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Abstract. Let θ be a Bernoulli measure which is stationary for a random walk generated by
finitely many contracting rational affine dilations of Rd, and let K = supp(θ) be the corresponding
attractor. An example in dimension d = 1 is the Hausdorff measure on Cantor’s middle thirds
set, and examples in higher dimensions include missing digits sets, Sierpiński carpets and Menger
sponges. Let ν denote the image of θ under the map K → SLd+1(R)/SLd+1(Z) which sends x
to the lattice Λx = spanZ(e1, . . . , ed, ed+1 + (x, 0)). We prove equidistribution of the pushforward
measures an∗ν along any diverging sequence of diagonal matrices (an) ⊂ SLd+1(R) that expand the
first d coordinates under a natural non-escape of mass condition. The latter condition is known to
hold whenever θ is absolutely friendly. We also show that weighted badly approximable vectors and
Dirichlet-improvable vectors (for arbitrary norm) form a subset of K of θ-measure zero. The key
ingredient is a measure classification theorem for the stationary measures of an associated random
walk on an S-arithmetic space, introduced by two of the authors in [KL23]. A new feature of this
setting is that this random walk admits stationary measures which are not invariant.

1. Introduction

This paper proves equidistribution results for pushforwards of certain fractal measures on certain
homogeneous spaces, by analyzing certain random walks adapted to the fractal measures. These
dynamical results, are then applied to problems about the Diophantine properties of typical points
on certain fractals. We refer the reader to [KLW04, BQ11, SW19, PSS23,KL23, BHZ24,DJ24] for
related work.

Let k and d be positive integers with k ≥ 2 and let Φ = {f1, . . . , fk} be a collection of affine maps
fi : Rd → Rd of the form

fi(x) = %x + yi, where yi ∈ Qd, % ∈ Q, 0 < |%| < 1. (1.1)

We will refer to such a collection Φ as a carpet IFS. This terminology is motivated by the example
of the Sierpiński carpet. The attractor of Φ is the unique nonempty compact subset of Rd satisfying
K =

⋃
fi(K). We say Φ is irreducible if there is no finite collection of proper affine subspace of

Rd which is left invariant by each of the maps fi. For a probability vector p = (p1, . . . , pk), let
θ = θ(Φ,p) be the associated Bernoulli measure supported on its attractor K. These terms are
explained in §3.1, and the sets K and measures θ which arise in this way form a fairly large class
of self-similar fractal sets and measures; for the purpose of this introduction it is enough to note
that commonly studied self-similar sets, like Cantor’s middle thirds set, missing digit sets in d ≥ 1
dimensions, or the Sierpiński carpet, can arise as K, and their Hausdorff measure can arise as the
Bernoulli measure θ.

Let Xd+1 denote the space of lattices of covolume one. This space is naturally identified with the
quotient of Lie groups SLd+1(R)/SLd+1(Z), via the map gSLd+1(Z) 7→ gZd+1, and this identification
equips Xd+1 with the topology of a non-compact manifold and with the measure mXd+1

, which is
the unique SLd+1(R)-invariant measure. Let

u : Rd → SLd+1(R), u(x)
def
=

(
Id x
0 1

)
, U

def
=
{
u(x) : x ∈ Rd

}
. (1.2)

For g ∈ SLd+1(R), let
Λg

def
= gZd+1, let Λx

def
= Λu(x),

1



2 OSAMA KHALIL, MANUEL LUETHI, AND BARAK WEISS

and denote by νg the pushforward of θ under the map x 7→ Λu(x)g.
Given a sequence (an)n∈N of elements of SLd+1(R), we say that θ is uniformly non-divergent along

(an) if for every ε > 0, there is a compact set K ⊂Xd+1 so that for all g, for all large enough n we
have

an∗νg(K) ≥ 1− ε.

With this notation we are ready to state our main equidistribution result.

Theorem 1.1. Let Φ be an irreducible carpet-IFS, let θ = θ(Φ,p) be a Bernoulli measure, for some
probability vector p, and let ν0 be the pushforward of θ under x 7→ Λx. Let (an)n be any sequence
of diagonal matrices tending to ∞ in SLd+1(R). If θ is uniformly non-divergent along (an), then

lim
n→∞

an∗ν0 = mXd+1
, (1.3)

with respect to the weak-∗ topology on the space of probability measures on Xd+1.

As we will see in §3.2, conditions on θ and (an) which guarantee uniform non-divergence are
well-understood. Clearly, non-divergence of the sequence an∗ν0 is a necessary condition for (1.3),
and all known methods for establishing this non-divergence estimate actually yield the stronger
uniform version we use here. In particular, uniform non-divergence is known to hold when (an) is
drifting away from walls and θ is absolutely friendly ; cf. §3 for definitions. Here we mention that
absolute friendliness is satisfied for large classes of examples including the Hausdorff measure on K
under the open set condition, and for all Bernoulli measures under the strong separation condition.

Results about limits of measures as in (1.3) have a long history in homogeneous dynamics, and we
briefly mention a few that are relevant to our discussion. In the case an = diag

(
en/d, . . . , en/d, e−n

)
,

the group U is the expanding horospherical group for the action of (an), and in this case, if θ is
Lebesgue measure on Rd then (1.3) is an easy consequence of the Howe-Moore theorem on mixing
on Xd+1. Also in the case of Lebesgue measure, for more general sequences (an) which expand U
by conjugations, (1.3) was established in [KW08] and [KM12].

The first equidistribution results for a measure which is singular with respect to Lebesgue measure
were given by Shah in [Sha09], in the case that θ is the length measure on an analytic nondegenerate
curve, and these results were later extended by various authors (see [SY21] and references therein).
The first equidistribution result for fractal measures came in the paper [KL23], where an additional
hypothesis was imposed, namely an inequality involving the contractions in the IFS Φ and the
coefficients of the probability vector p. Under these conditions it was shown that (1.3) holds in an
effective form. Further effective results in case d = 1 were obtained by Datta and Jana in [DJ24],
under an assumption involving Fourier decay, and in great generality in a breakthrough paper of
Bénard, He and Zhang in [BHZ24]. The techniques of this paper are different from those used
in [KL23,DJ24,BHZ24].

1.1. Applications to Diophantine approximations. As with all of the previously mentioned
dynamical results, Theorem 1.1 is motivated by questions in Diophantine approximations. Our
Diophantine applications, which we now state, concern so-called weighted approximation. Given a
weight vector r = (r1, . . . , rd), with

d∑
i=1

ri = 1, ∀i, ri > 0,

and x = (x1, . . . , xd), we say that x is r-badly approximable if there is c > 0 such that for all Q ∈ N
and all (P1, . . . , Pd) ∈ Zd, we have

Q max
i

(
|Qxi − Pi|1/ri

)
≥ c. (1.4)
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Let
a

(r)
t

def
= diag

(
er1t, . . . , erdt, e−t

)
⊂ SLd+1(R). (1.5)

Given a norm ‖ · ‖ on Rd+1, we set

ε‖·‖
def
= sup{ε > 0 : there is Λ ∈Xd+1 such that B‖·‖(0, ε) ∩ Λ = {0}}, (1.6)

and say that x ∈ Rd is (r, ‖ · ‖)-Dirichlet improvable if there is ε < ε‖·‖ such that for all sufficiently
large t, the lattice a(r)

t Λx contains vectors y with 0 < ‖y‖ ≤ ε. The case in which ‖ · ‖ = ‖ · ‖∞ is
the supremum norm was studied by Davenport and Schmidt [DS70] and the case of general norms
was studied by Kleinbock and Rao [KR21], see §3.3 for more details. With these notations we have:

Theorem 1.2. Let Φ and θ be as in Theorem 1.1. Then for any weight vector r, and for any norm
‖ · ‖ on Rd+1, the set of (r, ‖ · ‖)-Dirichlet improvable vectors has θ-measure zero. In particular, the
set of r-badly approximable points has θ-measure zero.

The case r = (1/d, · · · , 1/d) is called the case of equal weights. In case d = 1 the second
assertion was proved by Einsiedler, Fishman and Shapira [EFS11], and the case of equal weights
in all dimensions was settled in [SW19]. Note that in case d = 1 the only weights are the equal
weights, thus our results are only new when d > 1. The first results about general weight vectors r
were obtained by Prohaska, Sert and Shi [PSS23]; however, they could only treat measures defined
by an IFS of affine maps, which depends on r. Finally note that an effective version of Theorem
1.1 would have additional important Diophantine applications. Namely, in case d = 1 it was used
in [BHZ24] to settle a question attributed to Mahler; the analogous conjecture in higher dimensions
is still open.

1.2. Random walks on S-arithmetic spaces. The results of this paper rely on a description of
stationary measures for certain random walks on an S-arithmetic space, which depends on the IFS
Φ. Let d ∈ N and denote by G the automorphism group of the Q-algebra Matd+1, i.e., G = PGLd+1;
cf. [KL23, §3.1]. For a finite collection of places S = {∞, p1, . . . , p`}, where p1, . . . , p` are primes,
we define an S-arithmetic homogeneous space

X S
d+1

def
= GS/ΛS ,

where

GS
def
= G(R)×

∏̀
j=1

G(Qpj ),

and ΛS is the diagonal embedding in GS of

G

(
Z
[

1

p1
, · · · , 1

p`

])
.

The homogeneous space X S
d+1 is equipped with a uniqueGS-invariant probability measuremX S

d+1
.

Let G def
= G(R). Notice that the space of lattices Xd+1 can also be identified with G/G(Z), and the

projection GS → G induces a well-defined surjective map X S
d+1 →Xd+1. This map has a compact

fiber (see e.g. [KL23, §3.1 & Appendix B]). There is a transitive action of GS on X S
d+1 by left

translations, and since we have an inclusion G → GS , we get an action of G on X S
d+1, for which

the projection X S
d+1 → Xd+1 is equivariant. For more information about S-arithmetic groups and

S-arithmetic homogeneous spaces, we refer the reader to [PRR23,Rat98,Tom00].
Following [KL23], we now define a random walk on X S

d+1, depending on the carpet IFS Φ and
a probability vector p. We will define elements h1, . . . , hk ∈ GS below. Then, fixing a probability
vector p, the Φ-adapted random walk is obtained by moving from x ∈X S

d+1 to hix, independently,
with probability pi.
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Let Sf
def
= {p1, . . . , p`} be all the primes which appear in the denominators of all the coefficients

of the maps of the IFS Φ, as well as the numerator of the contraction ratio %, and let S def
= Sf ∪{∞}.

That is, Sf consists of the primes appearing in the decomposition of rq, where

% =
r

q
, gcd(r, q) = 1,

and the denominators of all the coefficients of the translation vectors yi. This choice means that if
we write

Z
[

1

Sf

]
def
= Z

[
1

p1
, . . . ,

1

p`

]
,

then Sf is the smallest set of primes such that % is invertible in Z
[

1
Sf

]
and each yi belongs to(

Z
[

1
Sf

])d
.

Here and in what follows, we will define elements of GS by specifying |S|-tuples of matrices in
GLd+1(Qσ), where σ ranges over S; the reader should keep in mind that each of these matrices
should be thought of as a coset representatives modulo the center of GLd+1(Qσ). For

i = 1, . . . , k and fi ∈ Φ, fi(x) = %x + yi,

we define hi in GS by hi =
(
h

(σ)
i

)
σ∈S

, where

h
(σ)
i

def
=


(
% Idd −yi

0 1

)
if σ ∈ Sf(

% Idd 0
0 1

)
if σ =∞.

(1.7)

For a Q-algebraic group J and S0 ⊂ S we will write

JS0

def
=
∏
σ∈S0

J(Qσ), (1.8)

where Q∞ is another notation for R. Let

Sue
def
= {p ∈ Sf : p|q} and Scue

def
= S r Sue. (1.9)

Let U ⊂ G denote the algebraic group consisting of elements of the form appearing in (1.2), and
let

W st def
= USue ×GScue . (1.10)

The subscript ‘ue’ stands for ‘uniform expansion’, and the superscript ‘st’ stands for ‘stable’.
Let µ be the measure on GS given by

µ =

k∑
i=1

piδhi . (1.11)

By a measure on X S
d+1 we mean a finite regular Borel measure. Recall that a measure ν on X S

d+1

is called µ-stationary if µ ∗ ν = ν, where µ ∗ ν is the measure on X S
d+1 defined by

∀f ∈ Cc
(
X S
d+1

)
,

∫
X S
d+1

f d(µ ∗ ν) =

∫
G

∫
X S
d+1

f dg∗ν dµ(g).

The collection of stationary probability measures is a closed convex set in the space of probability
measures on X S

d+1, and ν is called µ-ergodic if it an extreme point of this convex set.

Theorem 1.3. Let Φ be an irreducible carpet IFS, let hi be as in (1.7), let p be a probability vector,
and let µ be as in (1.11). Then for any ergodic µ-stationary measure ν, one of the following holds:
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(1) ν
({
x ∈X S

d+1 : Stab(x) ∩W st 6= {Id}
})

= 1.
(2) ν = mX S

d+1
.

In §4 we will give examples of µ-stationary measures, showing that the two cases in Theorem 1.3
do in fact arise.

The following Corollary of Theorem 1.3 will be very useful. Let b def
=
(
b(σ)
)
σ∈S , where

b(σ) =


(
%−1 Id 0

0 1

)
σ ∈ Sue,

Id σ ∈ Scue.

(1.12)

For a sequence of measures (νk)k∈N, we will write νk → 0 if the sequence (νk) converges in the
weak-* topology to the zero measure. In other words, for every compact set K, νk(K)→ 0. We will
refer to this as complete escape of mass.

Corollary 1.4. Let µ be as in (1.11), and suppose ν is an ergodic µ-stationary measure on X S
d+1.

Then one of the following holds:
(1) bk∗ν → 0 as k →∞.
(2) ν = mX S

d+1
.

1.3. Organization of the paper. Theorem 1.3, which provides a description of stationary mea-
sures for a certain random walk, is the main result of this paper. In §3, we introduce some some
standard facts and introduce our notation. In §4 we illustrate some stationary measures which
arise for the random walk we consider. As these examples show, the random walk we consider is
not stiff, i.e., there are stationary measures which are not invariant under individual elements in
supp(µ). This sets the random walk considered here apart from many of the setups studied in prior
works, and is a major complication in our setup. In §5 we deduce the other main results of the
paper from Theorem 1.3. Note that our argument for equidistribution is quite different from the
one used in prior work; the crucial point for these deductions is that the maps considered in (1.3)
and in Corollary 1.4 commute with all elements in supp(µ), and thus send stationary measures to
stationary measures.

In §6 we begin the proof of Theorem 1.3. We introduce an auxiliary random walk µ̄. The
trajectories for the µ̄-random walk stay within a bounded distance from those of the µ-random
walk, and treating µ̄ makes it possible to avoid some technical complications. We state Theorem
6.1, which is the analogue of Theorem 1.3 for this random walk, and show, by considering a random
walk on a common cover, that Theorem 6.1 implies Theorem 1.3. The proof of Theorem 6.1 occupies
the rest of the paper. The steps and main ideas for its proof are described in §2 below.

Acknowledgements. The authors are grateful to Aaron Brown, Nishant Chandgotia, and Çagrı
Sert for stimulating discussions. O.K. is partially supported by NSF grants DMS-2247713 and
DMS-2337911, M.L. is partially supported by SNSF grants 200021-197045 and 200021L-231880,
and B.W. is partially supported by grants ISF-NSFC 3739/21 and ISF 2021/24. The authors are
grateful to the CMSA at Harvard University for its hospitality in May 2023, when some of the work
on this paper was conducted. M.L. thanks Dmitry Kleinbock for the hospitality.

2. Outline of the Proof

For convenience of the reader, we provide an informal outline of the proof of Theorem 6.1. The
proof follows the exponential drift strategy of Benoist and Quint [BQ11], but requires substantial
adaptations to our non-stiff setup. In this section we recall the strategy of [BQ11], indicate the
complications which arise in our setting, and explain how we deal with them. For the purpose of
this section, there will be no harm in ignoring the distinction between µ and µ̄, that is, assume that
the random walk is the one described in §1.2.
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Let B = (supp µ̄)N be the space of infinite words in the random walk and β = µ̄⊗N be the
associated Bernoulli measure. Let ν be a µ̄-stationary measure. Recall that we have a disintegration
ν =

∫
B νb dβ(b) in terms of Furstenberg limit measures νb = limn→∞(b1 · · · bn)∗ν; cf. §3.4 for details.

