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Abstract. Suppose Mm,n is the space of real matrices withm rows and n columns and d : Mm,n →
RN is the map that assigns to each matrix a tuple of its minors in some fixed order for a suitable
N . For an interval B ⊂ R, a smooth map ϕ : B →Mm,n is strongly non-planar if the derivatives of
d ◦ϕ up to order N span RN at Lebesgue almost every point in B. Kleinbock, Margulis and Wang
showed that Lebesgue almost every s ∈ B is not very well approximable, generalizing earlier work
of Kleinbock and Margulis in the case min(m,n) = 1. In this article, we provide a proof of this
result using systems of integral inequalities introduced in the work of Eskin, Margulis and Mozes.
The proof produces a new quantitative non-divergence result for expanding translates of shrinking
curves on SL(m + n,R)/SL(m + n,Z) by general diagonal elements. One feature of this approach
is that it relies on the simpler (C,α)-good property for polynomials.

1. Introduction

1.1. Extremality and Historical Context. A real matrix Y ∈Mm,n with m rows and n columns
is very well approximable (VWA) if there exists ε > 0 and infinitely many q ∈ Zn such that

‖Y q− p‖ < ‖q‖−n/m−ε for some p ∈ Zm (1.1)

where for x = (x1, . . . , xm) ∈ Rm, ‖x‖ = max16i6m |xi|. We say that Y is very well multiplicatively
approximable (VWMA) if there exists ε > 0 and infinitely many q ∈ Zn such that

Π (Y q− p) < Π+ (q)−1−ε for some p ∈ Zm (1.2)

where for x = (xi),

Π(x) =
∏
i

|xi|, Π+(x) =
∏
i

max {|xi|, 1} (1.3)

We note that if Y is VWA, then it is VWMA.
By Khinchine’s transference principal one has that a matrix Y is VWA if and only if its transpose

is. It is a classical fact that the set of VWA matrices in Mm,n has Lebesgue measure 0. A similar
argument shows that the same holds for VWMA matrices. A more delicate problem is one of
determining sufficient conditions on submanifolds of Mm,n so that almost every point is not VWA
(or VWMA) with respect to the induced Lebesgue volume measure. Submanifolds for which almost
every point is not VWA (resp. VWMA) are called extremal (resp. strongly extremal).

In 1932, Mahler asked whether the curve (x, x2, . . . , xn) is extremal. This conjecture was settled
by Sprindžuk in the sixties. This led him to formulate the following conjecture. Suppose f1, . . . , fn :
U → R are real analytic maps on an open set U ⊆ Rd which, along with 1, are linearly independent
over R. Then, the manifold f(U) is an extremal submanifold of Rn, where f = (f1, . . . , fn).

This conjecture was settled in the groundbreaking work of Kleinbock and Margulis in [KM98].
In fact, they prove a much stronger form of this conjecture concerning strong extremality for non-
degenerate manifolds. A smooth map f : U → Rn is `-non-degenerate at x ∈ U if the derivatives
of f at x up to order ` span Rn. We say f is non-degenerate at x if it is `-non-degenerate for some
` and non-degenerate (on U) if it is non-degenerate at almost every x ∈ U with respect to the
Lebesgue measure. These results treat the case of submanifolds of M1,n

∼= Rn.
1
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The work of Kleinbock and Margulis has been generalized in many directions. In [KLW04],
sufficient conditions on a large class of measures on Rn were found to guarantee that they assign 0
mass to the set of VWMA vectors. This class (referred to as friendly measures) includes measures
of the form f∗λ where λ is a Lebesgue measure on U ⊆ Rd and f : U → Rn is a non-degenerate
smooth map, in particular generalizing the results of [KM98]. It also includes a wide class of fractal
measures arising from iterated function systems and satisfying the open set condition.

Subsequently these results on friendly measures on Rn ∼= M1,n were extended to the space of
systems of linear forms Mm,n in [KMW10]. We say a measure µ on Mm,n is strongly extremal if it
assigns 0 mass to the set of VWMA matrices and extremal if the set of VWA matrices is null with
respect to µ. A notable class of strongly extremal measures found in [KMW10] are measures of the
form µ = f∗λ on Mm,n where λ is a Lebesgue measure on a domain U ⊆ Rd and f : U →Mm,n is a
smooth map which is strongly non-planar.

To define the property of strong non-planarity, let d : Mm,n → RN be the map that assigns to
each matrix the tuple of the determinants of all of its minors given in some prefixed order, where
N =

(
m+n
n

)
− 1. We will refer to d as the minors map. A smooth map f : U → Mm,n is strongly

non-planar if d ◦ f : U → RN is non-degenerate on U .

1.2. Reduction to Dynamics on the Space of Lattices. An approach to these number theo-
retic problems via dynamics on the space of unimodular lattices SL(m + n,R)/SL(m + n,Z) was
innovated in [KM98]. This approach has also been used in the subsequent generalizations mentioned
above. We recall this reduction here.

Let G = SL(m+ n,R) and Γ = SL(m+ n,Z) for some m,n ∈ N. Denote by A ⊂ Rm+n the set
of tuples r = (r1, . . . , rm+n) satisfying

0 < r1, . . . , rm+n,

m∑
i=1

ri = 1 =

n∑
j=1

rj (1.4)

We shall refer to elements of A as weights. Denote by T the set of all dilations of A. More precisely,
T consists of the set of tuples t = (t1, . . . , tm+n) ∈ Rm+n satisfying t = tr for some t > 0 and
r ∈ A. In particular, for any t = (t1, . . . , tm+n) ∈ T , we use |t| > 0 to denote

|t| =
m∑
i=1

ti =
n∑
j=1

tm+j

The set R = {(t/m, . . . , t/m, t/n, . . . , t/n) ∈ T : t > 0} will also be of interest to us. For Y ∈Mm,n

and t ∈ T , define

u(Y ) =

(
Im Y
0 In

)
, gt = diag(et1 , . . . , etm , e−tm+1 , . . . ,−etm+n) (1.5)

where Id denotes the identity matrix in dimensions d. In particular, these matrices belong to G.
It was observed in [KM98] that the different notions of well approximability of Y ∈ Mm,n are

related to deep excursions of gtu(Y )Γ into the cusp of G/Γ. To make this notion precise, recall that
G/Γ can be identified with the space of unimodular lattices in Rm+n via the map gΓ 7→ gZm+n.
Thus, we may think of elements of G/Γ as lattices in Rm+n. For a lattice x ∈ G/Γ, we say a
subgroup Λ ⊂ x is primitive if RΛ ∩ x = Λ, where Rλ denotes the R-span of Λ. Denote by d(Λ)
the volume of the torus RΛ/Λ, where if Λ = {0}, we take d(Λ) = 1.

For 1 6 k < m+ n, define the following functions on G/Γ.

α̃k(x) = sup

{
1

d(Λ)
: Λ is a subgroup of x of rank k

}
α̃(x) = max

16k<m+n
α̃k(x) (1.6)
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By Mahler’s compactness criterion, α̃ is a proper function on G/Γ and is thus well-equipped to
detect cusp excursions.

