sequence of functions

converging to f . By continuity, Φ(fn) tends to 0 in C2
c (X)∗. One then checks that this implies that

for every fixed x ∈ N−1 Ω, we have that8 e1,0(fn;x) → 0 as n → ∞. Hence, by (7.15), we get that

e1,0(f) = 0. Since ‖f‖′1 ≤ e1,0(f), this shows that ‖f‖′1 = 0, and hence Φ is injective as claimed.
We now show that this injectivity implies the lemma. Via the relationship between the spectra

of X and the resolvents (cf. Section 7.5), Theorem 6.4 implies that the intersection of the spectrum
σ(X) with the imaginary axis consists of a discrete set of eigenvalues. Similarly, finiteness of the
multiplicities of each of these eigenvalues is a consequence of quasi-compactness of the resolvent.

Let b ∈ R be such that ib is one such eigenvalue with eigenvector 0 6= f ∈ B1 and note that this
implies that Ltf = eibtf . We show that Φ(f) is a multiple of the measure mBMS. This implies that
b = 0 by injectivity since mBMS is the image of the constant function 1 under Φ. To do so, we
use the fact that the geodesic flow is mixing9 with respect to mBMS by work of Rudolph [Rud82]
and Babillot [Bab02]. Let ϕ ∈ C2

c (X) be arbitrary and let θn =
∫
fn dmBMS and ξ =

∫
ϕ dmBMS.

Then, for every t ≥ 0 and n ∈ N, we have

|Φ(f)(ϕ)− θnξ| ≤
∣∣∣∣Φ(f)(ϕ)−

∫
ϕLtfn dmBMS

∣∣∣∣+

∣∣∣∣∫ ϕLtfn dmBMS − θnξ
∣∣∣∣ . (7.16)

By mixing, for every fixed n, the second term can be made arbitrarily small by taking t large
enough. Moreover, since Φ(f) = e−ibtΦ(Ltf), the first term is bounded by∣∣∣∣e−ibtΦ(Ltf)(ϕ)− e−ibt

∫
ϕLtfn dmBMS

∣∣∣∣+ |e−ibt − 1|
∣∣∣∣∫ ϕLtfn dmBMS

∣∣∣∣ . (7.17)

The first term in (7.17) is equal to |Φ(Lt(f−fn)(ϕ)|, which is Oϕ(‖f − fn‖1) in view of Lemmas 7.12

and 7.1. Similarly, since fn converges to f in B1, the second term is Oϕ(|e−ibt− 1| ‖f‖1). To bound

this term, note that one can find arbitrarily large t so that eibt is arbitrarily close to 1.
Therefore, using a diagonal argument, this implies that we can find a sequence t(n) tending to

infinity so that the upper bound in (7.16) tends to 0 with n. If ξ 6= 0, the above argument implies
that θn is Oϕ(Φ(f)(ϕ)) and hence converges (along a subsequence) to some θ ∈ R. In particular,
the values of Φ(f) and θmBMS agree on ϕ in this case. If ξ = 0, then the above argument shows
that Φ(f)(ϕ) = 0 so that the same conclusion also holds.

8This is similar to the argument in the proof of (6.8). One proceeds by thickening test functions on N+
1 · x to

functions supported in a small box around x and controlling the difference between the integrals using e1,0(fn;x) and
the integral against the thickened functions using e1,1(fn). The seminorms e1,1(fn) remain bounded since fn → f ,
while the integrals against thickened functions tend to 0 since Φ(fn)→ 0.
9We refer the reader to [BDL18, Corollary 5.4] for this deduction using only ergodicity of the flow.
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The assertion on the algebraic multiplicity, which in particular involves ruling out the presence
of Jordan blocks, is standard and can be deduced from quasi-compactness of the resolvent and the
bound on its norm given in Corollary 7.3 following very similar lines to [BDL18, Corollary 5.4] to
which we refer the interested reader for details. �

7.7. Exponential recurrence from the cusp and Proof of Theorem 1.2. As a corollary
of our analysis, we obtain the following stronger form of Theorem 1.2 regarding the exponential
decay of the measure of orbits spending a large proportion of their time in the cusp. This result
is crucial to our arguments in later sections. The deduction of Theorem 1.2 in its continuous time
formulation from the following result follows using Proposition 4.3 and is left to the reader.