Let Wb denote the subgroup tangent to the directions that are contracted to 0 under the adjoint
action of b−1

n · · · b−1
1 as n → ∞. In our setting, this group is deterministic (i.e., independent of b)

and is a proper subgroup of W st.
We assume that item (1) of Theorem 1.3 does not hold, which by ergodicity, implies that ν-almost

every point has trivial stabilizer in W st. The goal of the exponential drift argument, implemented
in §10, is to show that νb is invariant under a one-parameter (necessarily unipotent) subgroup of Wb

for almost every b. The result will then follow by an application of Ratner’s theorem along with the
special structure of our random walk that is used to rule out other homogeneous measures besides
mX S

d+1
. This is carried out in §11.

Following [BQ11], given a generic b, with the aid of Lusin’s theorem, we find two ε-close points
x, y in the support of νb, so that the leafwise measures of νb along the Wb-orbits of x, y are also
close. We then apply the random walk to this configuration with the goal of finding two new points
x2, y2, in the support of νb2 , for a suitable b2, which satisfy the following:

(1) The distance between x2, y2 is � 1.
(2) The displacement between x2 and y2 essentially points in the direction of Wb2 .
(3) The leafwise measures of νb2 along the Wb2-orbits of x2, y2 remain close.

Taking ε to 0, and repeating this process, produces points with displacement belonging to Wb′ for
suitable b′, and whose leafwise measures agree, thus implying the desired invariance.

The random walk maneuvers that produce such x2, y2 consist of first deleting the length-n prefix
of b, n = n(ε), and then adjoining a suitably chosen length-m prefix, m = m(n). The first leg
(resp. second) of this itinerary is referred to as the backward (resp. forward) random walk. Item (2)
follows from general properties of linear random walks, roughly that vectors tend to point towards
the direction of a suitable top Lyapunov space under the random walk; cf. Lemmas 7.2 and 7.3.

The role of the no-rotations hypothesis. The reason the strategy involves both going backward
and forward by the random walk is to achieve item (3), where n and m are chosen so that the
distortion of the leafwise measures in the two legs nearly cancel each other out. Here, and in all
prior works, the key property needed is the conformality of the action of the random walk on these
leafwise measures. In our setting, this is the reason we assume the linear part of our IFS has no
rotations. Indeed, otherwise, these rotations may generate a non-compact group over one of the
primes in the definition of the induced random walk on X S

d+1. Such non-compactness would lead
to a non-conformal action on the Lyapunov space corresponding to Wb.

The role of the group W st. To achieve (1), we must ensure that x, y are not aligned along direc-
tions that may contract by going either backward or forward by the random walk. In [BQ11], and
almost all prior works, this is done by ensuring that νb gives 0 mass to Wb-orbits, so that backward
motion does not contract the displacement, while relying on growth properties of random walks to
ensure that, for any given vector in the tangent space, most forward random walk trajectories will
cause it to grow (with additional complications arising from neutral/central directions).

By contrast, our random walk admits a non-trivial deterministic contracting subspace under
every forward random walk trajectory. The group W st is thus defined to be the group generated by
deterministic forward-contracting and backward-contracting groups, in addition to the centralizer
of the random walk. A key step in carrying out the above strategy is thus to show that νb gives 0
mass to W st-orbits. This is Theorem 9.1. Due to the mixed behavior of W st (some of its directions
expand in the future while others expand in the past), the proof of this result represents the
major departure in our proof compared to prior works. A key ingredient is a projection argument
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introduced in Lemma 9.4 to separate these mixed behaviors allowing us to handle them individually.
This is the critical step where the hypothesis that points have trivial stabilizers in W st is used.

To get that most forward trajectories of our random walk expand a given transverse direction
to W st, we note that such directions point along GSue to which we apply the expansion results of
Simmons and the third author [SW19]; cf. §7. Note that the results of [SW19] hold for a certain
real random walk, which nonetheless has the same block structure as the restriction of the random
walk considered in this article to the Sue-adic places.

Non-atomicity in the presence of contracting spaces. Non-alignment along W st-orbits is
done by applying the forward and backward random walks to separately contract the respective
pieces of the orbit, reducing the problem to showing almost sure non-atomicity of the measures
νb. This is established in the strong form needed for the proof in Theorem 8.1. The presence of a
deterministic forward contracting space poses significant difficulties in this step. For instance, the
standard arguments involving a ‘Margulis inequality’ (see [BQ11, Prop. 3.9 & §6.2]) do not seem
applicable in this setting. Note also that such non-atomicity fails to hold without the hypothesis
on trivial stabilizers in W st, as shown by the examples of stationary, non-invariant measures given
in §4.

Instead, we argue directly by a delicate local analysis. We first show that averaging on the set
of words which grow a given displacement vector to a macroscopic size satisfies a certain pointwise
ergodic theorem in the underlying Bernoulli shift space; cf. Theorem 8.2. Our hypothesis that the
IFS has a single contraction ratio is used in this step to ensure that this set of words has nearly
full measure (indeed, otherwise these words will be given polynomially decaying measure in their
length as can be checked by a direct computation). We believe it is possible to push our arguments
to bypass this difficulty, and hope to return to this problem in future work.

Equipped with the above ergodic theorem, if the measures νb were atomic, we would obtain a
contradiction by finding words that simultaneously push generic points towards one another (by
continuity and the aforementioned prefix ergodic theorem), and away from one another (by the
expansion of the action transverse to orbits of the forward-contracted group). The fact that the
words have comparable norm in every irreducible component allows us to control the speed at which
our points diverge from one another and capture our pair of generic points just as they are starting
to separate from one another.

3. Preliminaries

In this section we collect some standard facts about our objects of study.

3.1. Attractors of IFS’s. A mapping f : Rd → Rd is said to be a contracting affine half-dilation
if it is of the form f(x) = %x + y, where % ∈ R, 0 < |%| < 1 is the contraction ratio and y is the
translation. The nomenclature ‘half-dilation’ is due to the fact that we allow negative contraction
ratios. Note that when d > 1, the semigroup of contracting affine dilations is strictly contained
in the well-studied semigroup of contracting similarity maps, in which one is allowed to compose
the maps f as above with orthogonal transformations. We say that f is rational if c ∈ Q and
y ∈ Qd. A collection Φ = {f1, . . . , fk} of maps is called an iterated function system (IFS). With
this terminology, the carpet-IFS’s we consider in this paper are iterated function systems of rational
half-dilation affine maps with constant contraction ratio.

Let B = {1, . . . , k}N and let cod : B → Rd be the map defined by

cod(b) = lim
n→∞

fi1 ◦ · · · ◦ fin(x0), where b = (i1, i2, . . .) and x0 ∈ Rd. (3.1)

It is well-known that the limit in (3.1) exists for all b, is independent of the choice of x0, and
that the map cod is continuous. The image of cod is called the attractor of Φ, and we denote it
by K = K(Φ). Basic results about the attractor K were obtained in classical work of Moran and
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Hutchinson [Mor46, Hut81]. Among other things, they showed that K is the unique non-empty
compact subset of Rd satisfying the stationarity property

K =
k⋃
i=1

fi(K). (3.2)

When the elements in this union are disjoint we say that Φ satisfies strong separation. If there is
a non-empty open subset U ⊂ Rd such that fi(U) ⊂ U for all i and fi(U) ∩ fj(U) = ∅ for i 6= j,
we say that Φ satisfies the open set condition. It is known that strong separation implies the open
set condition. Let p = (p1, . . . , pk) be a probability vector of full support, that is a k-tuple of real
numbers such that

k∑
i=1

pi = 1, ∀i, pi > 0.

The Bernoulli measure θ = θ(Φ,p) on K is the image of the measure (
∑k

i=1 piδi)
N under the map

cod. It is the unique measure on Rd which satisfies the stationarity property

θ =

k∑
i=1

pifi∗θ. (3.3)

Let s = dim(K) denote the Hausdorff dimension of K. It is well-known that if one assumes the
open set condition, then up to scaling, the restriction of s-dimensional Hausdorff measure to K is a
Bernoulli measure. If in addition, one assumes that the contraction ratios are equal to each other,
this Bernoulli measure is given by the uniform probability vector p = (1/k, . . . , 1/k).

We will be interested in the effect of conjugation of elements of Φ by an affine similarity mapping
f : Rd → Rd. If we let

Φ = {f1, . . . , fk} and Φ′ = {f ′1, . . . , f ′k}, where f ′i = f ◦ fi ◦ f−1, (3.4)

then it can be easily checked that

K(Φ′) = f(K(Φ)) and θ(Φ′,p) = f∗θ(Φ,p). (3.5)

3.1.1. Examples. A missing digit set is a set of the form

K =

{ ∞∑
i=1

aib
−1 : ai ∈ D

}
,

where b ≥ 3 and D ⊂ {0, . . . , b − 1}, with 2 ≤ |D| ≤ b − 1. The standard example is given by
the Cantor middle thirds set, with b = 3 and D = {0, 2}. These sets are attractors of the IFS
in dimension d = 1, given by fi(x) = 1

bx + ai
b , where D = {a1, . . . , ak}. This IFS satisfies strong

separation if D does not contain consecutive indices, and satisfies the open set condition for any
D. Thus the class of missing digit sets is obviously contained in the class of carpet IFS’s which we
consider in this paper. Other well-known examples of irreducible carpet IFS’s satisfying the open
set condition are those whose attractors are the Sierpiński carpet and Menger sponge, which are
examples in dimensions d = 2 and d = 3 respectively.

An example of a well-known fractal not covered by our results is the Koch snowflake. This two-
dimensional fractal is the attractor of an irreducible IFS on R2 satisfying the open set condition,
where the maps in the IFS are similarities, but these similarities do not have rational coefficients and
cannot be represented as dilations (rotations by multiples of π/3 are required). Another example
not covered by our work is the translation of a Sierpiński carpet by an irrational vector. It would be
interesting to know whether Bernoulli measures on these fractals satisfy the conclusion of Theorem
1.1.
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3.2. Friendliness of some fractal measures. We now introduce some properties of a measure
θ on Rd, following [KLW04]. Let B(x, r) be the ball of radius r centered at x, with respect to the
Euclidean metric on Rd. For a constant D ≥ 1, we say that θ is D-Federer if for any x ∈ supp(θ)
and any r > 0 we have

θ(B(x, 3r)) ≤ Dθ(B(x, r)). (3.6)
For any A ⊂ Rd and ε > 0, we write A(ε) =

⋃
a∈AB(a, ε) for the ε-neighborhood of A. Given

positive C,α, we say that θ is (C,α)-absolutely decaying if for any ball B centered in supp(θ), any
affine hyperplane L, any B = B(x, r) with x ∈ supp(θ), r ∈ (0, 1) and any ε > 0, we have

θ
(
B ∩ L(ε)

)
≤ C

(ε
r

)α
θ(B). (3.7)

A measure θ for which there are D,C, α such that θ is D-Federer and (C,α)-absolutely decaying
is called absolutely friendly.

We will need the following:

Proposition 3.1. Let Φ be an irreducible carpet-IFS. Assume that θ is a measure on the attractor
K of Φ, satisfying the conditions of Theorem 1.1, namely at least one of the following:

(1) Φ satisfies the open set condition and θ is the Hausdorff measure on K;
(2) Φ satisfies strong separation and θ = θ(Φ,p) is a Bernoulli measure, for some probability

vector p.

Then θ is absolutely friendly. Moreover, there are D,C, α such that for any conjugate Φ′ of Φ by
an affine dilation map, the Hausdorff measure on the attractor K′ of Φ′ is D-Federer and (C,α)-
absolutely decaying.

Proof. The first assertion is proved in [KLW04, §8] in case (1), and in [DFSU21, Thm. 1.7] in case
(2) (the latter proof is based on [Urb05]). For the second assertion we use (3.5), and note that an
affine similarity map sends Euclidean balls to Euclidean balls, and hence does affect the validity of
(3.6) and (3.7). �

We will also need the following ‘self-similar Lebesgue density theorem’:

Proposition 3.2. Let Φ and θ be as in Proposition 3.1, let cod : Rd → K be the coding map, and
let B ⊂ Rd be a Borel set. Then for θ-a.e. x ∈ B we have that

lim
n→∞

θ (B ∩ fn(K))

θ (fn(K))
= 1, (3.8)

where x = cod(i1, i2, . . .) and fn = fi1 ◦ · · · ◦ fin .

Note that in the Lebesgue density theorem, valid for all finite Borel measures on Rd (see [Mat95,
Cor. 2.14]), the appearance of fn(K) is replaced with a ball centered at x, shrinking as n → ∞.
The self-similar structure allows us to replace balls with shrinking copies of the attractor.

Proof. For each n, let Bn be the finite σ-algebra of subsets of K generated by the sets f(K), where
f ranges over all the compositions fi1 ◦ · · · ◦ fin . We claim that under the assumptions on θ we
have that for any i 6= j, θ(fi(K) ∩ fj(K)) = 0. Indeed, under the strong separation condition
θ(fi(K)∩fj(K)) = ∅, and for the Hausdorff measure on K we use (3.3) and the scaling of Hausdorff
measure under similarity maps.

This implies that in the covering (3.2), the sets are disjoint up to θ-nullsets. Thus the atoms of
Bn are (up to θ-nullsets) the sets f(K) themselves, and the quotient on the left-hand side of (3.8)
is the conditional expectation of the indicator function 1B w.r.t. the σ-algebra Bn, evaluated at x.
Since the diameter of the sets fn(K) goes to zero, the σ-algebra generated by

⋃
n Bn is the Borel

σ-algebra on K. The increasing Martingale theorem (see [EW11, Chap. 5.2]) now implies that for
θ-a.e. x, the left hand side of (3.8) converges to 1B(x). This completes the proof. �
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3.3. The Dani-Kleinbock correspondence and homogeneous dynamics. The so-called Dani
correspondence was developed by Dani in [Dan85]. He showed that for equal weights approximation,
a vector x ∈ Rd is badly approximable if and only if the trajectory {atΛx : t > 0} is bounded in
Xd+1, where at = ar0

t is the one-parameter group as in (1.5), corresponding to equal weights r0 =
(1/d, · · · , 1/d). The correspondence was later developed and extended to the notions of Dirichlet
improvability and weighted approximation in the papers [Kle98, KW08,KR21]. In particular the
following hold:

Proposition 3.3. Let x ∈ Rd, Λx and r be as above. Then the following hold:

(1) x is r-badly approximable if and only if the trajectory
{
a

(r)
t Λx : t > 0

}
is bounded in Xd+1.

(2) Denoting the sup-norm by ‖ · ‖∞, we have that x is (r, ‖ · ‖∞)-Dirichlet improvable if and
only if for every ε ∈ (0, 1), for all sufficiently large T , there are Q ∈ N and (P1, . . . , Pd) ∈ Zd
such that Q ≤ T and maxi

(
|Qxi − Pi|1/ri

)
≤ ε

T .

We can view the expression appearing on the left-hand side of (1.4) as the sup-norm of the vector
Q(|Qx1 − P1|1/r1 , . . . , |Qxd − Pd|1/rd). It follows from item (1) of Proposition 3.3, and can also be
easily inferred directly from the definition, that the property of being r-badly approximable does not
depend on the choice of a norm on Rd. On the other hand, Dirichlet improvability depends rather del-
icately on the chosen norm. Note that following [KR21], we have defined the notion of Dirichlet im-
provability for a general norm in terms of the dynamical behavior of the trajectory

{
a

(r)
t Λx : t > 0

}
.

Item (2) of Proposition 3.3 shows that for the sup-norm, there is a simple interpretation of this prop-
erty in terms of Diophantine inequalities, and indeed, this was the original definition introduced
by Davenport and Schmidt [DS70]. Similar Diophantine interpretations can be given for norms on
Rd+1 arising from a norm ‖·‖′ on Rd via the formula ‖(y1, . . . , yd+1)‖ = max(‖(y1, . . . , yd)‖, |yd+1|),
but there is no such interpretation for general norms on Rd+1. It was shown by Davenport and
Schmidt (see [DS70]) that r-badly approximable are necessarily (r, ‖ ·‖∞)-Dirichlet improvable. For
general norms this implication does not necessarily hold, see [KR21].

3.3.1. Quantitative nondivergence for friendly measures. Given a probability measure ν on Xd+1

and a sequence of elements (aj) ⊂ SLd+1(R), we say that ν has no escape of mass under (aj) if any
weak-* accumulation point of (aj∗ν) is a probability measure; equivalently, for any ε > 0 there is a
compact subset K ⊂Xd+1 such that for all large enough j, aj∗ν(K) ≥ 1− ε.