Given a subset C ⊆ T and x0 ∈ G/Γ, we say gCx0 has linear growth if there exists γ > 0 such
that

α̃1(gtx0) > e
γ|t| for an unbounded set of t ∈ C (1.7)

This terminology is used in [KMW10]. The following proposition provides the link between ex-
tremality and dynamics on the space of lattices.

Proposition 1.1 (Proposition 3.1, [KMW10]). Suppose Y ∈Mm,n. Then,

(1) Y is VWA ⇔ gRu(Y )Γ has linear growth.
(2) Y is VWMA ⇔ gT u(Y )Γ has linear growth.

With this dynamical interpretation of extremality in place, we can state the first main result of
this article. The following three functions on the space of weights A will be convenient for us.

µ(r) = min {ri + rm+j : 1 6 i 6 m, 1 6 j 6 n}
ν(r) = max {ri + rm+j : 1 6 i 6 m, 1 6 j 6 n}

D(r) =

⌈
ν(r)

µ(r)
N − 1

⌉
λ(r) = min {ri : 1 6 i 6 m+ n} (1.8)

Recall that N =
(
m+n
n

)
− 1 These functions allow us to define the following type of unbounded

subsets of T which we shall be interested in.

Definition 1.2. A subset C ⊆ T is said to be completely expanding if

inf {λ(t/|t|) : t ∈ C} > 0

The degree of C, denoted by D(C), is defined as follows.

D(C) = sup {D(t/|t|) : t ∈ C}

The following is the first main result of this article. We emphasize that this result is a special
case of the main results obtained previously in [KM98] and [KMW10].

Theorem 1.3. Suppose C ⊆ T is a completely expanding unbounded subset of T and suppose
ϕ : B →Mm,n is a (D(C) + 1)-times continuously differentiable curve which is strongly non-planar
on B. Then, for every x0 ∈ G/Γ, the set of s ∈ B such that gCu(ϕ(s))x0 has linear growth has
Lebesgue measure 0.

Let us record a few remarks on our condition on C being completely expanding.

Remark 1.4. For any fixed weight r ∈ A, a positive ray tr is completely expanding. In particular,
Theorem 1.3 shows that ϕ∗λ(VWA) = 0 where λ is the Lebesgue measure on λ.

1.3. Improving Dirichlet’s Theorem. Another notion in the theory of diophantine approxima-
tion of systems is motivated by Dirichlet’s theorem in this setting. Given an unbounded subset
C ⊆ T and 0 < ε < 1, we say Dirichlet’s theorem cannot be improved for a matrix Y ∈ Mm,n

along C if for all t = (t1, . . . , tm+n) ∈ C sufficiently large, there exist p = (p1, . . . , pm) ∈ Zm and
q = (q1, . . . , qn) ∈ Zn so that the following inequalities are satisfied

|Yi · q − pi| < εe−ti i = 1, . . . ,m

|qj | < εetm+j j = 1, . . . , n (1.9)

where Yi is the ith row of Y . We denote by DIε(C) the set of matrices Y for which Dirichlet’s
theorem can be ε-improved along C. The reason for the terminology is that Dirichlet’s classical
theorem states that the inequalities (1.9) are always satisfied with ε = 1 and C = R.
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Davenport and Schmidt showed that DIε(R) has Lebesgue measure 0 for any ε < 1. They also

showed that for any ε < 4−1/3, the set of x ∈ R such that (x, x2) ∈ DIε(R) ⊂ M1,2 has Lebesgue
measure 0. Using dynamics on the space of lattices, these results were extended by Kleinbock and
Weiss in [KW08] where they showed that for any ε < 1, the set DIε(C) has measure 0 whenever
C is drifting away from the walls, a technical condition similar to being completely expanding
(see [KW08, Eq. 1.8]). When min(m,n) = 1, they showed that for any non-degenerate smooth
map f : U → Rn ∼= M1,n, there exists 0 < ε0 < 1 such that f∗λ(DIε(T )) = 0 for any ε < ε0, where

λ is the Lebesgue measure on U ⊂ Rk for some k. In fact, they show that the conclusion holds for
a more general class of measures, see Theorem 1.5 in [KW08] for the details.

In [Sha09,Sha10], using Ratner’s measure classification theorem and the linearization technique,
Shah extended the results of Kleinbock and Weiss for analytic non-degenerate maps f as above in
the case min(m,n) = 1 to show that f∗λ(DIε(T )) = 0 for any ε < 1.

The second result of this article is a generalization of the results of Kleinbock and Weiss for
smooth strongly non-planar curves in Mm,n. We emphasize that in the case min(m,n) = 1, Theo-
rem 1.5 below is a special case of the results of Kleinbock and Weiss and for general m and n, it is
a special case of a result which was announced in [KMW10, Theorem 8.1].

Theorem 1.5. Suppose C ⊆ T is a completely expanding unbounded subset of T and suppose
ϕ : B →Mm,n is a (D(C) + 1)-times continuously differentiable curve which is strongly non-planar
on B. Then, there exists ε0 > 0 depending on C and ϕ such that for any ε < ε0, ϕ∗λ(DIε(C)) = 0,
where λ is the Lebesgue measure on B.

We remark that the constant ε0 in Theorem 1.5 is explicitly computable yet it is reasonable to
expect that the result holds with ε0 = 1.

1.4. Quantitative Non-divergence of Shrinking Curves. The key technical result we use to
establish Theorems 1.3 and 1.5 is a form of quantitative non-divergence of certain measures on the
homogeneous space G/Γ. Specifically, we show, in a quantitative form, that any limit point of the
push-forward of parameter measures on shrinking pieces of a curve ϕ as in Theorems 1.3 and 1.5
by diagonal elements as in (1.5) is a probability measure on G/Γ. This result is new as it does not
follow from the previous results of [KM98,KMW10,KW08]. The following is the precise statement.

Theorem 1.6. Suppose C ⊆ T is a completely expanding unbounded subset of T and suppose
ϕ : B → Mm,n is a (D(C) + 1)-times continuously differentiable curve such that d ◦ ϕ is non-
degenerate at some s0 ∈ B. Then, there exists a constant for κ = κ(C) > 0 such that for any
constants 0 6 δ < β < κ and any x0 ∈ G/Γ,

sup
t∈C:Jt⊆B

1

|Jt|

∫
Jt

α̃β(gtu(ϕ(s))x0) ds <∞

where Jt =
[
s0 − e−δ|t|, s0 + e−δ|t|

]
. Moreover, the supremum can be taken to be uniform as the

base point x0 varies in a fixed compact set.

Remark 1.7. The exponent κ in Theorem 1.6 can be calculated explicitly as follows:

κ(C) = inf
t∈C

min {δ(t/|t|), α(t/|t|)} (1.10)

where the functions δ and α on the space of weights are defined as follows.

Q(r) := D(r) min(m,n), C(r) := 2Q(r) (Q(r) + 1)1/Q(r)

α(r) := 1/Q(r), δ(r) := µ(r)/N (1.11)

and D(r) and µ(r) were defined in (1.8).