Theorem 7.13. For every ε > 0, there exists r0 �β 1/ε such that the following holds for all

m ∈ N, r ≥ r0, 0 < θ < 1 and x ∈ N−1 Ω. Let H = e3βr0, and let χH be the indicator function of the
set {x : V (x) > H}. Then,

µux

n ∈ N+
1 :

∑
1≤`≤m

χH(gr`nx) > θm

 ≤ e−(βθ−ε)mV (x)µux(N+
1 ).

Proof. The argument is very similar to the proof of the estimate (7.14), with small modifications
allowing for the height H to be independent of the step size r. This subtle difference from (7.14)
will be important in the application of this result to the proof of exponential mixing in the sequel.

Let r0 ≥ 1 to be chosen later in the argument depending on ε and β and set V0 = e2βr0 . As
before, let ρV0 : X → [0, 1] denote a smooth compactly supported function which is identically 1 on
{V ≤ V0} and vanishing outside {V > 2V0}. Let ψ = 1− ρV0 . Let r ≥ r0 and define the following
operators:

L̃1(f) := Lrf, L̃2(f) = Lr(ψf).

Note that, unlike our previous arguments, the operators L̃i do not provide a decomposition of Lr,
i.e., Lr 6= L̃1 + L̃2. Given m ∈ N and $ ∈ {1, 2}m, let L$ = L̃$1 ◦ · · · ◦ L̃$m . We also have that

L$(f) = Lmr(ψ$f), where ψ$ =
∏

`:$`=2

ψ ◦ g(`−m)r.

Similarly to Lemma 7.9, Lemma 7.1 implies the bounds

e1,0(L̃1f)�β e1,0(f), e1,0(L̃2f)�β e
−βr0e1,0(ψf)� e−βr0e1,0(f). (7.18)

Let H = e3βr0 . We shall assume that r0 is large enough so that H > 2V0. Define

E$ =
{
n ∈ N+

1 : $` = 2⇒ V (g`rnx) > H, for all ` = 1, . . . ,m
}
.

Then, for all n ∈ N+
1 ,

ψ$(gmrnx) ≥ 1E$(n). (7.19)

Indeed, if 1E$(n) = 1, and ` is such that $` = 2, then V (g`rnx) > H > 2V0 and, hence, ψ(g`rnx) =
1. It follows that

ψ$(gmrnx) =
∏

`:$`=2

ψ(g`rnx) = 1.

This verifies (7.19). Denote by θ$ the number of indices ` for which $` = 2. Then, we see thatn ∈ N+
1 :

∑
1≤`≤m

χH(gr`nx) > θm

 ⊆ ⋃
$:θ$>θm

E$.
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We wish to apply (7.18) with f the constant function on X. One checks that this f belongs to the
space B1 and e1,0(f) � 1. Let C1 ≥ 1 denote a constant larger than e1,0(f) and the two implicit
constants in (7.18). Then, applying (7.18) iteratively m times, and using (7.19), we obtain

µux(E$) ≤ e1,0(L$(f)) ≤ Cm1 e−βθ$r0V (x)µux(N+
1 )e1,0(f) ≤ Cm+1

1 e−βθmr0V (x)µux(N+
1 ).

Since there are at most 2m choices of $, the result follows by taking r0 large enough so that
2mCm+1

1 ≤ eεmr0 . �
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[Rob03] Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) (2003),
no. 95, vi+96.

[Rud82] Daniel J. Rudolph, Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic
manifold, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 491–512 (1983).

[Sch04] Barbara Schapira, Lemme de l’ombre et non divergence des horosphères d’une variété géométriquement
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