Let A ⊂ G be the group of diagonal matrices of determinant one. Each a ∈ A can be represented
as

exp(X) = diag
(
eX1 , . . . , eXd+1

)
where

X = (X1, . . . , Xd+1), Xi ∈ R, X1 + · · ·+Xd+1 = 0.

Following [KW08] we say that a sequence an = exp
(
X(n)

)
drifts away from walls if⌊

X(n)
⌋
→∞, where bXc def

= min {Xi : i = 1, . . . , d} .

The following result, proved in [KLW04], is useful for exhibiting no escape of mass.

Proposition 3.4. Let θ be an absolutely friendly measure on Rd, let ν be the pushforward of θ
under the map x 7→ Λx, and let (aj) be a sequence in A that drifts away from walls. Then ν has no
escape of mass under (aj).

We will need the following strengthening of Proposition 3.4, which establishes the uniform non-
divergence property of Theorem 1.1:
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Proposition 3.5. For any positive ε, C, α, and any D ≥ 1 there is a compact K ⊂Xd+1 such that
for any (C,α)-decaying and D-Federer compactly supported measure θ on Rd, for any g ∈ SLd+1(R),
the measure ν = νg defined below (1.2) satisfies that for any sequence {aj} ⊂ A which drifts away
from walls, for all sufficiently large j we have

aj∗ν(K) ≥ 1− ε.

The proof is essentially given in [KW08], based on [KLW04]. We sketch the argument for the
reader’s convenience.

Sketch of proof. We first claim that in proving this statement we may assume that supp(θ) ⊂ B,
where B is the unit ball around the origin in Rd. Indeed, if the support of θ is not contained in B,
we can replace θ by f∗θ, for a linear contraction f : Rd → Rd which maps supp(θ) into B. As in the
proof of Proposition 3.1, such a map does not affect the constants D,C, α, and can be realized by
the conjugation action of at on U for some t0 ∈ R. This amounts to replacing x0 by at0x0, replacing
ν by at0∗ν, and replacing (aj) by (ajat0), which is also a sequence drifting away from walls.

We now verify the assumptions of [KLW04, Thm. 4.3], with U a big enough ball containing B and
with h(u) = ajτ(u)g0, where τ is as in [KW08, Sec. 2.1], g0 satisfies x0 = π(g0), and with ρ = 1, and
we verify the conditions for all j large enough. Assumption (1) is immediate from [KLW04, Lemma
4.1] and [KW08, Lemma 3.3] (where in [KW08, Lemma 3.3] we take w to be v1 ∧ · · · ∧ vj , where
vi = g0ui and u1, . . . ,uj generate Zk∩V as a Z-module). Assumption (2) is verified in [KLW04, Pf.
of Thm. 3.3] for the standard one parameter flow and for g0 = Id. For the general case we need here,
we argue as in [KW08, Section 3.3], only using the drifting away from walls assumption. Namely,
in the proof in [KW08, Proof of Thm. 3.5], the constant δ is allowed to depend on g0. This does
not cause any issues and the same proof goes through.

�

3.4. Generalities on stationary measures. We will use the following basic facts about stationary
measures. Most of the results are valid in great generality but we only state the results which we
will need here. See [BQ11,BQ24] for details and proofs.

Proposition 3.6. Let G be a locally compact second countable group, acting continuously on a
locally compact second countable space X, and let µ be a measure as in (1.11). Let

B
def
= {1, . . . , k}N ∼= {h1, . . . , hk}N, β

def
= µN. (3.9)

and T : B → B the shift map. Then:
• The collection of µ-stationary measures on X is a compact convex set in the space of prob-
ability measures on X. Ergodic stationary measures are extremal in this cone.
• If a homeomorphism ϕ : X → X commutes with each element in the support of µ, then it
maps any (ergodic) µ-stationary measure to an (ergodic) µ-stationary measure.
• An ergodic stationary measure which assigns full measure to a countable subset of X is
supported on a finite set and gives equal mass to all elements in this set.
• For any µ-stationary probability measure ν, for β-almost every sequence b = (hn)n, the limit

νb
def
= lim

n→∞
(h1 ◦ · · · ◦ hn)∗ν (3.10)

exists and is a probability measure on X. The collection (νb) of limit measures satisfies

for every i and β-a.e. b ∈ B, νhib = hi∗νb, (3.11)

and

ν =

∫
νb dβ(b). (3.12)
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• Conversely, for any assignment b 7→ νb, where νb is a measure on X and the assignment
satisfies (3.11), the measure defined by (3.12) is stationary and the collection (νb)b∈B is its
system of leafwise measures.
• Also define

BX def
= B ×X S

d+1, TX(b, x) =
(
Tb, h−1

b1
x
)
, βX

def
=

∫
BX

δb ⊗ νb dβ(b). (3.13)

Then βX is TX-invariant, and is ergodic if and only if ν is ergodic.

We remark that what we denote here by TX is the backward random walk transformation which is
denoted in [BQ24] by T∨X . It should not be confused with the forward random walk transformation
(b, x) 7→ (Tb, hb1x).

3.5. Irreducible S-adic lattices. In this subsection we record some simple properties of the groups
introduced in §1.2 which we will use repeatedly.

Proposition 3.7. For any x ∈X S
d+1 and any nontrivial g = (g(σ))σ∈S ∈ GS in the stabilizer of x,

we have

∀σ ∈ S, g(σ) 6= Id. (3.14)

Proof. Since property (3.14) is invariant under conjugations, and the stabilizer of x = π(g0) is a
conjugate of ΛS , it suffices to consider the case that x = π(ΛS) and that g ∈ ΛS . In this case (3.14)
follows immediately from the definition of ΛS as a diagonal embedding, �

Proposition 3.8. For any σ ∈ Sue, there are no nontrivial elements of G(Qσ) which commute with
all of the matrices h1, . . . , hk.

Proof. Suppose σ ∈ Sue, let

H
def
=
〈
h

(σ)
i : i = 1, . . . , k

〉
,

and let C be the centralizer of H. Since G(Qσ) is center-free, it suffices to prove that C is contained
in the center of G(Qσ). Since G(Qσ) is a matrix group, it is enough to show that H is epimorphic
in G(Qσ); that is, in any finite-dimensional representation of algebraic groups, any vector fixed by
H is fixed by G(Qσ). In order to verify this statement, we can replace H by its Zariski closure, and
by using [Sha96, Lemma 5.2], we see that it suffices to show that the Zariski closure of H contains
the group

U (σ) def
= u(σ)(Qdσ), where u(σ) : Qdσ → G(Qσ), u(σ)(x)

def
=

(
Id x
0 1

)
. (3.15)

To this end, let U0
def
= H̄Z ∩ U (σ), where H̄Z denotes the Zariski closure of H. Since U (σ) is

normalized by H, so is U0. Also, for each i, j, U0 contains the elements

h
(σ)
i ◦

(
h

(σ)
j

)−1
= u(σ)(yj − yi);

that is, U0 contains the image under u(σ) of all the differences of the translations vectors appearing
in the IFS Φ. Let V0 be the subspace of Qdσ spanned by these differences. An easy calculation
shows that the maps in Φ all preserve the affine subspace (1− %)−1y1 + V0. Since Φ is irreducible,
this means that V0 = Qdσ, and since U0 is Zariski closed, this means that U0 = u(σ)(V0) = U (σ), as
required. �
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4. Examples of Stationary Measures

In analogy with Theorem 1.1, we define a measure ν̂0 on X S
d+1 as the pushforward of θ under the

map x 7→ u(x)ΛS . We denote the orbit of the identity coset ΛS under the group US by U S . This
is a compact subset of X S

d+1, which is isomorphic to the compact S-arithmetic quotient

J(QS)/J

(
Z
[

1

S

])
, where J = (Ga)d

and Ga is the additive group. We can also view U S as a solenoid, that is, the natural extension
of Rd/Zd for which the multiplication maps ×p, p ∈ Sf are invertible; cf. [HR63, Chap. II.10]
and [EL18, Ex. 10.3]. We denote the unique US-invariant measure on U S by mU . We denote by
A ⊂ SLd+1(R) the group of diagonal matrices of determinant one.

We repeat here a simple computation from [KL23, §4] that is central to our approach. By
identifying SLd+1(R) with a subgroup of G(R), we consider the map u in (1.2) as a map Rd → GS .
From (1.7) one sees that for any i ∈ {1, . . . , k} and any x ∈ Rd we have that hiu(x)h−1

i = u(%x).

Let λi be the diagonal embedding of
(
% Idd −yi

0 1

)
∈ GLd+1

(
Z
[

1
S

])
, so that

λi ∈ ΛS and hiλ
−1
i = u(yi).

As a consequence

hiu(x)ΛS = u(%x)hiΛ
S = u(%x)u(yi)Λ

S = u(fi(x))ΛS . (4.1)

Proposition 4.1. The measures mX S
d+1
, ν̂0 and mU are all µ-stationary. For any a ∈ A, the same

holds for the pushforwards of these measures by a.

Proof. Since each hi preserves mX S
d+1

, it is clear that this measure is µ-stationary. For ν̂0, we have

from (4.1) that the map x 7→ u(x)ΛS is a conjugacy between the actions of the fi on Rd, and of the
hi on the orbit UΛS ⊂ X S

d+1. Stationarity for µ now follows from (3.3). For mU we observe that
each hi belongs to the normalizer of US , and hiλ−1

i ∈ US , and so by repeating the computation in
(4.1) and using that US is abelian, we have that

∀w ∈ US , hiwΛS = u(yi)(hiwh
−1
i )ΛS . (4.2)

That is, applying hi to U S induces a solenoid affine endomorphism; i.e., a map which is the
composition of a group endomorphism and a group translation. Since its inverse is given by applying
h−1
i this is actually an automorphism, and thus preserves Haar measure on U S . This implies that

every hi preserves mU , and in particular mU is µ-stationary. The last assertion follows from
Proposition 3.6. �

Note that ν̂0 is supported on the solenoid U S and is not invariant under the individual elements
hi.

Remark 4.2. The measures appearing in Proposition 4.1 are all ergodic. For ν̂0, this follows from
the uniqueness in (3.3). FormX S

d+1
and formU one can give proofs along the lines of [CKS21, Lemma

7.1]; we will not be using this statement and so we omit the details.

We now construct some additional ergodic µ-stationary measures by ‘finite-index perturbations’
of the measures appearing in Proposition 4.1. These examples are not surprising but are useful for
understanding some of the conditions appearing in our results.

Example 4.3. The orbit UΛS is dense in the solenoid U S , and the measure ν̂0 is supported on
a compact subset of this orbit. Here we construct another µ-stationary measure, supported on a
different U -orbit in the solenoid. As we saw in (4.2), this is equivalent to producing a stationary
measure with this property on U S , invariant for the random walk by affine automorphisms.
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Write x =
(
x(σ)

)
σ∈S for an element of Gd

a, and let [x] denote the corresponding coset in U S . In
these coordinates, the U -orbits in U S are obtained by adding real numbers to the σ =∞ coordinate
of x, and ν̂0 is supported on the orbit of the zero coset [0] . Let ϕi denote the affine automorphism
induced by hi. Then

ϕi([x]) =
[(
x̄(σ)

)
σ∈S

]
, where x̄(σ) =

{
%x(σ) σ ∈ Sf

%x(σ) + yi σ =∞.

For a first example, suppose that % = 1
q for some q ∈ N, and that Sf consists of the prime divisors

of q (in other words, the divisors of the translations yi do not involve primes not dividing q). Let
a be an integer coprime to q and let

z =
(
z(σ)

)
, where z(∞) = 0 and z(p) def

=
∑
i≥0

aqi ∈ Qp for p ∈ Sf .

This choice implies that for p ∈ Sf , %z
(p) = a

q + z(p). Since we can replace a coset representative
by subtracting a

q from each coordinate, we see that the random walk fixes the U -orbit through [z],
acting on this U -orbit by x 7→ x + yi − a

q . Thus if we define

Φ′
def
= {f ′1, . . . , f ′k}, where f ′i(x) = f(x)− a

q
,

let θ′ be the unique stationary measure for Φ′ on Rd (in the sense of (3.3)), and let ν ′ be the
pushforward of θ′ under the map x 7→ u(z + x)ΛS , then ν ′ is a µ-stationary measure on U S . It
differs from ν̂0 since it is supported on the orbit of [z].

In this first example, the main property of the U -orbit of u(z)ΛS is that it is mapped to itself by
the affine maps {ϕ1, . . . , ϕk). More complicated examples can be constructed by considering finite
collections of U -orbits which are permuted by this collection of maps. In the preceding example,
this will happen if in the definition of z, we replace the series

∑
aqi with a series with a periodic

sequence of coefficients. We leave the details to the dedicated reader.

5. Deducing Theorems 1.1 and 1.2 and Proof of Corollary 1.4

5.1. Proof of Theorems 1.1 and 1.2. Let θ and ν0 be as in Theorem 1.1. As in §4, let ν̂0

denote the pushforward of θ under x 7→ u(x)ΛS . Let P : X S
d+1 → Xd+1 be the projection, so that

ν0 = P∗ν̂0. In this subsection we will assume Corollary 1.4 and show:

Theorem 5.1. If (an) ⊂ A is a sequence so that θ is uniformly non-divergent along (an), then

lim
n→∞

an∗ν̂0 = mX S
d+1
. (5.1)

Since the map P is equivariant for the action of SLd+1(R), Theorem 1.1 follows immediately from
Theorem 5.1. For the proof, the key property of the diagonal element b appearing in Corollary 1.4
is that it commutes with PGLd+1(R). This follows from (1.12) and the fact that ∞ /∈ Sue.

Proof of Theorem 5.1 assuming Corollary 1.4. Let T = (an). The space of measures on X S
d+1 of

total mass at most one, is compact with respect to the weak-* topology. Thus it suffices to show
that (5.1) holds along any subsequence of T for which the left-hand side converges. We will take a
subsequence of T , which we still denote by (aj) to simplify notation, and for which limj→∞ aj∗ν̂0 =
ν̄∞, where ν̄∞ is a measure on X S

d+1 of total mass at most one. We need to show ν̄∞ = mX S
d+1
.

Along the proof we will freely pass to subsequences, which we will continue to denote by (aj).
We first claim that ν̄∞ is a probability measure. Indeed, by the assumption of uniform non-

divergence along (an), there is no escape of mass in the real factor Xd+1; that is, that any subse-
quential limit limj→∞ aj∗ν0 is a probability measure on Xd+1. Since the projection P is a proper
map, this also implies that there is no escape of mass in the S-adic extension X S

d+1.
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Note that the projection of each of the elements hi to PGLd+1(R) is contained in the diagonal
group, and thus commutes with the aj . Also note from Proposition 4.1 that ν̂0 is µ-stationary. It
follows by Proposition 3.6 that ν̄∞ is a µ-stationary measure. By Corollary 1.4, there is η ∈ [0, 1]
such that ν̄∞ = (1− η)mX S

d+1
+ ην ′, where ν ′ is a µ-stationary measure such that for b as in (1.12),

we have that bk∗ν ′ →k→∞ 0. We want to prove η = 0.
Assume for the sake of contradiction that η > 0. By the assumption of uniform non-divergence

along (an), there is a compact K ⊂ Xd+1 such that for any x0 ∈ Xd+1, for all large enough j we
have

aj∗νx0(K) ≥ 1− η

3
, (5.2)

where νx0 is the pushforward of θ under the map x 7→ u(x)x0. Let K̄
def
= P−1(K) ⊂ X S

d+1, where
P : X S

d+1 →Xd+1 is the projection. Since P is proper, K̄ is compact.
By the definition of η, for some k0 large enough we have

bk0∗ ν̂∞(K̄) < 1− η

2
. (5.3)

Now, using (5.3), let f be a compactly supported continuous function on X S
d+1 satisfying the

pointwise bound 1K̄ ≤ f ≤ 1, and such that

1− η

2
>

∫
f d(bk0∗ ν̂∞) =

∫
f(bk0x)dν̂∞(x) = lim

j→∞

∫
f(bk0ajx)dν̂0(x)

≥ lim
j→∞

∫
1K̄(bk0aju(x)ΛS)dθ(x) = lim

j→∞

∫
1K̄(aju(x)bk0ΛS)dθ(x)

= lim
j→∞

∫
1K(ajx)dνx0(x) = lim

j→∞
(aj∗νx0)(K),

where x0 = P (bk0ΛS) ∈ Xd+1. Note that in the second line we used the commutation relation
between b and the elements of the random walk. We have obtained a contradiction to (5.2). �

Proof of Theorem 1.2. Given a norm ‖ · ‖ on Rd+1, let ε‖·‖ be as in (1.6) and let ε < ε‖·‖. Let r be

a weight vector. We need to show that for θ-a.e. x ∈ Rd, the trajectory
{
a

(r)
t Λx : t > 0

}
visits U

along an unbounded set, where

U =
{

Λ ∈Xd+1 : Λ ∩B(0, ε) = {0}
}
.