The proof of Theorem 1.6 is given in Section 7.
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2. Overview of the Proofs

2.1. The Approach of Kleinbock and Margulis. Using Proposition 1.1, the idea of prov-
ing strong extremality of a (compactly supported) measure µ on Mm,n was reduced in [KM98]
and [KMW10] to showing measure estimates of the form

µ ({Y ∈Mm,n : α̃1(gtu(Y )Γ) > A}) 6 const. A−αµ(Mm,n) (2.1)

for some α > 0 and applying the Borel-Cantelli lemma. Estimates of the form (2.1) are often
referred to as quantitative non-divergence. Throughout the rest of the article, we will focus on
measures µ arising as a pushforward of Lebesgue measure on bounded intervals B of the real line
under smooth maps f : B →Mm,n.

The original approach of [KM98] to establish estimates of the form (2.1) has two elements which
we recall here. For the purpose of this discussion, we will restrict to the case m = 1. The scheme
is very similar in the general case.

The first element is a certain growth property for smooth maps known as the (C,α)−good
property. A continuous function f : U → R is said to be (C,α)−good on a bounded set U ⊂ Rk if
there exist positive constants C and α so that for all ε > 0, the following holds

λ ({x ∈ U : |f(x)| < ε}) 6 C
(

ε

supx∈U |f(x)|

)α
λ(U) (2.2)

where λ is the Lebesgue measure on Rk.
The simplest class of (C,α)−good functions on the real line is given by polynomials. This was

already observed in earlier work of Dani and Margulis [DM93, Lemma 4.1] and further quantified
in [KM98, Proposition 3.2]. In [KM98], the (C,α)−good property was established for a wider class
of smooth maps. The functions which were shown to satisfy this property arose as the coordinate
functions (with respect to the standard basis) of the maps x 7→ gtu(f(x))v, for certain vectors

v ∈
∧k Rn+1, 1 ≤ k ≤ n + 1. When min(m,n) = 1, it was shown in [KM98] that if f is non-

degenerate, then these coordinate functions are (C,α)−good. The proof of this fact is substantially
more involved in this generality than the case of polynomials.

The approach in this article bypasses this step and relies on the (C,α)−good property of poly-
nomials only. Roughly, the idea behind this simplification is that, locally, the behavior of a general
smooth non-degenerate curve f is fully encoded in the behavior of a suitable Taylor-type poly-
nomial approximations of the curve. Hence, understanding the excursions of these polynomial
approximations in the cusp of G/Γ is sufficient to understand the evolution of the original curve.

The (C,α)−good property is used in [KM98] to establish the measure estimate in (2.1) for

functions of the form f(x) = ‖gtu(f(x)v‖−1 for any vector v ∈
∧k Rn+1, 1 ≤ k ≤ n + 1 in place

of the function α̃1. Recall that one may identify any discrete subgroup Λ of Rn of rank k with a

vector v1 ∧ · · · ∧ vk ∈
∧k Rn+1, where v1, . . . , vk is a basis for Λ as a Z module.

The second element of the argument in the proof of Kleinbock and Margulis converts these
estimates into a measure estimate for α̃1. The proof in [KM98] begins by associating to each
lattice x ∈ G/Γ a set P (x) of its (primitive) subgroups of all ranks, partially ordered by inclusion.
Roughly speaking, a combination of an inductive argument on the length of totally ordered subsets
of P (x) and a covering argument using Besicovitch’s covering theorem allows them to show that
“maximal bad intervals” produced by different elements of P (x) don’t overlap. This argument
along with (2.1) for individual vectors conclude the proof of (2.1). We refer the reader to [Kle10]
for an exposition of the details of this argument.

2.2. The Margulis Function. In this article, we replace the second step in the argument of
Kleinbock and Margulis with a method involving systems of integral inequalities involving the
functions α̃k defined in (1.6). This technique was introduced in [EMM98] with the purpose of
quantifying the work of Margulis on the Oppenheim conjecture. However, these functions appeared
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earlier in some form in the work of Dani and Margulis on the recurrence of unipotent flows on
homogeneous spaces. The ideas presented in [EMM98] found generalizations to random walks
on homogeneous spaces [EM04, BQ11] and the Teichmüller geodesic flow on strata of quadratic
differentials [EM01, EMM15]. They were also recently used in [KKLM17] to prove a sharp upper
bound on the dimension of singular systems of linear forms.

3. Notation

Here, we fix a common place for some notation that will be referred to in various parts of the
article. Let N =

(
m+n
n

)
− 1. The following long list of functions on the space of weights A was

introduced in the introduction and we collect them here for the convenience of the reader. For
r = (r1, . . . , rm+n), we define

µ(r) := min {ri + rm+j : 1 6 i 6 m, 1 6 j 6 n} (3.1)

ν(r) := max {ri + rm+j : 1 6 i 6 m, 1 6 j 6 n} (3.2)

D(r) :=

⌈
ν(r)

µ(r)
N − 1

⌉
(3.3)

λ(r) := min {ri : 1 6 i 6 m+ n} (3.4)

δ(r) := µ(r)/N (3.5)

Q(r) := D(r) min(m,n)

C(r) := 2Q(r) (Q(r) + 1)1/Q(r) (3.6)

α(r) := 1/Q(r) (3.7)

4. Expansion in Linear Representations

This section is dedicated to proving estimates on the average rate of expansion of curves in linear
representations under the action of certain diagonalizable elements.

We begin by recalling the following notion of (C,α)-good functions introduced in [KM98] and
used, in different form, in prior work of Dani, Margulis and Shah.

Definition 4.1. A function f : Rm → R is (C,α)-good on some subset B ⊂ Rm of finite Lebesgue
measure if there exist constants C,α > 0 such that for any ε > 0, one has

|{x ∈ B : |f(x)| < ε}| ≤ C
(

ε

supx∈B |f(x)|

)α
|B|

where | · | denotes the Lebesgue measure.

The following lemma summarizes some basic properties of (C,α)-good functions which will be
useful for us. The proof follows directly from the definition.

Lemma 4.2. Let C,α > 0. Then,

(1) If f is a (C,α)-good function on B, then so is |f |.
(2) If f1, . . . , fn is a collection of (C,α)-good function on B, then so is maxk |fk|.

4.1. The Exterior Power Representation. In this section, we give a description of the coordi-
nates of the fundamental representation of G on the following vector space

V =

m+n−1⊕
k=1

k∧
Rm+n

An element g ∈ SL(m+ n,R) acts on V via the linear map
⊕m+n−1

k=1

∧k g.
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Consider the basis {e1, . . . , em,v1, . . . ,vn} of Rm+n where ei denotes the ith standard basis
element and vj denotes the (m + j)th element. Now, suppose 1 ≤ l < m + n and subsets R ⊆
{1, . . . ,m} and S ⊆ {1, . . . , n} with

|R|+ |S| = l

are given. Write R = {i1 < · · · < ir} and S = {j1 < · · · < js} and let

eR ∧ vS := ei1 ∧ · · · ∧ eir ∧ vj1 ∧ · · ·vjs (4.1)

Then, the collection of monomials eR ∧ vS gives a basis of Vl =
∧l Rm+n for each 1 ≤ l < m + n.

Note that this basis consists of joint eigenvectors of the linear maps
⊕m+n−1

k=1

∧k g where g is a
diagonal matrix in SL(m+ n,R).

Recall the definition (3.4) of the functional λ on the space of weights A (defined in 1.4). Then,

we see that exp(λ(r)) is the smallest eigenvalue of
⊕

l

∧l gr in its action on the following subspace
of V :

V +
A = span

{
eR, e{1,...,m} ∧ vS : R ⊆ {1, . . . ,m} , S ⊂ {1, . . . , n}

}
(4.2)

Suppose Y ∈ Mm,n is given. Let us describe the action of the unipotent elements u(Y ) on V .

For 1 ≤ j ≤ n, denote the jth column of Y by Yj . If Yj = (y1,j , . . . , ym,j), then we regard Yj as
element of Rm+n via the identification

Yj 7→
m∑
i=1

yi,jei

Then, we see that

u(Y )ei = ei, u(Y )vj = Yj + vj (4.3)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. For the action on higher degrees, let subsets

I ⊆ {1, . . . ,m} , J ⊆ {1, . . . , n}

with |I| = |J | be given. Define YI,J to be the following determinant

YI,J = det ((yi,j)i∈I,j∈J) (4.4)

Note that as I and J range over all subsets of {1, . . . ,m} and {1, . . . , n}, with |I| = |J |, the
numbers YI,J give all the coordinates of F (Y ) where F : Mm,n → RN is the minors map defined in
the introduction. Hence, using (4.3), we see that

u(Y ) · eR ∧ vS =
∑
J⊂S

∑
I⊂{1,...,m}\R
|I|=|J |

±YI,J eR∪I ∧ vS\J (4.5)

where YI,J are real numbers given by (4.4).
Denote by B the following collection of vectors

B =
{
eR, e{1,...,m} ∧ vS : R ⊆ {1, . . . ,m} , S ⊂ {1, . . . , n}

}
We denote by 〈·, ·〉 the standard euclidean inner product on V . The following key technical lemma
will be useful for us.

Lemma 4.3 (cf. Proposition 5.4 in [KMW10]). Suppose Y ∈Mm,n, 1 ≤ l < m+n and v ∈ Vl\ {0}
are given. Let vR,S be a non-zero coordinate of v with respect to the basis in (4.1). Then, there
exists an element w ∈ B ∩ Vl such that 〈u(Y )v, w〉 is a linear combination of 1 and the components
of F (Y ) with vR,S appearing as one of the coefficients.
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Proof. We remark that this result was proved in [KMW10] for integral vectors v, however the proof
goes through in the general case. In the case m = 1, the proof is a simple calculation and we
present it here for completeness. To simplify notation, we denote by ei the standard basis for Rn+1

and for a set I = {i1, . . . , ik} ⊂ {1, . . . , n+ 1}, we write eI = ei1 ∧· · · eik . Let v ∈ Vl\ {0} and write

v =
∑

I⊂{1,...,n+1}

vIeI

where the sum is over index sets of cardinality l.
Let Y = (Y1, . . . , Yn) ∈M1,n

∼= Rn. First, we note that uY fixes e1 and maps ei to ei + Yie1 for
i = 2, . . . , n. This implies the following.

uY eI =

{
eI 1 ∈ I,
eI +

∑
i∈I ±Yie(I∪{1})\{i}, otherwise.

where the sign depends on I. In particular, we get that.

uY v =
∑

I⊂{1,...,n+1}
1/∈I

vIeI +
∑

I⊂{1,...,n+1}
1∈I

(
vI +

∑
i/∈I

±v(I∪{i})\{1}Yi

)
eI

Now, suppose that vJ 6= 0 for some J ⊆ {1, . . . , n+ 1}. If 1 ∈ J , then the eJ coefficient in the
expression above satisfies the conclusion of the lemma. Otherwise, the conclusion holds for eI for
any I satisfying

I = (J ∪ {1})\ {j}
for some j ∈ J . �

4.2. Non-Planarity and Expansion. The following Proposition will act as a substitute for [EM04,
Lemma 4.2] which was in the context of random walks. The proof of that Lemma rests on the pos-
itivity of the top Lyapunov exponent of certain linear cocycles due to Furstenburg and Kesten. In
our case, the proof relies the existence of eigenvalues bigger than 1 for the acting diagonal elements
in addition to the (C,α)-good property. It will follow similar lines as the proof of Lemma 5.1
in [EMM98]. Recall that N = N(m,n) =

(
m+n
n

)
− 1 and that d : Mm,n → RN denotes the minors

map.

Proposition 4.4. Let C, α and ρ be positive constants. Suppose ψ : B → Mm,n is a continuous
map from an interval B ⊂ R satisfying the following conditions:

(1) Any linear combination of 1 and the coordinates of d ◦ ψ is (C,α)-good on B,
(2) For all w = (w0, . . . , wN ) ∈ RN+1,

sup
r∈B

∣∣∣∣∣w0 +
N∑
i=1

wi(d ◦ ψ)i(r)

∣∣∣∣∣ > ρ ‖w‖
where (d ◦ ψ)i is the ith coordinate of d ◦ ψ and ‖·‖ is the euclidean norm on RN+1.

Let Vl =
∧l Rm+n for any 1 6 l < m + n. Then, for all β ∈ (0, α), there exists a constant

D = D(β, ρ, C, α) > 0 such that for all weights r ∈ A, t > 0, 1 6 l < m+ n and all v ∈ Vl\ {0},
1

|B|

∫
B
‖gtru(ψ(s))v‖−β ds 6 De−βλ(r)t ‖v‖−β

Proof. Let v ∈ Vl\ {0} and write

v =
∑

I⊆{1,...,m}
J⊆{1,...,n}
|I|+|J |=l

vI,JeI ∧ vJ
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We will use ‖·‖∞ to denote the `∞-norm on Vl with respect to the basis in (4.1).
Let V +

A be the subspace of defined in (4.2) and let π+ : Vl → V +
A ∩ Vl denote the associated

orthogonal projection. Using (4.5), one can check that the coordinates of the vector u(ψ(·)) · v are
linear combinations of 1 and the components of the map d ◦ψ. In particular, by condition (1) and
Lemma 4.2, we see that ‖π+(u(ψ(r))v)‖∞ is (C,α)-good on B.

Let I and J be index sets satisfying

‖v‖∞ = |vI,J |

By Lemma 4.3, there exists a vector w ∈ B ∩ Vl such that 〈π+(u(ψ(·)) · v), w〉 is a linear
combination of 1 and the components of d ◦ ψ, one of whose coefficients is vI,J

Thus, by condition (2), since all norms on V are equivalent, we get that

ρ1 := sup
r∈B
‖π+(u(ψ(r))v)‖∞ � ρ ‖v‖ (4.6)

where the implicit constant depends only on the equivalence constant between ‖·‖ and ‖·‖∞.
Thus, for any ε > 0, by definition of the (C,α)-good property, it follows that

|{r ∈ B : ‖π+(u(ψ(r))v)‖∞ 6 ερ1}| 6 Cε
α|B| (4.7)

Let E(v, ε) denote the set on the left-hand side of the above inequality. Suppose a weight r ∈ A
and t > 0 are given. Observe that for t > 0, we have that

‖gtru(ψ(r))v‖∞ > ‖gtrπ+(u(ψ(r))v)‖∞ > e
λ(r)t ‖π+(u(ψ(r))v)‖∞ (4.8)

Indeed, this follows from the fact that eλ(r)t is the smallest eigenvalue of grt in its action on V +
A .