Here B(0, ε) is the closed ball of radius ε around the origin in Rd, with respect to the given norm.
Note that U is open, is nonempty by definition of ε‖·‖, and hence

δ
def
= mXd+1

(U) satisfies δ > 0.

Assume for the sake of contradiction that there is t0 > 0 such that

θ (B) > 0, where B def
=
{

x ∈ Rd : ∀t ≥ t0, a(r)
t Λx /∈ U

}
.

Using Proposition 3.2, there is f : Rd → Rd of the form f = fi1 ◦ · · · ◦ fin such that

θ(B ∩ f(K))

θ(f(K))
≥ 1− δ

2
.

Let θ1 = f∗θ. Because of the self-similar structure, θ1 is the normalized restriction of θ to f(K),
and we have θ1(B) ≥ 1− δ

2 . Let ν̄1 be the measure obtained by pushing forward θ1 under the map
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x 7→ u(x)ΛS . By Propositions 3.1 and 3.4, the measure θ1 satisfies uniform non-divergence along
any unbounded subsequence (an) ⊂

{
a

(r)
t

}
. Also, the definition of B implies that for all t ≥ t0,

a
(r)
t∗ ν̄1(U) ≤ δ

2
.

On the other hand, θ1 is the self-similar measure for the conjugated IFS Φ′ as in (3.4), and thus we
can apply Theorem 5.1 to obtain that

lim inf
t→∞

a
(r)
t∗ ν̄1(U) ≥ mXd+1

(U) = δ.

This gives the desired contradiction. �

Remark 5.2. Following [KW08], one can define Dirichlet improvability along any unbounded se-
quence (an) of the diagonal group. Our arguments then show that for any measure θ as in Theorem
1.1, and any sequence (an) drifting away from walls, the set of x which are Dirichlet improvable
along (an) are a nullset with respect to θ.

5.2. Proof of Corollary 1.4. The goal of this section is to establish complete escape of mass, for
certain stationary measures which differ frommX S

d+1
, under the action of certain diagonal subgroups

of GS .
We first use the structure of the lattice ΛS , to obtain the following statement:

Proposition 5.3. Let W st and b be as in (1.10) and (1.12), and let x0 ∈X S
d+1 such that Stab(x0)∩

W st 6= {Id}. Then bnx0 →∞ as n→∞.

Proof. Recall from Proposition 3.7 that (3.14) holds for any nontrivial element in the stabilizer of
any x ∈ X S

d+1. Let w ∈ W st r {Id} with wx0 = x0. Suppose by contradiction that for some
subsequence nj → ∞ we have bnjx0 → x∞, for some x∞ ∈ X S

d+1. The stabilizer of bnjx0 contains
bnjwb−nj . Thus any accumulation point w∞ of the sequence (bnjwb−nj )j belongs to the stabilizer
of x∞. By definition of Sue, we have that |%−1|σ < 1 for all σ ∈ Sue. In particular, the conjugation
action of b on Uue

def
= USue is contracting. Hence, writing w =

(
w(σ)

)
σ∈S and w∞ =

(
w

(σ)
∞
)
σ∈S

, we
see that

w(σ)
∞ =

{
Id σ ∈ Sue

w(σ) σ ∈ S r Sue.

This contradicts (3.14). �

Armed with Proposition 5.3, Corollary 1.4 now follows at once from the following:

Corollary 5.4. If ν is a finite measure on X S
d+1 and b ∈ GS satisfies that bnx0 →∞ for ν-a.e. x0,

then bn∗ν → 0. In particular, in Case 1 of Theorem 1.3, bn∗ν → 0 as n→∞.

Proof. We prove the first assertion; the second assertion follows immediately in view of Proposition
5.3. For any compact K ⊂ X S

d+1 and for ν-a.e. x ∈ X S
d+1, by assumption there is n0 = n0(x,K)

such that for all n ≥ n0, b
nx /∈ K. This implies that for any ε > 0, there is n0 = n0(K) such that

ν
({
x ∈X S

d+1 : ∀n ≥ n0, b
nx /∈ K

})
< ε.

Thus any measure ν ′ which is an accumulation point of the sequence (bn∗ν) satisfies ν ′(K) ≤ ε. Since
K and ε were arbitrary we have that an∗ν → 0. �
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6. Measure Classification for an Auxiliary Random Walk and Proof of
Theorem 1.3

Theorem 1.3 is derived from a detailed analysis of stationary measures for a related measure µ̄.We
now introduce this random walk and state the corresponding measure rigidity result, Theorem 6.1
below.

Let Sue be as in (1.9). Recall that % = r
q with gcd(r, q) = 1, and let

Sdt
def
= {∞} ∪ {p ∈ Sf : p|r} , Str

def
= {p ∈ Sf : gcd(p, q) = gcd(p, r) = 1} , (6.1)

so that
S = Sue t Sdt t Str. (6.2)

In the remainder of the paper, for an algebraic group J, we will simplify the notation (1.8) by
writing Jue = JSue , Jdt = JSdt

, Jtr = JStr . Using the same probability vector p appearing in (1.11),
we let

µ̄
def
=
∑

piδh̄i , (6.3)

where h̄i =
(
h̄

(σ)
i

)
σ∈S

are defined by

h̄
(σ)
i

def
=



(
% Idd −yi

0 1

)
if σ ∈ Sue(

% Idd 0
0 1

)
if σ ∈ Sdt

Id if σ ∈ Str.

(6.4)

The subscripts dt, tr stand respectively for ‘deterministic’ and ‘trivial’. To explain this terminol-
ogy, and motivate the use of this modified random walk, note first that words in the generators h̄i
always remain at a uniformly bounded distance from the corresponding words in the generators hi.
As a result, the two random walks exhibit similar dynamical properties. On the other hand, the
µ̄-random walk is easier to analyze. The directions tangent to Gtr remain bounded in forward and
backward time under the µ-random walk, but these directions are left unchanged by the µ̄-random
walk. Additionally, since the Sdt-coordinates of h̄i are simultaneously diagonal, the behavior of the
µ̄ random walk on these coordinates is deterministic, while still capturing the essence of the action
of the µ-random walk.

Note that when the numerator of the contraction ratio % is equal to 1, and when all the primes
appearing in the denominators of the yi also appear in the denominator of %, we have hi = h̄i and
µ = µ̄. However, in the general case, these random walks are different. The following is our result
about µ̄-stationary measures.

Theorem 6.1. Let Φ be an irreducible carpet IFS satisfying the open set condition, let h̄i be as in
(6.4), let p be a probability vector, let µ̄ be as in (6.3), and let W st be as in (1.10). Then for any
µ̄-ergodic µ̄-stationary measure ν, one of the following holds:

(1) ν
({
x ∈X S

d+1 : Stab(x) ∩W st 6= {Id}
})

= 1.
(2) ν = mX S

d+1
.

It would be interesting to classify all ergodic stationary measures for the random walks generated
by µ and µ̄.

6.1. Compact and contracting extensions of random walks. In this section, we construct a
common cover of the random walks with laws µ and µ̄ and prove the key Proposition 6.2, which
transfers measure rigidity results from one to the other. For related results on extensions of other
random walks, see [SW19, §5] and [AG24, Thm. 1.1].
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Let ki ∈ GS be such that kih̄i = hi. More explicitly, we have that ki =
(
k

(σ)
i

)
σ
, where

k
(σ)
i

def
=


Id if σ ∈ Sue ∪ {∞}(

Idd −yi
0 1

)
if σ ∈ Sdt r {∞}(

% Idd −yi
0 1

)
if σ ∈ Str.

Consider the subgroup F =
∏
σ∈S F

(σ) of GS defined as follows:

F (σ) def
=


{Id} σ ∈ Sue ∪ {∞}
U(Qσ) σ ∈ Sdt r {∞}〈
k

(σ)
i

〉
σ ∈ Str.

Note that the group F is normalized by both hi and h̄i for all i. We shall consider an extension of
our random walks on X S

d+1 to the space

E = X S
d+1 × F.

The random walk is generated by the following elements:

h̄Fi (x, f)
def
= (h̄ix, kih̄ifh̄

−1
i ). (6.5)

In analogy with (1.11) and (6.3), define the law of this random walk as

µ̄F =
∑
i

piδh̄Fi
.

We define two projections P, P̄ : E → X S
d+1 by P (x, f) = fx and P̄ (x, f) = x. Then, we note the

following equivariance properties of these projections:

P
(
h̄Fi (x, f)

)
= hiP (x, f), P̄

(
h̄Fi (x, f)

)
= h̄iP̄ (x, f). (6.6)

Proposition 6.2. There exists a probability measure mF on F such that every µ̄F -stationary prob-
ability measure m on E with P̄∗m = mX S

d+1
is of the form m = mX S

d+1
⊗mF .

Proof. We will deduce this result from a combination of uniqueness results for Haar measures on
compact groups, stationary measures for contracting IFS’s, and from the mixing property of the
µ̄-random walk on X S

d+1.
We begin by giving a more explicit description of the action of the random walk on the F -

coordinate. Let
Q

def
=
∏
σ∈Str

F (σ).

Since F (σ) is compact for σ ∈ Str, Q is a compact factor of F . For f =
(
f (σ)

)
∈ F we have

(kih̄ifh̄
−1
i )(σ) =


Id if σ ∈ Sue ∪ {∞}(

Idd −yi + %x

0 1

)
if σ ∈ Sdt r {∞} and f (σ) = u(x), x ∈ Qdσ

k
(σ)
i f (σ) if σ ∈ Str.

In particular, if f ∈ Q then kih̄ifh̄−1
i = kQi f ∈ Q, where k

Q
i is the projection of ki to Q.

Let m be a µ̄F -stationary measure with P∗m = mX S
d+1

. Let P̄0 : X S
d+1 × F → X S

d+1 × Q and
P̄1 : X S

d+1 ×Q→X S
d+1 denote the standard projections so that P̄ = P̄1 ◦ P̄0. We first show that

(P̄0)∗m = mX S
d+1
⊗mQ, (6.7)
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where mQ denotes the Haar probability measure on Q.
To this end, let ΓQ denote the group generated by h̄Qi , where h̄

Q
i denotes the restriction of the

action of h̄Fi to X S
d+1×Q. Our claim will follow by [SW19, Proposition 5.3] upon verifying ergodicity

of the action of ΓQ with respect to mX S
d+1
⊗ mQ. By the Howe-Moore theorem, since the group

generated by h̄i is unbounded, its action on X S
d+1 is weak-mixing with respect to mX S

d+1
. Moreover,

since the group generated by
(
k

(σ)
i

)
σ∈Str

is dense in Q, its action by left translations on Q is ergodic

with respect to mQ. Hence, the action of ΓQ on X S
d+1 × Q is ergodic with respect to the product

measure mX S
d+1
⊗mQ; cf. [Gla03, Theorem 9.23(2)]. This gives (6.7).

To conclude the proof, we define

U0
def
= USdtr{∞} =

∏
σ∈Sdtr{∞}

F (σ),

which is a factor of F complementary to Q, and take advantage of the fact that action of the random
walk on U0 is given by contracting affine maps. Let

mb
def
= lim

n→∞

(
h̄Fi1 ◦ · · · ◦ h̄

F
in

)
∗m (6.8)

be the limit measures as in Proposition 3.6, so that

m =

∫
mb d(µ̄F )N(b). (6.9)

We will show that for almost every b, there is ub ∈ U0 such that

mb = mX S
d+1
⊗mQ ⊗ δub . (6.10)

Plugging into (6.9), we see that this implies the proposition with mF = mQ ⊗
∫
δub d(µ̄F )N(b).

By (6.7), the projection of m to X S
d+1×Q is invariant by elements of ΓQ, and hence, by (6.8) we

have that (P̄0)∗mb = mX S
d+1
⊗mQ. Moreover, note that |%|σ < 1 for all σ ∈ Sdt by definition of the

deterministic places. Hence, letting P̄U0 : E → U0 denote the standard projection, it follows that(
P̄U0

)
∗mb is a Dirac mass at some point ub ∈ U. This implies (6.10) and concludes the proof. �

6.2. Proof of Theorem 1.3 from Theorem 6.1. Let ν be an ergodic µ-stationary measure on
X S
d+1 and let νF be some lift of ν to E, that is a measure satisfying P∗νF = ν; the existence of such

a lift can be constructed using a Borel section of the projection P : E → X S
d+1. We will choose

the section so that the F -coordinate takes values in Q. This choice implies that the sequence of
measures

(
µ̄F
)∗n ∗ νF are all supported on X S

d+1 ×Q.
Let ν̄F be a weak-∗ limit measure of the sequence of measures

νFN
def
=

1

N

N∑
n=1

(
µ̄F
)∗n ∗ νF

as N →∞. Then, (6.6) implies the following properties of ν̄F .

Lemma 6.3. For all N ≥ 1, the measures νFN satisfy

P∗ν
F
N = ν.

In particular, ν̄F is a µ̄F -stationary probability measure. Moreover, we have that P̄∗ν̄F is µ̄-
stationary.
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Proof. Since ν is µ-stationary, the P -equivariance in (6.6) implies that P∗(µ̄F ∗ νF ) = ν. This
implies the first claim. The second claim follows from the first assertion, Proposition 3.6, and the
fact that X S

d+1×Q→X S
d+1 is a compact extension, so there is no loss of mass in taking limits. The

last claim is immediate from the averaging construction of ν̄F and the P̄ -equivariance in (6.6). �

The following lemma, along with Proposition 6.2, concludes our deduction of Theorem 1.3 from
Theorem 6.1.

Lemma 6.4. Suppose that ν gives 0 mass to the set of points x with non-trivial stabilizer in W st.
Then, the same holds for P̄∗(ν̄F ). In particular, by Theorem 6.1, P̄∗(ν̄F ) = mX S

d+1
.

Proof. Let W ⊂ X S
d+1 denote the set of points with non-trivial stabilizers in W st. By definition of

P̄ , we need to show that ν̄F (W × F ) = 0. First, we note that, since F ⊂W st, W is F -invariant. It
follows that W × F = P−1(W). These observations give

P̄∗ν̄
F (W) = ν̄F (W × F ) = ν̄F (P−1(W)) = P∗ν̄

F (W).

By Lemma 6.3, we have that P∗ν̄F = ν. Hence, the first assertion follows by our hypothesis that
ν(W) = 0. The second assertion follows from the first one via Theorem 6.1. �

Remark 6.5. We did not give an explicit example of a µ̄-stationary measure satisfying conclusion
(1) in Theorem 6.1, but the preceding arguments show that such measures exist. Indeed, start
with a µ-stationary measure on X S

d+1 which is supported on the solenoid U S , and note that the
construction of P̄∗ν̄F in the proof of Lemma 6.3 gives rise to such a measure.

7. Growth properties of the random walk

Following Benoist and Quint [BQ11], we need to understand the growth properties of a random
walk generated by the support of µ̄, acting linearly via several finite dimensional linear represen-
tations of GS . One major obstruction to running the same arguments given in [BQ11] without
change is the absence of uniform expansion, which cannot be expected in the case where the Zariski
closure of the group generated by the random walk is solvable. However, it was noted in joint
work of David Simmons with the third-named author, that in some cases a useful analogue is true;
cf. [SW19, Prop. 3.1(a)]. The goal of this section is to prove several analogous growth properties
for the action of the random walk in its Adjoint representation on gσ, σ ∈ Sue.

Throughout this section, we fix an irreducible carpet-IFS Φ with common rational contraction
ratio % > 0. Given a finite list of indices i1, . . . , in in {1, . . . , k}, following [SW19] we write

h̄n1
def
= h̄in ◦ · · · ◦ h̄i1 and h̄1

n
def
= h̄i1 ◦ · · · ◦ h̄in , (7.1)

where the h̄i are as in §6.
Further, for σ ∈ S and x ∈ Q, |x|σ denotes the σ-adic absolute value of x, gσ denotes the Lie

algebra of Gσ, where we view gσ as a vector space over Qσ, equipped with the σ-adic norm. We
denote the Lie algebra of GS by g, that is,

g =
⊕
σ∈S

gσ.