Fix some β ∈ (0, α). Then, for n ∈ N, by (4.6), (4.7) and (4.8), we get∫
E(v,2−nρ1)\E(v,2−(n+1)ρ1)

‖gtu(ψ(r))v‖−β∞ dr

6 e−βλ(r)t
∫
E(v,2−nρ1)\E(v,2−(n+1)ρ1)

‖π+(u(ψ(r))v)‖−β∞ dr

6 e−βλ(r)t2β(n+1)ρ−β1 C2−αn|B|

= ρ−β1 2βC2−(α−β)ne−βλ(r)t|B|

6 ρ−β ‖v‖−β 2βC2−(α−β)ne−βλ(r)t|B|

Now, note that (4.7) implies that |E(v, 0)| = 0. Hence, since

B = E(v, 0) t

⊔
n≥0

E(v, 2−nρ1) \ E(v, 2−(n+1)ρ1)


we get that

1

|B|

∫
B
‖gtu(ψ(r))v‖−β∞ dr 6

ρ−β2βC

1− 2α−β
e−βλ(r)t ‖v‖−β

Thus, the claim of the Proposition follows since all norms are equivalent. �

5. Height Functions and Integral Inequalities

In this section, we establish a system of integral inequalities for the functions α̃i on X defined
in (1.6). Using this system of integral inequalities, we prove the main integral estimate needed for
our main results in Proposition 5.3.
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5.1. A System of Integral Inequalities. We recall the following Lemma from [EMM15] which
will be useful for us:

Lemma 5.1 (Lemma 5.6 in [EMM15]). Let x ∈ X and let Λ1,Λ2 ∈ P (x). Then,

‖Λ1‖ ‖Λ2‖ > ‖Λ1 ∩ Λ2‖ ‖Λ1 + Λ2‖

Recall the definition of the functional λ : A → R+ given (3.4) As a consequence of Proposition 4.4,
we obtain the following analogue of Lemma 5.7 in [EMM15].

Lemma 5.2. Suppose ψ : B → Mm,n is a continuous map from a subinterval B ⊂ R satisfying
conditions (1) and (2) of Proposition 4.4 with positive constants C,α and ρ. Then, for all β ∈ (0, α),
there exists a constant D = D(β, ρ, C, α) > 0 such that for all t > 0, there exists a constant
ω = ω(t) > 0 for all x ∈ X, r ∈ A and all 1 6 i 6 m+ n− 1 such that

1

|B|

∫
B
α̃βi (grtu(ψ(r))x) dr 6 De−βλ(r)tα̃i(x) + ω2β max

16j6min{i,m+n−i}

(√
α̃i+j(x)α̃i−j(x)

)β
Proof. Let β ∈ (0, α) and letD be the maximum of the constants in the conclusion of Proposition 4.4

applied to the vector spaces
∧l Rm+n for each 1 ≤ l < m + n. Let t > 0 be given and define ω as

follows:

ω = sup
r∈B
r∈A

max
{
‖grtu(ψ(r))‖ ,

∥∥(grtu(ψ(r)))−1
∥∥} (5.1)

where ‖·‖ is the euclidean norm on V .
Fix some r ∈ A. Then, for all r ∈ B and all v ∈ V \ {0},

ω−1 6
‖grtu(ψ(r))v‖

‖v‖
6 ω (5.2)

Now, suppose v is an x-integral monomial in degree i. Then, by Proposition 4.4,∫
B
‖grtu(ψ(r))v‖−β dr 6 De−βλl(r)t ‖v‖−β |B| (5.3)

Let Λi be a subgroup of the lattice corresponding to x such that

α̃i(x) = ‖Λi‖−1

Following [EMM15], let Ψ denote the finite subset of P (x) of rank i subgroups L of x satisfying

‖L‖−1 ≥ ω−1α̃i(x)

The finiteness of Ψ follows from the discreteness of the lattice x. Suppose that Λi is the only
element of Ψ. In this case, by 5.2, we see that for all r ∈ B, we have

α̃i(gtu(ψ(r))x) = ‖gtu(ψ(r))Λi‖−1

Therefore, in this case, by (5.3), we get∫
B
α̃i(gtu(ψ(r))x)β dr =

∫
B
‖gtu(ψ(r))Λi‖−β dr 6 De−βλi(r)tα̃i(x)β|B| 6 De−βλ(r)tα̃i(x)β|B|

(5.4)
where used the fact that λ = mini λi. Now, assume that Ψ contains an element L 6= Λi of rank i.
Then, the group Λi + L has rank i + j for some j > 0. Moreover, by definition of Ψ and ω and
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Lemma 5.1, for all r ∈ B,

α̃i(grtu(ψ(r))x) 6 ωα̃i(x) =
ω

‖Λi‖
6

ω2√
‖Λi‖ ‖L‖

6
ω2√

‖Λi + L‖ ‖Λi ∩ L‖

6 ω2 max
16j6min{i,m+n−i}

√
α̃i+j(x)α̃i−j(x)

Combining this estimate with (5.4), we get the desired conclusion. �

5.2. The Contraction Hypothesis on X. Using the integral estimates for the functions α̃i
obtained in the previous section, we obtain an integral estimate for a family of functions α̃ε,β,
which depend on 2 parameters ε and β. We show that the average over the pushforward of a curve
of the form u(ψ(r))x under grt experiences contraction whenever the value α̃ε,β(x) is sufficiently
large. In the terminology of Benoist and Quint, such subharmonic behavior of α̃ε,β is referred to as
the contraction hypothesis on the space of lattices.

Following [EMM15], for ε, β > 0, define the following function for every x ∈ X = SL(m +
n,R)/SL(m+ n,Z):

α̃ε,β(x) :=
m+n∑
i=0

εi(m+n−i)α̃βi (x) (5.5)

The weights εi(m+n−i) and exponent β allow us to upgrade the integral estimates in 5.2 to an
integral estimate for α̃ε,β. The following is the main result of this section.

Proposition 5.3. Suppose ψ : B →Mm,n is a continuous map from a subinterval B ⊂ R satisfying
conditions (1) and (2) of Proposition 4.4 with positive constants C,α and ρ. Then, for all β ∈ (0, α),
there exists a constant c0 = c0(β, ρ, C, α) > 0 such that for all t > 0, there exists ε = ε(t) > 0 with
the following property: for all x ∈ X and all r ∈ A,

1

|B|

∫
B
α̃ε,β(grtu(ψ(r))x) dr 6 c0e

−βλ(r)tα̃ε,β(x) + 2

where λ(r) is defined in (3.4).