7.1. Action on the Lie algebra. In this subsection, for h = (hσ)σ∈S , ‖h‖σ denotes the operator
norm of the action of Ad(hσ) on gσ. The following Proposition implies that the norm of each of the
random walk elements in each place is dictated by the growth of the scalar contraction ratios.

Proposition 7.1. There is a constant C > 1 such that for any n ∈ N, the following holds. Denoting
by An �C Bn the inequalities C−1An ≤ Bn ≤ CAn, for any word (i1, . . . , in) of length n, for all
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σ ∈ S we have ∥∥h̄n1∥∥σ �C
{
|%|nσ, σ ∈ Sue,

|%|−nσ , σ ∈ Sdt.
(7.2)

Proof. The element
(
%nIdd 0

0 1

)
acts on gσ diagonally, with three eigenvalues %n, 1, %−n. Thus in

the case σ ∈ Sdt, the statement follows from (6.4).
For σ ∈ Sue, we first show that the left-hand side of (7.2) dominates the right-hand side. Indeed,

let v =
(

0 X
0 0

)
, for some X ∈ Qdσ with ‖X‖σ = 1. Then Ad

(
h̄n1
)

(v) = %nv, and hence
∥∥h̄n1∥∥σ ≥ |%|nσ.

For the opposite inequality, denote by

y = fi1 ◦ · · · ◦ fin(0)

the translation vector of the map fi1 ◦ · · · ◦ fin . Then by a straightforward induction using (1.1)
and (6.4) we have (

h̄n1
)
σ

=

(
%nIdd −y

0 1

)
=

(
%nIdd 0

0 1

)(
Idd −%−ny
0 1

)
.

Since the operator norm is sub-multiplicative, for an upper bound it suffices to give separate upper
bounds for the two elements in this product. As we saw in the case σ ∈ Sdt, the operator norm

of the first element
(
%nIdd 0

0 1

)
is |%|nσ. Again by a straightforward induction we see that we can

express each of the coefficients of %−ny as a sum
∑n

i=0 bi%
−i, where the bi are contained in the set

of coordinates of the vectors y1, . . . ,yk, which is a finite set. By the ultrametric property of the
σ-adic absolute value and the fact that |%|σ ≥ 1, we deduce that the operator norm of the second

element
(

Idd −%−ny
0 1

)
is bounded, independently of n. This completes the proof. �

Let B, β be as in (3.9). As in [BQ11], to simplify notation we identify the index set {1, . . . , k}
with the random walk elements {h̄1, . . . , h̄k}. In particular, for b ∈ B we let

bn1
def
= h̄n1 and b1n

def
= h̄1

n

be the elements given by (7.1) corresponding to the n-prefix (i1, . . . , in) of b. For σ ∈ S we also let
uσ denote the Lie algebra of the group U(Qσ) (see (1.10)). Let P(g) be the projective space over
g, let d be some metric on P(g) inducing the topology, and for two subsets A,A′ ⊂ P(g), we let
dist(A,A′)

def
= inf{d(a, a′) : a ∈ A, a′ ∈ A′}.

The following lemma provides a weaker version of the aforementioned results of [SW19] which
suffices for our purposes (cf. [BQ11, Cor. 5.5] and [SW19, Prop. 3.1]).

Lemma 7.2. For all δ > 0 there are C > 1 and m0 ∈ N such that for all σ ∈ Sue and all non-zero
vσ ∈ gσ we have

β
({
b ∈ B : ∀m ≥ m0, ‖Ad(bm1 )‖σ‖vσ‖σ ≤ C‖Ad(bm1 )vσ‖σ

})
≥ 1− δ.

Moreover, for every δ > 0 and η > 0, there is m1 ∈ N such that for all σ ∈ Sue, for any v ∈ gσr{0},
β ({b ∈ B : ∀m ≥ m1, dist (Ad(bm1 )v, uσ) < η}) > 1− δ

(where we identify v, uσ with their image in P(g)).

Proof. This follows from [SW19, Sections 3 & 6]. By the argument of [SW19, Section 6.1], assump-
tions I, II, III are satisfied for the restriction of the random walk to gσ, with W = uσ. Now the
desired estimates follow from [SW19, Prop. 3.1]. Note that in [SW19], V is a real vector space, but
the arguments given there are valid in vector spaces over Qσ. Note that the arguments in [SW19]
use the Oseledec theorem; for a p-adic version of the Oseledec theorem, see [Rag79]. �
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7.2. Action on the exterior powers of the Lie algebra. Let P be the normalizer of U and let
pσ be the Lie algebra of P (Qσ). Note that dim U = d and dim P = d2 + d. For r ∈ {1, . . . ,dim P},
we let V ∧r = V ∧r(σ)

def
=
∧r gσ. There is an action of the elements of the random walk on V ∧r and

P(V ∧r) through the rth exterior power. We denote these actions respectively by

v 7→ h̄v and [v] 7→ h̄[v], where v ∈ V ∧r r {0}, h̄ ∈ supp µ̄⊗k.

Lemma 7.3. For any σ ∈ Sue and any r ∈ {1, . . . ,dim P} we define a nonzero subspace W (r) =

W (r)(σ) in V ∧r(σ) as follows:

W (r) def
=

{
span (u1 ∧ · · · ∧ ur : ui ∈ uσ) if r ∈ {1, . . . , d}

span (u1 ∧ · · · ∧ ud ∧ vd+1 ∧ · · · ∧ vr : ui ∈ uσ, vj ∈ pσ) if r ∈ {d+ 1, . . . , d2 + d}.

Then we have:
(i) The subspaces W (r) are h̄i-invariant for each r and i;
(ii) For every v ∈ V ∧r r {0} and β-a.e. b, ‖bn1v‖

n→∞−→ ∞, and any accumulation point of the
sequence (bn1 [v])n∈N is contained in P

(
W (r)

)
.

Sketch of Proof. Assertion (i) is a straightforward computation which is left to the reader. The
second assertion follows from the results of [SW19]. Before outlining the proof, we caution the
reader not to confuse W (r) with W∧r; for r > 1, what we denote here by W (r) is properly contained
in the space denoted by W∧r in [SW19]. For the proof, we replace V with V ∧r and consider our
random walk elements as contained in GL(V ∧r). With this modification, what we denote here by
W (r) corresponds to the subspace of V ∧r which in [SW19] was denoted by W∧1. The reader can
now check that the arguments of [SW19, §6] imply that the random walk on V ∧r satisfies properties
(I), (II), and (III), and thus the results of [SW19, §3] imply assertion (ii). �

Corollary 7.4. For σ ∈ Sue and r ∈ {1, . . . ,dim P}, and for the µ̄-random walk on V ∧r, there are
no stationary measures besides the Dirac mass on {0}.

Sketch of proof. By Lemma 7.3 (ii), the norm of v increases under most random trajectories for
the µ̄ random walk. Consider the probability space B × V ∧d, equipped with the transfer map
(b, v) 7→ (Tb, b1v). A stationary measure on V ∧d gives rise to an invariant probability measure on
B×V ∧d, but from growth of trajectories one sees that the function (b, v) 7→ ‖v‖ almost surely goes
to infinity under repeated application of the transfer map. This contradicts Poincaré recurrence.
See [SW19, Prop. 3.2 & Prop. 3.7] for more details. �

7.3. The effect of changing prefixes. Finally, we record the following lemma which measures
the effect of changing the prefix of a long random walk trajectory. We introduce the notation ‖γσ‖op

to denote the operator norm, with respect to the Euclidean metric, of the linear operator γσ acting
linearly on Qd+1

σ (this should not be confused with the notation ‖γ‖σ used in Proposition 7.1 and
Lemma 7.2).

Lemma 7.5. Given a = (a1, . . .) and b = (b1, . . .) in B, and given n ∈ N, let

γ(a, n, b)
def
= an1 ◦

(
b1n
)−1

= h̄an · · · h̄a1 ·
(
h̄bn
)−1 · · ·

(
h̄b1
)−1

.

Let σ ∈ Sue and

Ga,b,σ(n)
def
= ‖γ(a, n, b)σ‖op and Gmax,b,σ(n)

def
= max

a′∈B
Ga′,b(n).

Then
(1) For σ /∈ Sue we have γ(a, n, b)σ = Id.
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(2) There is c1 > 1 such that for any σ ∈ Sue, any b ∈ B and any n ∈ N,
1

c1
≤
Gmax,b,σ(n)

|%|nσ
≤ c1.

In particular Gmax,b,σ(n)
n→∞−→ ∞.

(3) For any α > 0 there is c2 > 0 such that for all b and all n ∈ N, there is a set B0 = B0(b, n) ⊂
B with β(B0) ≥ 1− α, such that for all a ∈ B0 and any σ ∈ Sue, we have

Ga,b,σ(n) ≥ c2Gmax,b,σ(n). (7.3)

Proof. Assertion (1) is clear from (6.4). For σ ∈ Sue write (h̄i)σ = u(−yi)g0, where u : Qdσ → U(Qσ)

is the map as in (1.2), and g0
def
= diag(%, . . . , %, 1). We have a commutation relation g0 u(y) =

u(%y) g0. Carrying out a matrix multiplication, and using the commutation relation to move all the
diagonal matrices to one side, we get that

(γ(a, n, b))σ =

{
u(−yam)g0 · · ·u(−ya1)g0g

−1
0 u(ybn) · · · g−1

0 u(yb1) σ ∈ Sue

Id σ /∈ Sue

=

{
u(y0) σ ∈ Sue

Id σ /∈ Sue,

where y0 = y0(a, n, b) is given by

y0 =

n∑
i=1

%i−1ybi −
n∑
i=1

%n−iyai =

n∑
j=1

%n−j(ybn−j − yaj ). (7.4)

Since the yi are contained in a finite set, the size of Ga,b,σ(n) is comparable to max(1, ‖y0‖σ), i.e.,
to |%|rσ where r = r(a, b, n) is the largest power n− j appearing in (7.4) with a nonzero coefficient.
It is clear from (7.4) that r(a, b, n) ≤ n − 1 for all a. Also, for each b, n, we can choose a1 so that
ybn−1−ya1 is nonzero, and this is the coefficient of %n−1. This implies that for any sequence starting
with a1 we have r(a, b, n) = n− 1. This proves (2).

To prove (3), given α, let ` be large enough so that any cylinder set in B defined by specifying
one prefix of length ` has β-measure less than α; namely, we choose ` > α/ log(maxi pi). Arguing
as in the proof of (2), we see that the only way to have r(a, b, n) < n − ` is to have τaj = τbn−j
for j ≤ `, and this means that the first ` digits of a are determined by the last ` digits of b. We
define B0 to be the complement of this prefix set of length ` corresponding to b, and the statement
follows. �

8. Preparations For Exponential Drift: Non-atomicity of limit measures

Following [BQ11], the first key step in running the exponential drift argument is to show that,
given a stationary measure ν, the limit measures νb are non-atomic almost surely. This property
however fails for our random walks. Indeed, in case µ = µ̄ the stationary measure ν = ν̂0 does have
atomic limit measures, as can be seen from the proof of Proposition 4.1. In the general case, it can
be shown that the property fails due to the deterministic forward-contracting space udt = Lie(Udt).
Nevertheless, in this section we will show that non-atomicity of limit measures (in a strong form)
does hold under the hypotheses of Theorem 8.1 below.

In order to state the main result of this section, we introduce some notation. Let BX , βX be as
in (3.13) and Proposition 3.6. Define Z to be the subgroup of GS commuting with all of the h̄i.
By Proposition 3.8, the elements

(
z(σ)

)
σ∈S of Z satisfy z(σ) = Id if σ ∈ Sue, z

(σ) =
(
A(σ) 0

0 1

)
for

some invertible A(σ) if σ ∈ Sdt, and with no restrictions on z(σ) for σ ∈ Str. Let P
def
= ( ∗ ∗0 ∗ ) be the

normalizer of the group U in (1.2), let Sdt and Str be as in (6.1), and let

H fne def
= PSdt

×GStr . (8.1)
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The superscript ‘fne’ stands for ‘forward non-expanding’; indeed, for the linear random walk consider
in §7, none of the vectors in the Lie algebra hfne of H fne expand under any of the elements h̄i.

Then from (1.10) we have
Z ⊂ H fne ⊂W st, (8.2)

and from (6.4) that for all i,
h̄iH

fneh̄−1
i = H fne. (8.3)

Theorem 8.1. Let Φ, h̄i,p and µ̄ be as in Theorem 6.1. Let ν be an ergodic µ̄-stationary measure.
Suppose that ν(H fnex) = 0 for every x ∈X S

d+1. Then νb(Zx) = 0 for βX-almost every (b, x) ∈ BX .

The remainder of this section is devoted to the proof of Theorem 8.1.

8.1. Prefix ergodic theorem. We will need a pointwise ergodic theorem specifically geared to the
symbolic space. In order to state it we introduce some additional notation and terminology. Let
B∗ denote the set of finite words in the alphabet {1, . . . , k}, and for a ∈ B∗ let [a] ⊂ B denote the
cylinder set of words in B whose initial word is a. A complete prefix set is a finite subset P ⊂ B∗

such that
{[a] : a ∈ P}

is a partition of B. Let len(a) denote the length of the word a ∈ B∗, and for a ∈ B∗ and b ∈ B we
let ab ∈ B be the infinite word obtained by concatenation.

Theorem 8.2. Let (Pn)n∈N be a sequence of complete prefix sets such that

min{len(a) : a ∈ Pn}
n→∞−−−→∞.

Then

∀f ∈ L∞(B, β),
∑
a∈Pn

f(ab)β([a])
n→∞−−−→

∫
B
fdβ β-a.e.

We give the proof of Theorem 8.2 in §8.5. We will use the following useful consequence.

Corollary 8.3. Let f ∈ L∞(B, β). Then

lim
n→∞

∑
len(a)=n

f(ab)β([a]) =

∫
B
fdβ(b) β-a.e.

8.2. Consequences of concentration on the centralizer. The following lemma provides a very
useful consequence of the condition that νb(Zx) is positive for a positive measure set of pairs (b, x).

Lemma 8.4 ( [BQ13, Prop. 7.8 and Lem. 7.9]). Let ν be an ergodic µ̄-stationary probability measure
on X S

d+1, and let νb be the system of limit measures as in (3.10). Suppose that

βX
({

(b, x) ∈ BX : νb(Zx) > 0
})

> 0. (8.4)

Then there exists a compact subgroup Z0 ⊂ Z such that
(i) Z0 preserves the measure ν;
(ii) The Z0-action on X S

d+1 is free;
(iii) for a full measure set of (b, x) in BX we have νb(Z0x) > 0;
(iv) νb is Z0-invariant almost surely;
(v) there is a bounded neighborhood W of 0 in g such that the Lie algebra z0 of Z0 satisfies that

the restriction of the exponential map to W ∩ z0 is well-defined and a homeomorphism onto its
image.



MEASURE RIGIDITY AND EQUIDISTRIBUTION FOR FRACTAL CARPETS 25

Proof. First we show that the Z-action on X S
d+1 is free, and hence so is the action of any subgroup

of Z. Let x ∈ X S
d+1 and let Z(x) denote its stabilizer in Z. Since the Sue-coordinates of hi and

h̄i agree, Proposition 3.8 implies that the projection of elements of Z(x) to the Sue-coordinates is
trivial, and we have from Proposition 3.7 that Z(x) is a trivial group.

By (8.4), and since ν is ergodic, we have νb(Zx) > 0 for βX -almost every pair (b, x). Let Z1 ⊂ Z
be the subgroup consisting of elements of Z which preserve ν, and let E ⊂ X S

d+1 be the set of
‘typical points’ for the random walk, in the sense of [BQ13, Lemma 3.7]. Then E is Z1-invariant,
ν(E) = 1 and zE ∩ E = ∅ for z ∈ Z r Z1. By the argument in [BQ13, Proof of Prop. 7.8], we
get that νb(Z1x) > 0 for βX -almost every (b, x). Since Z1 commutes with the random walk and
preserves ν, we have from (3.10) that Z1 preserves almost every νb.

We now show that Z1 is compact. For this, note that for a.e. b, the Z1-invariant measure νb
is supported on countably many Z1-orbits of positive measure. For any x ∈ X S

d+1, let Z1(x)
denote the stabilizer of x in Z1. As we have seen, Z1(x) = {Id}. On the other hand, the orbit map
Z1/Z1(x)→ Z1x is a Borel isomorphism, and whenever νb(Z1x) > 0, the finite Z1-invariant measure
νb|Z1x induces a finite Z1-invariant measure on Z1/Z1(x). This implies that there are x ∈X S

d+1 for
which Z1(x) is a lattice in Z1. Thus Z1 admits the trivial group as a lattice, so is compact.

We now let Z0 ⊂ Z1 be a subgroup satisfying (v). To see that such a subgroup exists, see
e.g. [Rat98, §3]. Since Z1 is compact, Z0 is a subgroup of finite index, and we claim that it satisfies
the required conclusions. Indeed, properties (i) and (iv) hold for Z1 and thus hold for Z0. Moreover,
since each Z1-orbit is a finite union of Z0-orbits, there is a positive measure subset of (b, x) for which
νb(Z0x) > 0. Since Z0 commutes with the random walk, the set of (b, x) satisfying this property is
invariant for the random walk, and by ergodicity, (iii) holds for Z0. �

8.3. Notation for the Proof of Theorem 8.1. In the proof we will argue by contradiction, we
now introduce some notation that arises when assuming that (8.4) holds. Let Z0 ⊂ Z be a subgroup
satisfying the conclusions of Lemma 8.4. Then, since Z0 ⊂ Z, the random walk acts on the quotient
space

X ′
def
= Z0

∖
X S

d+1.

Since Z0 is compact, the quotient topology on X ′ is Hausdorff, locally compact, and second count-
able, and there is a Borel section τ : X ′ → X S

d+1; that is, τ satisfies IdX′ = πX′ ◦ τ, where
πX′ : X S

d+1 → X ′ is the projection.
We fix an Ad(Z0)-invariant norm on each gσ, and use it to define a metric distGS on GS which

is both right-invariant and left Z0-invariant. For the real place this involves defining a suitable
Riemannian metric on GR, for finite places the construction is explained in [Rüh16, §3], and for a
general vector v =

∑
σ v

(σ) with v(σ) ∈ gσ, the norm on g is given by ‖v‖ = maxσ ‖v(σ)‖σ where
‖ · ‖σ is the norm on gσ. The metric distGS induces a metric distX S

d+1
on X S

d+1, and we use it to
define

distX′
(
x′1, x

′
2

)
= inf

{
distX S

d+1
(y1, y2) : yi ∈ Z0xi, i = 1, 2

}
, where x′i = Z0xi.

Since Z0 is compact and since distX S
d+1

is Z0-invariant, this can also be written as

distX′
(
x′1, x

′
2

)
= min

{
distX S

d+1
(x1, z0x2) : z0 ∈ Z0

}
.

In the sequel, when discussing balls and distances between points in the spaces GS ,X S
d+1, X

′, or
norms of vectors in g, we will always have in mind the metrics arising from this norm on g. When
confusion is unavoidable we will simplify notation by omitting subscripts, writing ‘dist’ for each of
these metrics.

The pushforward ν ′ of ν to the quotientX ′ is an ergodic stationary measure with the property that
the limit measures ν ′b have atoms for almost every b. By ergodicity of ν ′ (see [BQ11, Lemma 3.11]
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for a similar argument), for almost every b ∈ B, the limit measure ν ′b is in fact a purely atomic
uniform measure supported by a finite subset of X ′ depending on b. Moreover, the cardinality of
the support of ν ′b is constant almost surely and we denote it by N0.

LetX0 denote the collection of subsets Σ ⊂ X ′ of cardinalityN0. Given two elements Σ1,Σ2 ∈ X0,
we define a metric on X0 by

distX0(Σ1,Σ2) = max
x1∈Σ1

min
x2∈Σ2

dist(x1, x2) + max
x2∈Σ2

min
x1∈Σ1

dist(x1, x2).

The diagonal action of the group elements of the random walk on the product space (X ′)N0 induces
an action on X0. Similarly, since the group H fne is normalized by Z0, its left multiplication action
on X S

d+1 induces an action on the space X ′ and hence on the space X0.
Let z, gdt, gue and hfne denote respectively the Lie algebras of Z,GSdt

,GSue andH fne. Let u−dt ⊂ gdt

be the Lie algebra contracted by the restriction of the Ad(h̄−1
i ) to gdt, and denote

Vex
def
= u−dt ⊕ gue.

The letters ‘ex’ stand for ‘expanding’; indeed, under the linear random walk, all the nonzero vectors
in u−dt expand exponentially, and the vectors in

⊕
σ∈Sue

gσ expand for most infinite random walk
paths by the results of §7. As suggested by this terminology, Vex is a complementary subspace to
hfne.

Let z0 be the Lie algebra of Z0, let w be an Ad(Z0)-invariant complementary subspace to z0
inside z, and define z⊥0 ⊂ g by

z⊥0
def
= w⊕ udt ⊕ Vex.

Then z⊥0 is a complementary subspace to z0 in g, and the subspaces hfne, z
⊥
0 ,w, udt, u

−
dt, Vex and z0

are all invariant under the linear random walk.
Every vector vdt ∈ gdt can be written uniquely as vdt = vdt,fne + vdt,ex, where vdt,fne ∈ gdt ∩ hfne

and vdt,ex ∈ gdt ∩ Vex. Given a vector v ∈ g, we define vex =
(
v

(σ)
ex

)
σ∈S
∈ g by

v(σ)
ex

def
=

{
vdt,ex if σ ∈ Sdt,

v(σ) otherwise,

and define
vfne = v − vex.

From the definition of the norm, we have that for any v ∈ hfne and any i,
∥∥Ad

(
h̄i
)
v
∥∥ ≤ ‖v‖.

Also, since Vex is invariant under Ad(Z0), after adjusting the inner product defining ‖ · ‖, we may
also assume that for any v ∈ g we have ‖v‖ ≤ ‖vex‖+ ‖vfne‖.

8.4. Proof of Theorem 8.1. We first give an overview of the proof. We will assume (8.4) and
obtain a contradiction. Let X ′, N0 and X0 be as in §8.3. Define

κ : B → X0, κ(b)
def
= supp ν ′b (8.5)

(more precisely, the right hand side of (8.5) is a well-defined measurable map on a subset of B of
full measure, but we will ignore nullsets and continue to denote this subset by B). Let ∆ ⊂ X2

0

denote the diagonal. Since ν(H fnex) = 0 for every x and by (8.2), ν ′ is not a Dirac mass on X0, but
the random walk pushes it toward the Dirac mass ν ′b supported on κ(b). In particular, for a.e. b,
off-diagonal points in X2

0 get pushed toward ∆ by b1n.
We will show that on a certain neighborhood U of a compact subset of ∆, the action of the

random walk on X2
0 is essentially given by Ad⊕Ad on g2. This step is made somewhat complicated

by the fact that we have to take a quotient by the action of the compact group Z0. The reader may
wish to first consider the simpler case in which Z0 is trivial.
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Given this relation between the random walk on X2
0 , and the adjoint action, we recall from

§7 that vectors tend to grow under most elements of the random walk. Using this, we will show
that for many random walk paths of controlled length, points in U r∆ get pushed away from ∆,
which contradicts convergence to the diagonal. A complication in the argument is that the linear
coordinates on U need to make sense on a large enough set of words so that expansion can be
exploited. The prefix ergodic theorem will be useful for dealing with this issue.

We proceed to the details. In order to make the logic more transparent, we will break up the
argument into steps.

Step 1. Setting up constants, defining the neighborhood U , and formulating the goal.
Let T : B → B be the left-shift. By Proposition 3.6, and since B∗ is countable, for β-a.e. b ∈ B we
have

κ(Tb) = b−1
1 · κ(b), and κ(ab) = a1

n · κ(b) for any a ∈ B∗, where n = len(a). (8.6)
Let ε ∈

(
0, 1

6

)
. By Lusin’s theorem, we can find a compact set K1 ⊂ B such that κ|K1 is

continuous, satisfies properties (8.6), and such that β(K1) > 1 − ε. Let f = 1K1 . Given n ∈ N,
define the function fn : B → [0, 1] by

fn(b) =
∑

a∈(supp µ̄)n

f(ab)β
(
[a]
)
.

By Corollary 8.3, there exists n0 ∈ N such that the set

β
(
E(n0)

)
> 1− ε

2
, where E(n0) = {b ∈ B : ∀n ≥ n0, fn(b) > 1− 2ε} .

Hence there exists a compact set

K2 ⊂ E(n0) such that β(K2) > 1− ε.
We define

K3
def
= κ(K1),

a compact subset of X0. Recall that the injectivity radius at x ∈ X S
d+1 is the maximal r such that

the restriction of the map GS → X S
d+1, g 7→ gx to the open ball around the identity of radius r,

is injective. Given Σ ∈ X0, i.e., a collection of N0 orbits for the group Z0, we use the same letter
Σ to denote the subset of X S

d+1 comprised by these orbits, and denote by rΣ and dΣ respectively
the minimal injectivity radius of a point in Σ, and the minimum of the pairwise distances between
elements of Σ. Both of the numbers rΣ, dΣ depend continuously on Σ. Hence the numbers

r(K3)
def
= inf{rΣ : Σ ∈ K3} and d(K3)

def
= inf{dΣ : Σ ∈ K3} (8.7)

are both positive. Choose ι > 0 small enough so that

ι < min {r(K3), d(K3), 1} ,
and so that there is a neighborhood W of 0 in g such that

exp |W : W → B(Id, ι) ⊂ GS (8.8)

is well-defined and is a homeomorphism. Let CW > 1 be a bi-Lipschitz constant for exp |W , that is,

∀w1, w2 ∈W,
dist(exp(w1, w2))

CW
≤ ‖w1 − w2‖ ≤ CW dist(exp(w1, w2));

the fact that exp is locally bi-Lipschitz follows from the construction of the metric dist. By item (v)
of Lemma 8.4, by makingW smaller we can also assume that the map exp |W∩z0 is a homeomorphism
onto its image, which is open in Z0. By making W and ι even smaller we can find an open subset
W ′ ⊂W containing 0, and a constant CW ′ > 1, such that the two maps (W ′∩z0)×(W ′∩z⊥0 )→ GS ,

(z0, z
⊥
0 ) 7→ exp(z0) exp(z⊥0 ), and (z0, z

⊥
0 ) 7→ exp(z⊥0 ) exp(z0) (8.9)
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are both bi-Lipschitz homeomorphisms onto their image, and this image contains B(Id, ι) and is
contained in exp(z0 ∩W ) exp(z⊥0 ∩W ′) ∩ exp(z⊥0 ∩W ) exp(z0 ∩W ′). Finally, by making W even
smaller, and using the fact that the Z0-action on X S

d+1 is free, we can assume that if x1 ∈ exp(W )K3

and x2 = z0x1 for z0 ∈ Z0, then
1

CW
distX S

d+1
(x1, x2) ≤ distGS (Id, z0) ≤ CW distX S

d+1
(x1, x2).

Let
δ

def
=

ε

N0 |S|
, (8.10)

and let m0 ∈ N and C > 1 be constants (depending on δ) for which the conclusions of Proposition
7.1 and Lemma 7.2 hold.

For σ ∈ S we let λσ
def
= | log |%|σ|, and set λmax

def
= max {λσ : σ ∈ S} . We choose L1 satisfying

L1 >
C CW |S|

ι
. (8.11)

Now we choose L2 large enough so that for all σ ∈ S,

(m0 + n0) log(L2)− 1

λσ
log(CW L1)− 1 ≥ m0 + n0, (8.12)

and so that if we define
r

def
= ι · L−(m0+n0)λmax

2 , (8.13)
then

r <
1

C2CW eλmax L1
. (8.14)

We define
∆(K3)

def
= {(Σ,Σ): Σ ∈ K3}.

Finally we define U to be the r-neighborhood of ∆(K3). Using uniform continuity of κ|K1 , let
n1 ∈ N be such that for all sequences b, b′ ∈ K1 which agree on a prefix of length at least n1, we
have

(
κ(b), κ(b′)

)
∈ U .

Our goal is to find finite words ã, a ∈ B∗ and b, b̄ ∈ B, such that the following hold:
(I) ãab ∈ K1 and ãab̄ ∈ K1.
(II) len(a) ≥ n1.
(III) The pair (κ(ãab), κ(ãab̄)) is outside U .
To see that this gives a contradiction, note that items (I) and (II) and the definition of n1 imply
that (κ(ãab), κ(ãab̄)) ∈ U . This contradicts item (III).

Step 2. Linearizing the action of the random walk near the diagonal. By definition
of ι, we have that for any pair Σ = (Σ1,Σ2) for which there is Σ ∈ K3 with dist(Σi,Σ) < ι/2
for i = 1, 2, for any x1 ∈ Σ1 there is exactly one element x2 ∈ Σ2 such that dist(x1, x2) < r. In
particular this holds for Σ ∈ U . We denote this element x2 by ϕΣ(x1), so that ϕΣ : Σ1 → Σ2 is a
bijection. It is easy to see that the map ϕΣ depends continuously on Σ.

We would like to estimate the displacement dist(x′, ϕΣ(x′)) in terms of the adjoint action on g.
To this end, note that if x′ ∈ Σ1 then we can write x′ = Z0x for some x ∈ X S

d+1, and by the
choice of W , there is a unique ṽ = ṽ(x) ∈ z⊥0 ∩W such that ϕΣ(x′) = Z0 exp(ṽ)x. As suggested
by the notation, this choice of ṽ depends on the choice of x ∈ π−1

X′ (x
′). However, we have that if

x′ = Z0x1 = Z0x2 then ‖ṽ(x1)‖ = ‖ṽ(x2)‖; indeed, if x2 = z0x1 for some z0 ∈ Z0 then by the
fact that z⊥0 is Ad(Z0)-invariant we see that ṽ(x2) = Ad(z0)ṽ(x1), and ‖ṽ(x1)‖ = ‖ṽ(x2)‖ since the
norm is Ad(Z0)-invariant. Using the section τ : X ′ →X S

d+1, we define

vΣ : Σ1 → z⊥0 , vΣ(x′)
def
= ṽ(τ(x′)), (8.15)
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and we have that ‖vΣ(x′)‖ does not depend on the choice of the section.
Note further that

∀Σ ∈ U , ∀x′ ∈ Σ1, ‖vΣ(x′)‖ ≤ CW r. (8.16)

Using the fact that z⊥0 is invariant under the adjoint action of the random walk, the reader can now
verify the following statement:

Suppose n ∈ N, h̄ = h̄i1 ◦ · · · ◦ h̄in and Σ = (Σ1,Σ2) ∈ U satisfy that h̄(Σ1) ∈ K3 and

‖Ad(h̄)vΣ(x′)‖ < ι

CW
for all x′ ∈ Σ1. (8.17)

Then
dist

(
h̄(Σ1), h̄(Σ2)

)
CW

≤ max
x′∈Σ1

‖Ad(h̄)vΣ(x′)‖ ≤ CW dist
(
h̄(Σ1), h̄(Σ2)

)
. (8.18)

Step 3. Choosing a, b, b̄. By (8.2) we have that Z0 ⊂ H fne and thus the partition of X into
H fne-orbits induces a well-defined partition of X ′, which we will continue to refer to as H fne-orbits
and denote byH fnex′ (althoughH fne might not act onX ′). Our assumption is that theseH fne-orbits
are of zero measure with respect to ν ′. On the other hand, the supports κ(b) of the limit measures
ν ′b are finite sets of Z0-orbits, and again by (8.2), if κ(b) intersects an H fne-orbit, the measure ν ′b
assigns this orbit positive measure. This implies via Proposition 3.6 that for any fixed b ∈ B, for
any x′ ∈ κ(b) and for β-a.e. b̄ we have

κ(b̄) ∩H fnex′ = ∅. (8.19)

Hence we can find b, b̄ ∈ B such that for all x′ ∈ κ(b), we have (8.19), and the points b, b̄ are generic
for 1K1∩K2 in the sense of the prefix ergodic theorem. The latter condition means that for both
c = b and c = b̄, we have

lim
n→∞

∑
a∈(supp µ̄)n

1K1∩K2(ac)β([a]) = β(K1 ∩K2). (8.20)

By (8.20), since K1 and K2 both have measure at least 1− ε, there is k ≥ n1 such that∑
a∈(supp µ̄)k

1K1∩K2(ac)β([a]) > 1− 3ε (c = b, b̄). (8.21)

Since 1− 3ε > 1/2, we can find a ∈ (supp µ̄)k such that

ab, ab̄ ∈ K1 ∩K2. (8.22)

By (8.3) and (8.19) we still have

for all x′ ∈ κ(ab), κ(ab̄) ∩H fnex′ = ∅. (8.23)

The choice of k ensures that the word a satisfies (II).