Proof. Let β ∈ (0, α) and let D be as in Lemma 5.2. Let t > 0 and let ω > 0 be as in the same
Lemma. Let ε > 0 to be chosen later. For each 0 6 i 6 m + n, define q(i) = i(m + n − i). Note
that

q(i)− q(i− j) + q(i+ j)

2
= j2

Moreover, for all i, we have

εq(i)α̃βi 6 α̃ε,β
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Then, since α̃0 ≡ α̃d ≡ 1, by Lemma 5.2, for all x ∈ X
1

|B|

∫
B
α̃ε,β(gtu(ψ(r))x) dr 6 De−βλ(r)tα̃ε,β(x) + 2

+ ω2β
m+n−1∑
i=1

εq(i) max
16j6min{i,m+n−i}

(√
α̃i+j(x)α̃i−j(x)

)β
= De−βλ(r)tα̃ε,β(x) + 2

+ ω2β
m+n−1∑
i=1

max
16j6min{i,m+n−i}

εj
2
√
εq(i+j)α̃i+j(x)βεq(i−j)α̃i−j(x)β

6 De−βλ(r)tα̃ε,β(x) + 2 + ε(m+ n)ω2βα̃ε,β(x)

Finally, choose ε as follows

ε = inf
r∈A

De−βλ(r)t

(m+ n)ω2β
> 0

Here, we use the fact that λ(r) 6 mn for all r ∈ A. Then, the conclusion follows with c0 = 2D. �

The following Lemma provides us with several properties of the functions α̃ which follow from
the definition and Mahler’s compactness criterion.

Lemma 5.4. Let ε, β > 0 be given. Then, the following holds

(1) Given a bounded neighborhood O of identity in G, there exists a constant CO > 1 (indepen-
dent of ε), such that for all g ∈ O and all x ∈ X,

C−1O α̃ε,β(x) 6 α̃ε,β(gx) 6 COα̃ε,β(x)

(2) For all M > 0, the set α̃−1ε,β([0,M ]) is compact.

6. Approximation by Polynomials and Supremum Estimate

This section is dedicated to providing the link between our curve ϕ and the integral estimates
obtained in the previous section. This is done by showing that certain polynomial curves approxi-
mating our curve satisfy the conditions of Proposition 4.4.

We keep the same notation G = SL(m + n,R), Γ = SL(m + n,Z) and X = G/Γ as in previous
sections. Throughout this section, we will use

ϕ : B →Mm,n

to denote a continuous map from a compact interval B ⊂ R into the space of m by n matrices. To
avoid trivialities, we will assume that ϕ is defined on a neighborhood of B.

6.1. Approximation of Curves with Polynomials. With the estimate in Proposition 5.3 in
place for a fixed time step t, the following Lemma will allow us to iterate this integral estimate in
order to obtain an estimate for gnt for all n ≥ 1. Since the curve ϕ is not normalized by gt, we
approximate the curve in a neighborhood of each point with a polynomial coming from its Taylor
expansion. Then, we push these polynomial curves forward by gt.

Recall the definition of the functions µ, ν and D on the space of weights A given in (3.1), (3.2)
and (3.3) respectively.

The following is the main result of this section.

Lemma 6.1. Let α̃ : X → (0,∞) be a function satisfying Lemma 5.4. Then, there exists a constant
C1 > 1, depending only on the curve ϕ such that for all q ∈ N, r ∈ A, t > 0: the following holds.
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Suppose ϕ is (D(r) + 1)-times continuously differentiable and let δ(r) = µ(r)/N . Then, for all

subintervals J ⊆ B of radius at least e−δ(r)(q+1)t, one has∫
J
α̃(g(q+1)rtu(ϕ(s))x) ds 6 C1

∫
J

∫ 1

−1
α̃(gtu(Pq,s,r(r))gqrtu(ϕ(s))x) dr ds (6.1)

where for r = (r1, . . . , rm+n), Pq,s,r(r) is the matrix in Mm,n whose (i, j)-entry is given by

(Pq,s,r(r))i,j = eqt(ri+rm+j)

D(r)∑
k=1

(re−δ(r)(q+1)t)k

k!
ϕ
(k)
i,j (s) (6.2)

Proof. First, we note that for all r ∈ [−1, 1], we have

J ⊆ J ± re−δ(r)(q+1)t (6.3)

Using positivity of α̃, (6.3) and a change of variable, we get∫
J
α̃(g(q+1)rtu(ϕ(s))x) ds =

∫ 1

0

∫
J
α̃(g(q+1)rtu(ϕ(s))x) ds dr

6
∫ 1

0

∫
J±re−δ(r)(q+1)t

α̃(g(q+1)rtu(ϕ(s))x) ds dr by 6.3

=

∫ 1

−1

∫
J+re−δ(r)(q+1)t

α̃(g(q+1)rtu(ϕ(s))x) ds dr

=

∫ 1

−1

∫
J
α̃(g(q+1)rtu(ϕ(s+ re−δ(r)(q+1)t))x) ds dr

Then, using the Taylor expansion of ϕ up to degree D(r), we get∫
J
α̃(g(q+1)rtu(ϕ(s))x) ds 6

∫
J

∫ 1

−1
α̃(g(q+1)rtu(ϕ(s) +Qq,s,r(r) +O(e−δ(r)(q+1)t(D(r)+1)))x) dr ds

where Qq,s,r(r) is the matrix in Mm,n whose (i, j)-entry is given by

(Qq,s,r(r))i,j =

D(r)∑
k=1

(re−δ(r)(q+1)t)k

k!
ϕ
(k)
i,j (s) (6.4)

Moreover, by definition of gqrt and u(Y ), we have

gqrtu(Y )g−qrt = u((eqt(ri+rm+j)Yi,j)1≤i≤m,1≤j≤n)

But, it follows from the definitions that ri + rm+j ≤ ν(r) ≤ δ(r)(D(r) + 1) for all i and j. Thus,
we get ∫

J
α̃(g(q+1)rtu(ϕ(s))x) ds 6

∫
J

∫ 1

−1
α̃(u(O(1))g(q+1)rtu(ϕ(s) +Qq,s,r(r))x) dr ds

=

∫
J

∫ 1

−1
α̃(u(O(1))grtu(Pq,s,r(r))gqrtu(ϕ(s))x) dr ds

Note that u(O(1)) belongs to a bounded neighborhood of identity independently of t, r and q.
Hence, by (1) of Lemma 5.4, there exists a constant C1 > 1 such that for all y ∈ X,

C−11 α̃((y) 6 α̃((u(O(1))y) 6 C1α̃((y)

This concludes the proof. �
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6.2. A Lower Estimate for the Supremum. The aim of this section is to verify that the
polynomial approximations of our curves satisfy the conditions of Proposition 4.4. Recall the
definition of the minors map d : Mm,n → RN whose components are given in (4.4), where N =(
m+n
n

)
−1. We also recall the definition of the functions µ, ν and D on the space of weights A given

in (3.1), (3.2) and (3.3) respectively. The following Proposition is the precise statement.