Step 4. Choosing the word ã. We now choose ã. Let

Σ = (Σ1,Σ2) where Σ1
def
= κ(ab), Σ2

def
= κ(ab̄). (8.24)

By (8.22) and the definition of n1, we have that Σ ∈ U . It follows from (8.2) and (8.23) that for
any x′ ∈ Σ1, vΣ(x′) 6∈ hfne. In the notation introduced in §8.3 above, this means that vΣ(x′)ex 6= 0.
Given σ ∈ S, and x′ ∈ Σ1, let

ασ(x′)
def
=
∥∥vΣ(x′)ex

∥∥
σ

and Sgood(x′)
def
= {σ ∈ S : ασ(x′) > 0}. (8.25)

Now set

n(x′)
def
= min

σ∈Sgood(x′)

⌊
1

λσ

(
log

(
1

ασ(x′)

)
− log(L1)

)⌋
.
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This choice implies that for all σ ∈ Sgood(x′), we have

eλσn(x′)ασ(x′) ≤ 1

L1
, (8.26)

and there is σ ∈ Sgood(x′) (the one for which the minimum is attained) satisfying

1

λσ
log

(
1

ασ(x′)

)
≤ n(x′) + 1 +

1

λσ
log(L1) and eλσn(x′)ασ(x′) ≥ 1

eλσL1
. (8.27)

Our choices ensure
n(x′) ≥ m0 + n0. (8.28)

Indeed, since Σ ∈ U , for all σ we have

1

λσ

(
log

(
1

ασ(x′)

)
+ log(CW )

)
(8.16)&(8.25)
≥ − 1

λσ
log r

(8.13)
≥ (m0 + n0) logL2.

Now (8.28) follows by (8.12) and (8.27).
Let

n
def
= min

x′∈Σ1

n(x′). (8.29)

With this choice of n, let

Pn
def
= {ã ∈ (supp µ̄)n : for c = b, b̄, ãac ∈ K1}, Pn

def
=

⋃
ã∈Pn

[ã].

Since ab, ab̄ ∈ K2 by (8.22), and n ≥ n0 by (8.28) and (8.29), the definition of n0 ensures

β(Pn) ≥ 1− 2ε. (8.30)

Next define

Ξn(x′)
def
=
{

(ã1, . . . , ãn) ∈ (supp µ̄)n : ∀σ ∈ Sgood(x′), ‖ã1
n‖σ‖vΣ(x′)ex‖σ ≤ C‖ã1

n · vΣ(x′)ex‖σ
}
.

Note that the Bernoulli measure has a symmetry property β([an1 ]) = β([a1
n]). Thus using Lemma 7.2,

and since n ≥ m0, we have

β(Ξn(x′)) ≥ 1− δ for each x′ ∈ Σ1.

The choice (8.10) now implies that β
(⋂

x′∈Σ1
Ξn(x′))

)
> 1− ε. Combining with (8.30) we have

β

Pn ∩ ⋂
x′∈Σ1

Ξn(x′)

 ≥ 1− 3ε > 0.

In particular, the above intersection is non-empty. Fix a word ã in this intersection. The definition
of Pn now ensures that property (I) holds.

Step 5. Verifying property (III). We need to show that for Σ = (Σ1,Σ2) as in (8.24) we have
dist

(
ã1
nΣ1, ã

1
nΣ2

)
≥ r. For this it suffices to check condition (8.17), and show that for some x′ ∈ Σ1,∥∥Ad

(
ã1
n

)
vΣ(x′)

∥∥ ≥ CW r. (8.31)

For (8.17), we note that for any x′ ∈ Σ1, the non-expanding coordinates of vΣ(x′) are of small norm
since Σ ∈ U . For σ ∈ Sgood(x′) we have∥∥Ad(h̄)

∥∥
op
ασ(x′)

(7.2)
≤ C eλσnασ(x′)

(8.26)&(8.29)
≤ C

L1

(8.11)
≤ ι

CW
.
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Let x′ ∈ Σ1 be the element for which the minimum in (8.29) is attained, and let σ ∈ Sgood(x′)
be the place for which (8.27) holds. Since ã ∈ Ξn(x′), we get that

∥∥Ad(ã1
n)vΣ(x′)

∥∥ ≥ ∥∥Ad(ã1
n)vΣ(x′)σ

∥∥ ≥ 1

C
‖Ad(ãn1 )‖σ ‖vΣ(x1)σ‖σ

(7.2)
≥ 1

C2
eλσnασ(x′)

(8.27)
≥ 1

eλmaxC2L1

(8.14)
≥ CW r.

This proves (8.31) and completes the proof. �

8.5. Proof of the prefix ergodic theorem. In this subsection we prove Theorem 8.2. For a
bounded function f on B and a A ⊂ B, we define the variation of f on A by

Var(f,A)
def
= sup

x∈A
f(x)− inf

x∈A
f(x).

Clearly for any measurable function f , any set A with β(A) > 0, and any x0 ∈ A, we have∣∣∣∣f(x0)− 1

β(A)

∫
A
fdβ

∣∣∣∣ ≤ Var(f,A).

Equip B with its standard ultra-metric, and suppose first that f is continuous. Then, since B is
compact, f is uniformly continuous. Using the condition that the minimal length of a word a ∈ Pn
goes to infinity, which implies that the diameter of the corresponding cylinder set [a] goes to zero,
we see that there is n0 so that for all n > n0 and a ∈ Pn,

Var(f, [a]) < ε.

Since the sets {[a] : a ∈ Pn} are a partition of B, we have for all n > n0 and any b that∣∣∣∣∣∑
a∈Pn

β([a])f(ab)−
∫
fdβ

∣∣∣∣∣ =

∣∣∣∣∣∑
a∈Pn

β([a])f(ab)−
∑
a∈Pn

∫
[a]
fdβ

∣∣∣∣∣
≤
∑
a∈Pn

β([a])

∣∣∣∣∣f(ab)− 1

β([a])

∫
[a]
fdβ

∣∣∣∣∣ < ∑
a∈Pn

β([a]) ε = ε.

The general case, in which f ∈ L∞(B, β), will now be proved by an approximation argument.
By replacing f with a bounded function agreeing with it almost everywhere, subtracting a constant
and rescaling, we may assume that∫

B
fdβ = 0 and ‖f‖∞ = 1.

Let ε > 0 and, using Lusin’s theorem, let K = Kε be a compact set such that f |K is continuous
and β(K) > 1− ε. Let n0 so that for all n > n0 and all a ∈ Pn we have

Var(f, [a] ∩K) < ε.
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For fixed n > n0, and an element a ∈ Pn, the corresponding cylinder set [a] is called a continuity
atom or CA if β([a]∩K)

β([a]) ≥ 1− ε1/2. If a is a continuity atom then for any x0 ∈ [a] ∩K,∣∣∣∣∣ 1

β([a])

∫
[a]
f dβ − f(x0)

∣∣∣∣∣ ≤ 1

β([a])

∣∣∣∣∣
∫

[a]
f dβ −

∫
[a]∩K

f dβ

∣∣∣∣∣
+

∣∣∣∣∣ 1

β([a])

∫
[a]∩K

f dβ − 1

β([a] ∩K)

∫
[a]∩K

f dβ

∣∣∣∣∣+

∣∣∣∣∣ 1

β([a] ∩K)

∫
[a]∩K

f dβ − f(x0)

∣∣∣∣∣
≤ 1

β([a])

∫
[a]rK

|f |dβ +
β([a]rK)

β([a]) · β([a] ∩K)

∫
[a]∩K

|f | dβ + Var(f, [a] ∩K)

≤β([a]rK)

β([a])
+
β([a]rK)

β([a])
+ ε < 2ε1/2 + ε < 3ε1/2.

(8.32)

We claim that
β
(⋃

continuity atoms
)
≥ 1− ε1/2. (8.33)

Indeed, otherwise, denoting Kc = B rK, we have

β(Kc) ≥ β

 ⋃
[a] not a CA

Kc ∩ [a]

 ≥ ∑
a not a CA

β([a])ε1/2 ≥ ε1/2 ε1/2 = ε,

and we get a contradiction to β(Kc) < ε.
We now define

Bad =
{
b ∈ B : β

(⋃
{[a] : ab /∈ K}

)
> ε1/2

}
,

and claim that
β(Bad) ≤ ε1/2. (8.34)

Indeed, denote by 1 = 1Kc the indicator of Kc. Recall that for any prefix [a], the measure β|[a] is
the same as the pushforward of β by the map b 7→ ab, multiplied by the scalar β([a]); this is easily
verified for cylinder sets contained in [a] and thus is true for all measurable subsets of [a]. Thus, if
(8.34) is not true then

β (Kc) =
∑
a∈Pn

∫
[a]

1 dβ =
∑
a∈Pn

β([a])

∫
B

1(ab) dβ(b)

=

∫
B

∑
a∈Pn

β([a])1(ab) dβ(b) ≥
∫

Bad

∑
a∈Pn

β([a])1(ab) dβ(b)

=

∫
Bad

β
(⋃
{[a] : ab /∈ K}

)
dβ(b) ≥ β (Bad) ε1/2 > ε1/2 · ε1/2 = ε,

giving a contradiction to β(Kc) < ε.
Now for b /∈ Bad we have∣∣∣∣∣∑

a∈Pn

f(ab)β([a])−
∫
B
f dβ

∣∣∣∣∣ =

∣∣∣∣∣∑
a∈Pn

f(ab)β([a])−
∑
a∈Pn

∫
[a]
f dβ

∣∣∣∣∣
≤

∑
[a] is a CA
ab∈K

β([a])

∣∣∣∣∣f(ab)− 1

β([a])

∫
[a]
f dβ

∣∣∣∣∣+
∑

[a] not a CA
or ab/∈K

(
β([a]) |f(ab)|+

∫
[a]
|f | dβ

)

≤3ε1/2 + 2β
(⋃
{[a] : [a] is not a CA}

)
+ β

(⋃
{[a] : ab /∈ K}

)
< 7ε1/2,

(8.35)
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where in the last line we used (8.32), the definition of Bad, and (8.33). Since ε was arbitrary,
combining (8.34) and (8.35) we get the desired conclusion.

9. Preparations for Exponential Drift: Non-alignment of Limit Measures

The goal of this section is to establish the following result regarding non-alignment of the limit
measures νb along orbits of the group W st. This will serve as crucial input for the exponential drift
argument as described in § 2. We retain the notation introduced in §8.

Theorem 9.1. Let Φ, h̄i,p, µ̄ and ν be as in Theorem 6.1. Suppose that

ν
({
x ∈X S

d+1 : Stab(x) ∩W st 6= {Id}
})

= 0.

Then, for βX-almost every pair (b, x) ∈ BX , we have

νb(W
stx) = 0.

The proof of Theorem 9.1 occupies the rest of this section. The notations and conditions of
Theorem 6.1 will be assumed throughout this section.

A key ingredient in the proof of Theorem 9.1 is Theorem 8.1. The following Lemma shows that
the hypotheses of Theorem 9.1 imply the hypotheses of Theorem 8.1.

Lemma 9.2. Let ν be a µ̄-stationary measure such that ν(H fnex) > 0 for some x. Then Stab(x)∩
W st 6= {Id}.

Proof. We first claim that we can find two distinct words g1, g2 in the semigroup generated by{
h̄−1
i : i = 1, . . . , k

}
, of the same length, such that the orbits H fneg1x,H

fneg2x are the same. To see
this, note that in order to show that two orbits are the same, it is enough to show that these orbits
intersect nontrivially. Moreover, it follows from (6.4) and (8.1) that the elements h̄i normalize H fne,
and hence the same is true for the group generated by the h̄i. Hence for every word g in the h̄−1

i we
have gH fnex = H fnegx. Let µ⊗` denote the `-th convolution power of µ̄; this measure is supported
on finitely many products of ` elements in supp(µ̄). Suppose by contradiction that for all `, the
collection

{
g−1H fnex : g ∈ supp

(
µ̄⊗`
)}

is disjoint. Consider the collection of numbers{
ν
(
g−1H fnex

)
: g ∈ supp

(
µ̄⊗`
)}

=
{
g∗ν

(
H fnex

)
: g ∈ supp

(
µ̄⊗`
)}
⊂ [0, 1].

The number of elements in this multi-set is k`. Since ν is stationary, the fixed number ν(H fnex) is
an average of the numbers in this set. This implies that for large enough `, there are more than
2(ν(H fnex))−1 numbers in this set, each larger than ν(H fnex)/2. This contradicts the fact that ν is
a probability measure, and proves the claim.

The claim implies that there is h1 ∈ H fne such that h1g1x = g2x. Hence, h def
= g−1

1 h−1
1 g1 ∈ H fne

satisfies that hg−1
1 g2 ∈ Stab(x). We write g(ue) for the projection of g ∈ GS to Gue. Since g1 and g2

are of the same length, it follows from (6.4) that

g−1
1 g2 = (g−1

1 g2)(ue) ∈ Uue,

and this implies via (1.10) that g−1
1 g2 ∈ W st. Since we also have H fne ⊂ W st, we have found that

hg−1
1 g2 belongs to W st. By (8.1) we have that h(ue) = Id. Since (g−1

1 g2)(ue) = g−1
1 g2 6= Id, we see

that hg−1
1 g2 6= Id. �

In the notation of §8.3, let u−dt be the subspace of vectors in gdt which are contracted by the
action of Ad

(
h̄−1
i

)
for each i, let uue = Lie(USue), and set

wbc def
= uue ⊕ u−dt.
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It is easily checked that, with the notation (7.1), we have

wbc =
{
x ∈ g : ∀b ∈ B, lim

n→∞

(
h̄1
n

)−1
x = 0

}
,

and
Lie(W st) = hfne ⊕wbc. (9.1)

We define
W bc def

=
{
g ∈ GS : ∀b ∈ B, lim

n→∞

(
h̄1
n

)−1
g
(
h̄1
n

)
= Id

}
.

The superscript ‘bc’ stands for ‘backward contracting’. Clearly Lie(W bc) = wbc and W bc is nor-
malized by the random walk. Let H fneW bc denote the set of pairwise products {hw : h ∈ H fne, w ∈
W bc}. Clearly H fneW bc ⊂W st, and it follows from (9.1) that H fneW bc contains an open neighbor-
hood of Id in W st. We have the following:

Lemma 9.3. There is a finite set F ⊂ GS such that W st =
⋃
f∈F H

fneW bcf. In particular, if
νb(H

fneW bcx) = 0 for βX-a.e. pair (b, x), then νb(W stx) = 0 for βX-a.e. pair (b, x).

Proof. In order to prove the first assertion we note that with respect to the partition (6.2), we have
from (1.10) and (8.1) that

W st = USue ×GSdt
×GStr , H fne = {0} × PSdt

×GStr .

Also W bc contains the connected groups USue and U−Sdt
with Lie algebras uue and u−dt. Thus it

suffices to prove the statement for GSdt
,PSdt

,U−Sdt
in place ofW st, H fne,W bc. Note that the quotient

PSdt
\GSdt

is compact, and sinceW bcH fne contains a neighborhood of the identity, USdt
projects onto

a subset of PSdt
\GSdt

with nonempty interior. Thus the cover {PSdt
U−Sdt

g : g ∈ GSdt
} has a finite

sub-cover, and this proves the first assertion. The second assertion follows from the first one, by
covering an orbit W stx of positive measure for νb, by the finitely many sets H fneW bcfx, f ∈ F . �

Lemma 9.4. Suppose that

ν
({
x ∈X S

d+1 : Stab(x) ∩W st 6= {Id}
})

= 0. (9.2)

Then
νb(H

fneW bcxrH fnex) = 0

for almost every pair (b, x) ∈ BX .