Proposition 6.2. Suppose ϕ is (D(r) + 1)-times continuously differentiable. Let Pq,s,r : [−1, 1]→
Mm,n be its Taylor polynomial defined in (6.2). Then,

(1) Any linear combination of 1 and the components of the map d ◦ Pq,s,r is (C,α)-good on
[−1, 1], where for Q = D(r) min(m,n),

C = 2Q(Q+ 1)1/Q, α = 1/Q

(2) Assume that ϕ is strongly non-planar on B. Then, there exists ρ > 0, depending only on
the curve ϕ, such that for all s ∈ B, q ∈ N, r ∈ A and t > 0, the following holds for all
w ∈ RN+1:

sup
r∈[−1,1]

|〈w, (1,d ◦ Pq,s,r(r))〉| > ρ ‖w‖

where 〈·, ·〉 is the standard inner product and ‖·‖ is the euclidean norm on RN+1.

It was shown in [KM98] that polynomials are (C,α)-good for constants C and α depending only
on their degrees. More precisely, one has

Lemma 6.3 (Proposition 3.2 in [KM98], Lemma 4.1 in [DM93]). For any k ∈ N, any polynomial

in R[x] of degree at most k is (2k(k + 1)1/k, 1/k)-good on any interval in R.

Thus, the remaining task is to find a uniform constant ρ > 0 which satisfies condition (2) of
Proposition 4.4. The following observation will be useful for us.

Lemma 6.4. Suppose b > 0, Y = (Yi,j) ∈ Mm,n and r ∈ A are given. Consider the matrix
Z ∈ Mm, n whose (i, j)-entry are given by Zi,j = bri+rm+jYi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let
I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be such that |I| = |J |. Then,

det(Zi,j)i∈I,j∈J = bσ(I,J)det(Yi,j)i∈I,j∈J

where σ(I, J) :=
∑

i∈I,j∈J ri + rm+j.

Proof. We proceed by induction on the cardinality of the index sets I and J . When |I| = |J | = 1,
there is nothing to prove. Suppose the statement holds for all sets I ′ and J ′ with 1 ≤ |I ′| = |J ′| =
k < min(m,n) and let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be such that |I| = |J | = k + 1. Using
Laplace expansion of the determinant of the submatrix (Zi,j)i∈I,j∈J along the i0 row for some i0 ∈ I,
we get

det(Zi,j)i∈I,j∈J =
∑
j∈J

Zi0,jCi0,j (6.5)

where Ci0,j denotes the cofactor of (Zi,j)i∈I,j∈J with the i0 row and j column removed. By our
induction hypothesis, we get

Ci0,j = bσ(I\{i0},J\{j})Di0,j (6.6)

where Di0,j denotes the cofactor of (Yi,j)i∈I,j∈J with the i0 row and j column removed. Thus,
plugging (6.6) into (6.5) and using the definition of Zi0,j , we get

det(Zi,j)i∈I,j∈J =
∑
j∈J

bri0+rm+jYi0,jb
σ(I\{i0},J\{j})Di0,j

= bσ(I,J)
∑
j∈J

Yi0,jDi0,j = bσ(I,J)det(Yi,j)i∈I,j∈J

which is the desired conclusion. �
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We are now ready for the proof of the Proposition. We will need the following notation. For a
matrix Y = (Yi,j) ∈ Mm,n and subsets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} such that |I| = |J |, we
use the following notation

(d(Y ))I,J = det(Yi,j)i∈I,j∈J (6.7)

Proof of Proposition 6.2. Since Pq,s,r is a polynomial map of degree at most D(r), then the map
d ◦ Pq,s,r is a polynomial of degree at most D(r) min(m,n). Thus, (1) follows by Lemma 6.3.

Suppose that (2) does not hold. Then, we can find a sequence of vectors w(`) ∈ RN+1 of norm
1, natural numbers q`, points s` ∈ [−1, 1], t` > 0 and weights r` such that

sup
|r|61

∣∣∣〈w(`), (1,d ◦ Pq`,s`,r`(r))〉
∣∣∣ < 1

`
(6.8)

By Lemma 6.4, applied with b = eq`t` , for all subsets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} such that
|I| = |J |, we have

(d ◦ Pq`,s`,r`(r))I,J = eq`t`σ(I,J) (d ◦Qq`,s`,r`(r))I,J
where σ(I, J) :=

∑
i∈I,j∈J ri + rm+j and Qq`,s`,r`(r) is the matrix whose (i, j)-entry is given by

(Qq`,s`,r`(r))i,j =

D(r)∑
k=1

(re−δ(r)(q`+1)t`)k

k!
ϕ
(k)
i,j (s`)

where δ(r) = µ(r)/N and µ(r) is defined in (3.1). Recall that we are fixing some order on the set
of pairs of index subsets I and J which we are using to define the minors map d. In particular,
we may use such pairs to index coordinates of vectors of RN . Hence, for each `, we may write the
vectors w(`) in coordinates in the following form

w(`) =

(
w

(`)
0 , (w

(`)
I,J)I⊆{1,...,m}

J⊆{1,...,n}

)
For each `, we define vectors v(`) by setting v

(`)
0 = w

(`)
0 and for each pair of index sets I and J , we

set

v`I,J = eq`t`σ(I,J)w
(`)
I,J

For simplicity of notation, we define the following functions

f`(r) := 〈v(`), (1,d ◦Qq`,s`,r`(re
δ(r)(q`+1)t))〉

Thus, (6.8) becomes

sup
|r|6e−δ(r)(q`+1)t`

|f`(r)| <
1

`
(6.9)

Assume for the moment that

q`t` →∞
Hence, using say the centered difference approximation formula of the pth derivative f

(p)
` , Taylor’s

theorem and (6.9), we see that∣∣∣f (p)` (0)
∣∣∣ 6 2p

`
epδ(r)(q`+1))t` +O(e−2δ(r)(q`+1)t`) (6.10)

For w = (w0, . . . , wN ) ∈ RN+1, let w denote the following

w = (w1, . . . , wN ) ∈ RN

Note that for each 1 ≤ p ≤ N , by the chain rule, we have

f
(p)
` (0) = 〈v(`), D(p)d ◦ ϕ(p)(s`)〉 (6.11)
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where we D(p)d denotes the pth derivative of the map d. Here, we implicitly identified Mm,n and
RN with their tangent spaces at the relevant points.

We can collect the information given by (6.9) in the following concise form. Consider the (N ×
N)−matrix Φ(s`) whose pth row is given by D(p)d ◦ ϕ(p)(s`). Then, using (6.11), we see that the
inequalities (6.9) imply

‖Φ(s`)v`‖∞ 6
2N

`
eNδ(r)(q`+1))t` +O(e−2δ(r)(q`+1)t`)

where ‖·‖∞ is the `∞-norm on RN with respect to the standard basis. By equivalence of norms on
RN and the fact that Nδ(r) = µ(r), this implies

‖Φ(s`)v`‖ �
2N

`
eµ(r)(q`+1))t` +O(e−2δ(r)(q`+1)t`) (6.12)

where µ(r) is defined in (3.2). Since ϕ is assumed to be strongly non-planar, this implies that for
all `, the matrix Φ(s`) is invertible. Thus, in particular, we obtain∥∥∥Φ(s`)v

(`)
∥∥∥ > ∥∥Φ(s`)

−1∥∥−1 ∥∥∥v(`)∥∥∥ (6.13)

Note that µ(r) ≤ σ(I, J) for all non-empty index sets I and J with |I| = |J |. Thus, we get that

eµ(r)(q`+1))t`
∥∥∥w(`)

∥∥∥� eµ(r)(q`+1))t`
∥∥∥w(`)

∥∥∥
∞
6
∥∥∥v(`)∥∥∥

∞
�
∥∥∥v(`)∥∥∥ (6.14)

Finally, since Pq`,s`,r`(0) = 0, then inequality (6.8) implies that

|w(`)
0 | 6

1

`
→ 0

In particular, since
∥∥w(`)

∥∥ = 1, it follows that for ` sufficiently large∥∥∥w(`)
∥∥∥� ∥∥∥w(`)

∥∥∥ = 1 (6.15)

Therefore, combining (6.12), (6.13), (6.14) and (6.15), we obtain∥∥Φ(s`)
−1∥∥−1 � 2N

`
+O(e−(2δ(r)+µ(r))(q`+1)t`)

`→∞−−−→ 0 (6.16)

Note that here we use the fact that µ(r) > 0. However, the compactness of the interval B, strong

non-planarity of ϕ on B and the continuity of the map s 7→
∥∥Φ(s)−1

∥∥, implies that
∥∥Φ(s`)

−1∥∥−1 is
bounded below, contradicting (6.16).

Now, suppose that for all `,

sup
`
q`t` <∞

Then, we can approximate the derivatives of f` at 0 using points at distance ≤ `−1/N+1. These
points will belong to the interval |r| ≤ e−δ(r)(q`+1)t` for ` sufficiently large. In particular, instead of
inequality (6.10), we get ∣∣∣f (p)` (0)

∣∣∣ 6 2p

`
`p/N+1 +O(`−2/N+1)→ 0

for all p ≤ N . Then, one checks that the same argument as in the previous case yields a contradic-
tion. This completes the proof. �

Remark 6.5. We note that the proof of Proposition 6.2 shows that ρ in condition (2) depends
only on the degree of non-degeneracy of ϕ measured using bounds on the function s 7→ ‖Φ(s)‖ and
the estimate in (6.16) utilized in the proof.
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7. Integral Estimates and Non-divergence of Shrinking Curves

In this section, we provide a proof of Theorem 7.1. Recall the definition of the functions
µ,D, λ, δ, C and α on the space of weights A given in the introduction. Recall that N =

(
m+n
n

)
−1.

The following is the main result of this section which implies non-divergence of push-forwards of
shrinking strongly planar curves and Theorem 1.6 in the introduction.

Theorem 7.1. Suppose a weight r ∈ A is given and let D = max {N,D(r)}. Suppose ϕ : B →
Mm,n is a strongly non-planar CD+1-curve on a compact interval B. For every β ∈ (0,min(δ(r), α(r))),
there exists t0 > 1, depending on ϕ, β, λ(r) and C(r) such that the following holds: for every t > t0,
there exists ε = ε(t) > 0 such that for all δ ∈ [0, β), x ∈ X and q ∈ N, one has

sup
q>1,s0∈B

1

|Jq|

∫
Jq+s0

α̃ε,β(gqrtu(ϕ(s))x) ds <∞ (7.1)

where Jq := [−e−δqt, e−δqt]. Moreover, the supremum can be taken to be uniform over basepoints x
in a fixed compact set.

Proof. The statement will be proved by induction on q. We begin by choosing the necessary
constants. Fix some β ∈ (0,min(δ(r), α(r))) and δ ∈ [0, β). For t > 0, let ε(t) > 0 be as in
Proposition 5.3 and define

M0(t) := sup
s0∈B

α̃ε,β(u(ϕ(s))x) (7.2)

We note that from the definition of the function α̃ε,β and compactness of B, M0(t) is a decreasing
function of t which is bounded below by 2.

Let C1 and c0 be the constants provided by Lemma 6.1 and Proposition 5.3 respectively. Note
that these constants depend only on ϕ and β. Choose t0 > 0 so that

2C1c0 = e(β−δ)λ(r)t0

Suppose q ≥ 1, t > t0 and s0 ∈ B are given. We define M > 0 as follows

M = max

{
2C1c0e

−βλ(r)tM0(t) + 4C1, 4C1

(
1− 2C1c0e

−(β−δ)λ(r)t
)−1}

(7.3)

We claim that M gives an upper bound on the supremum in (7.1).
By Lemma 6.1, we have∫
Jq+1+s0

α̃ε,β(g(q+1)rtu(ϕ(s))x) ds 6 C1

∫
Jq+1+s0

∫ 1

−1
α̃ε,β(gtu(Pq,s,r(r))gqrtu(ϕ(s))x) dr ds (7.4)

where

(Pq,s,r(r))i,j = eqt(ri+rm+j)

D(r)∑
k=1

(re−δ(r)(q+1)t)k

k!
ϕ
(k)
i,j (s) (7.5)

By Proposition 6.2, the polynomials in (6.2) satisfy conditions (1) and (2) of Proposition 4.4. Thus,
the integral estimate in Proposition 5.3 applies with f(r) = Pq,s,r(r). Therefore, by (7.4), we get∫

Jq+1+s0

α̃ε,β(g(q+1)rtu(ϕ(s))x) ds 6 2C1c0e
−βλ(r)t

∫
Jq+1+s0

α̃ε,β(gqrtu(ϕ(s))x) ds+ 4C1|Jq+1|

(7.6)

Hence, for q = 0, since M0(t) ≤M0(t0), it follows that

1

|J1|

∫
J1+s0

α̃ε,β(gtu(ϕ(s))x) ds 6 2C1c0e
−βλ(r)t 1

|J1|

∫
J1+s0

α̃ε,β(u(ϕ(s))x) ds+ 4C1

6 2C1c0e
−βλ(r)tM0(t) + 4C1 6M
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Now, suppose that the claim holds for all 1 ≤ k < q + 1. Applying (7.6) and the fact that
Jq+1 ⊂ Jq, we get∫

Jq+1+s0

α̃ε,β(g(q+1)rtu(ϕ(s))x) ds 6 2C1c0e
−βλ(r)t

∫
Jq+1+s0

α̃ε,β(gqrtu(ϕ(s))x) ds+ 4C1|Jq+1|

6 2C1c0e
−βλ(r)t

∫
Jq+s0

α̃ε,β(gqrtu(ϕ(s))x) ds+ 4C1|Jq+1|

By the induction hypothesis, since |Jq|/|Jq+1| = eδλ(r)t, this implies

1

|Jq+1|

∫
Jq+1+s0

α̃ε,β(g(q+1)rtu(ϕ(s))x) ds 6 2C1c0e
−βλ(r)teδλ(r)tM + 4C1 6M

This completes the proof. �
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