Proof. Let Z
def
= B ×X ×X and define R : Z→ Z by

R(b, x, x′)
def
=
(
Tb, b−1

1 x, b−1
1 x′

)
, where b ∈ B, b = (b1, b2, . . .),

and T : B → B is the shift. We define a probability measure β̃ on Z by

β̃ =

∫
B
δb ⊗ νb ⊗ νb dβ(b). (9.3)

It follows from the equivariance property νhib = hi∗νb in Proposition 3.6 that νTb = (b−1
1 )∗νb, and

this implies that β̃ is R-invariant. Suppose by contradiction that E ⊂ BX is a measurable set such
that βX(E) > 0 and

∀(b, x) ∈ E νb(H
fneW bcxrH fnex) > 0.

Let
Z = {(b, x, x′) ∈ Z : x′ ∈ H fneW bcxrH fnex}.

Note that Z is R-invariant. Indeed, suppose that z = (b, x, x′) ∈ Z and write x′ = pux where
p ∈ H fne and u ∈W bc r {Id}. Then

R(z) =
(
Tb, b−1

1 x, b̄1b
−1
1 x

)
, where b̄1 = b−1

1 (pu)b1.
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Since the conjugation map g 7→ b−1
1 gb1 is a group automorphism, and the groups H fne, W bc are

both invariant under conjugation by elements of the random walk, we have that b̄1 ∈ H fneW bc and
its W bc-component b−1

1 ub1 is nontrivial.
We claim that β̃(Z) > 0. Indeed, if β̃(Z) = 0 then by (9.3) and Fubini’s theorem we have that

for β-a.e. b ∈ B and for νb-a.e. x ∈ X we have that

νb(H
fneW bcxrH fnex) = νb

(
{x′ ∈ X : x′ ∈ H fneW bcxrH fnex}

)
= 0;

but recalling (3.13), we see that this contradicts the assumption that βX(E) > 0.
We now remove from Z the set of (b, x, x′) for which Stab(x)∩W st 6= {Id}.We continue to denote

the resulting set by Z and note that by assumption (9.2), it still satisfies β̃(Z) > 0. Following this
modification, if z = (b, x, x′) ∈ Z, then there are unique p ∈ H fne and w ∈ W bc r {Id} such that
x′ = pwx; indeed, if p̃ ∈ H fne and w̃ ∈W bc also satisfy x′ = p̃w̃x, then w−1p−1p̃w̃ ∈ Stab(x)∩W st.
Using this uniqueness, and denoting p = p(z), w = w(z) the elements in H fne for which x′ = pwx,
we obtain an almost surely well-defined map

Θ: Z → [0,∞), Θ(b, x, x′)
def
= distX S

d+1

(
x, p(z)−1x′

)
(where z = (b, x, x′) ∈ Z). (9.4)

Here distX S
d+1

is the metric introduced in §8.3. Then Θ is positive on Z.
Given b ∈ B and n ∈ N, and writing b1n as in (7.1), we have

Rnz =
(
Tnb, (b1n)−1x, (b1n)−1x′

)
=
(
Tnb, (b1n)−1x, pz,nwz,n(b1n)−1x

)
,

where
pz,n = (b1n)−1p(z)b1n, wz,n = (b1n)−1w(z)b1n.

In particular, by the construction of the metrics distX S
d+1
, distGS , there is C > 0 such that for all

large enough n,

Θ(Rnz) = distX S
d+1

(
(b1n)−1x,wz,n(b1n)−1x

)
≤ C distGS (Id, wz,n) .

In particular Θ(Rnz) → 0, on a set Z of positive measure. This gives a contradiction to Poincaré
recurrence, and completes the proof. �

Lemma 9.5. Suppose that for βX-a.e. (b, x) ∈ BX we have νb(Zx) = 0 (where Z is the centralizer
of the random walk as in §8). Then for βX-a.e. (b, x) ∈ BX we have νb(H fnex) = 0.

Proof. Recall from (8.1) and Proposition 3.8 that H fne = ZUdt. Let

E
def
=
{

(b, x) : νb(H
fnex) > 0

}
and F

def
=
{

(b, x) ∈ BX : νb(Zx) > 0
}
.

We assume βX(F ) = 0 and suppose for sake of contradiction that βX(E) > 0. Since µ̄ is finitely
supported, we can assume without loss of generality that for all (b, x) ∈ E, for all k ∈ N, and for
all a ∈ supp(µ̄)k we have νab = a∗νb. Using Lusin’s theorem, let K ⊂ E \ F be a compact set with
βX(K) > 0 and such that the map (b, x) 7→ νb is continuous on K.

Let TX : BX → BX be as in (3.13). By Proposition 3.6, βX is T -invariant and ergodic. Let
L : L1(BX , βX)→ L1(BX , βX) be the adjoint operator of TX ; that is, for all f ∈ L1(BX , βX) and
for all ϕ ∈ L∞(BX , βX) we have∫

BX
f · (ϕ ◦ TX) dβX =

∫
BX

Lf · ϕdβX .

From the definition and by a straightforward induction, one finds that βX -almost surely

Lnf(b, x) =
∑

a∈B∗, len(a)=n

f(ab, a1
n · x)β([a]).
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We recall that by the Chacon-Ornstein ergodic theorem [CO60] the averages

A∗Nf(b, x) =
1

N

N−1∑
n=0

Lnf(b, x)

converge pointwise βX -almost surely. We choose large compact subsets C and M of Udt and Z
respectively, and ε > 0, such that the set

Q′
def
= {(b, x) ∈ K : νb(MCx) > ε}

has positive measure. We let Q ⊂ Q′ be compact and of positive measure. By the Chacon-
Ornstein ergodic theorem and ergodicity of TX , we know that A∗N1Q(b, x) → βX(Q) > 0 for
βX -a.e. (b, x) ∈ BX . Thus, there are (b, x) ∈ Q, a sequence nj → ∞, and a sequence of words
a(j) ∈ B∗ of length nj , such that

∀j, (bj , xj)
def
=
(
a(j)b, a(j) · x

)
∈ Q.

Here we view a(j) as both an element of B∗, and as an element of GS obtained by the product
(a(j))1

j . Passing to a subsequence, we assume that (bj , xj)
j→∞−→ (b′, x′) ∈ Q. We claim that

νb′(Mx′) > 0. (9.5)

This will give us the desired contradiction, since M ⊂ Z and (b′, x′) ∈ K ⊂ E r F .
To see (9.5), let O ⊂ G be a compact neighborhood of the identity in GS . Using Urysohn’s

lemma and outer regularity of νb′ , we have that

νb′(MOx′) = inf{νb′(ϕ) : ϕ ∈ Cc(X) and ϕ|MOx′ = 1}.
If follows from the definitions of the group U , the places Sdt, and the elements h̄i (see (1.2), (6.1)
and (6.4)) that the conjugation of elements of Udt by elements of the µ̄ random walk is uniformly
contracting, in the following sense. For any compact subset C1 ⊂ Udt and any open neighborhood
O1 of the identity in Udt, there is k0 such that for all k ≥ k0, for any a ∈ B∗ of length k, we have

a1
kC1(a1

k)
−1 ⊂ O1.

In particular, taking C1 = C and O1 so that O1 such that the closure of O1 is contained in the
interior of O, we have that

a(j)Cx = a(j)Ca(j)−1xj ⊂ Ox′

for all sufficiently large j. Therefore, for ϕ ∈ Cc(X) satisfying ϕ|MOx′ = 1, we have∫
ϕdνb′ ≥ lim sup

j→∞
νa(j)b(MOx′) ≥ lim sup

j→∞
νa(j)b(Ma(j)Cx) = νb(MCx) > ε,

and therefore νb′(MOx′) ≥ ε. Now Mx′ is the intersection of all sets of the form MOx′, where O
is a neighborhood of the identity in GS . This yields νb′(Mx′) ≥ ε and proves (9.5). �

Proof of Theorem 9.1. Using Lemma 9.2 we see that under our hypotheses, we can apply Theo-
rem 8.1. This yields

for βX -a.e. (b, x), νb(Zx) = 0.

Hence, by Lemma 9.5,
for βX -a.e. (b, x), νb(H

fnex) = 0.

Combining this with Lemma 9.4, it follows that

for βX -a.e. (b, x), νb(H
fneW bcx) = 0.

Applying Lemma 9.3 we get that

for βX -a.e. (b, x), νb(W
stx) = 0.



MEASURE RIGIDITY AND EQUIDISTRIBUTION FOR FRACTAL CARPETS 37

�

10. Additional Invariance: The Exponential Drift

The goal of this section is to prove that, under the assumptions of Theorem 9.1, almost every limit
measure decomposes as a convex combination of measures invariant under one-parameter subgroups
of Uue. To this end, we will employ the exponential drift argument introduced by Benoist and Quint
in [BQ11]. Running the argument will require the preliminary work done in §7–§9. The following
result is the main result of this section.

Theorem 10.1. Suppose that ν is a stationary measure satisfying the hypotheses of Theorem 9.1.
Then for β-a.e. b ∈ B and for νb-a.e. x ∈ X S

d+1, there exists a non-trivial subgroup W(b,x) ⊂ Uue

generated by one-parameter subgroups and a W(b,x)-invariant probability measure ν(b,x) on X S
d+1

such that
νb =

∫
X
ν(b,x) dνb(x).

Moreover, for βX-almost every (b, x) ∈ BX we haveW(b,x) = b1WTX(b,x)b
−1
1 and ν(b,x) = b1∗νTX(b,x).

For the rest of this section we retain the notations and assumptions of Theorem 10.1. The proof
relies on an analysis of leafwise measures, for which we follow [BQ11, §4]. For more information on
leafwise measures, we refer the reader to [EL10]. We now recall the necessary notations and results.

Denote byM(uue) the convex cone of positive non-null Radon measures on uue. Also letM1(uue)
be the set of rays inM(uue), i.e., the quotient space for the equivalence relation of proportionality,
defined by

σ1 ∝ σ2 ⇐⇒ ∃c > 0 such that σ2 = cσ1.

The choice of σ to denote leafwise measures is consistent with [BQ11], although we also use σ to
denote elements of S; even punctilious readers should have no difficulty disambiguating these two
uses. Let

σ : BX →M1(uue), (b, x) 7→ σ(b,x)

be a family of leafwise measures for βX with respect to the action of uue given by

Ψ: BX × uue → BX , Ψ
(
(b, x), u

) def
=
(
b, exp(u)x

)
. (10.1)

For u ∈ uue we will use the notation

Ψu : BX → BX , Ψu(z)
def
= Ψ(z, u). (10.2)

Since the Lie algebra uue is abelian, exp : uue → Uue is a group isomorphism and the expression on
the right-hand side of (10.1) coincides with the action of Uue on X S

d+1. It will be more convenient
(and also consistent with the notation of [BQ11]) to stick with exponential notation and use uue

instead of Uue.
Note that σ(b,x) denotes an equivalence class of measures. In order to choose a concrete represen-

tative, we let (Kn)n∈N be a sequence of compact sets which form an exhaustion of uue, and we denote
by σ(b,x) the element in the proportionality class σ(b,x) satisfying σ(b,x)(Kn0) = 1, where n0 is the
minimal n for which σ(b,x)(Kn) > 0. Similarly, given σ ∈ M(uue), we will denote by σ ∈ M1(uue)

its equivalence class. We will fix a conull subset E ⊂ BX on which σ is well-defined up to propor-
tionality and satisfies all the characterizing properties of leafwise measures; cf. [BQ11, Prop. 4.2].

Recall that % ∈ Q denote the contraction ratio of the maps in the IFS Φ, and for any u ∈ uue

and any h̄i ∈ supp µ̄ we have Adh̄i(u) = %u. Therefore

∀u ∈ uue, Ψ%−1u ◦ TX = TX ◦Ψu. (10.3)

Given a ∈ Q×S , denote
ηa : uue → uue, ηa(u)

def
= au.
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Let BX denote the Borel σ-algebra on BX and let

QX∞ =
⋂
n∈N

(
TX
)−n BX . (10.4)

The following is an immediate consequence of the uniqueness of leafwise measures and (10.3).

Corollary 10.2 (cf. [BQ11, Cor. 6.12 and Cor. 6.13]). There exists a conull subset E ⊂ BX such
that

∀(b, x) ∈ E, ∀n ∈ N, (TX)n(b, x) ∈ E =⇒ σ(b,x) ∝ (η%n)∗σ(TX)n(b,x). (10.5)

Moreover, the map σ is QX∞-measurable.

Note that the right hand side of formula (10.1) involves the action of the group Uue on X S
d+1,

and in contrast with [BQ11], the acting group does not depend on b. Therefore for βX -a.e. (b, x),
σ̄(b, x) is the leafwise measure of νb with respect to the Uue-action on X S

d+1.
We also introduce notation for the translation map

τ : uue × uue → uue, τu(v)
def
= v + u.

We recall from [BQ11, Prop. 4.2] that (after removing a nullset), for all z ∈ E and all u ∈ uue such
that Ψu(z) ∈ E, we have that

σz ∝ τu∗σΨu(z). (10.6)
Given Theorem 8.1, the main step towards a proof of Theorem 10.1 is to show that there exist

many generic pairs (b, x) for which the leafwise measure agrees up to proportionality with the
translate by arbitrarily small non-trivial elements of uue. The first step in the argument is the proof
that there exist many nearby pairs of points whose displacement is not contained in

wst
def
= Lie(W st) = uue ⊕ gdt ⊕ gtr. (10.7)

Lemma 10.3. For every measurable set L ⊂ BX there exists a conull subset L′ ⊂ L and, for every
element (b, x) ∈ L′, a sequence (vm)m∈N of elements of grwst such that vm → 0 as m→∞ and

∀m ∈ N,
(
b, exp(vm)x

)
∈ L.

Proof. Assume without loss of generality that βX(L) > 0 and, using inner regularity, that L is
compact. Denote by F ′ the projection of L to B and for any b ∈ F ′ let Lb denote the fiber
{x ∈X S

d+1 : (b, x) ∈ L}, so that

βX(L) =

∫
F ′
νb(Lb) dβ(b).

Let F ⊂ F ′ consist of those b ∈ F ′ satisfying νb(Lb) > 0. The intersection L̃ ⊂ BX of the preimage
of F with L is a conull subset of L. Let b ∈ F , then for νb-a.e. x ∈ Lb and for every neighborhood
V of 0 in g for which the exponential map is well-defined,

νb
(
Lb ∩ exp(V )x

)
> 0. (10.8)

From Theorem 9.1 we know that for all b ∈ F we have

for νb-a.e. x, νb
(
Lb rW stx

)
> 0. (10.9)

Then the claim holds if we take L′ to be the subset of L̃ consisting of (b, x) for which (10.9) holds,
and (10.8) holds for a countable basis of identity neighborhoods V . �

We set up some more notation. We write (supp µ̄)n for the words in B∗ of length n. Given
(b, x) ∈ BX , define a map

hn,(b,x) : (supp µ̄)n → BX , hn,(b,x)(a)
def
=
(
aTnb, an · · · a1b

−1
n · · · b−1

1 x
)

;
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i.e., for any a ∈ (supp µ̄)n, and z ∈ BX , z′ = hn,z(a) has the same future (under TX) as z and, in
fact, (TX)n(z) = (TX)n(z′). The image of hn,z is the set of all points whose futures agree with that
of z after time n. Put differently,

im
(
hn,z

)
=
(
TX
)−n {

(TX)n(z)
}
.

As in [BQ11, Prop. 2.3], using the decreasing martingale theorem, we have that for all ϕ ∈
L∞(BX , βX),

for βX -a.e. z, E
(
ϕ|QX∞

)
(z) = lim

n→∞

∑
a∈(supp µ̄)n

β([a])ϕ ◦ hn,z(a). (10.10)

Indeed, the image of hn,z is the atom of z in (TX)−nBX and thus one only has to check that the
right hand side defines a conditional measure for βX with respect to the sub-σ-algebra

(
TX
)−n BX .

Lemma 10.4. Let E be as in Corollary 10.2. There exists a conull subset F ⊂ E such that for
z ∈ F , for all n ∈ N, and for all a ∈ (supp µ̄)n we have

hn,z(a) ∈ E =⇒ σz ∝ σz′ , where z′ = hn,z(a).

Proof. Formula (10.5) means that as long as z = (b, x) ∈ E, the measure σz can be recovered from
σ(TX)nz for every n, by composition with the contraction map η%n . Thus the conclusion of the
Lemma follows from the fact (TX)n(z′) = (TX)n(z). �

Given n ∈ N and c ∈ B∗∪B such that len(c) ≥ n, following [BQ11], we use the letter R to denote
the adjoint representation, so that

R
(
c1
n

) def
= Adc1 ◦ · · · ◦Adcn , R (cn1 )

def
= Adcn ◦ · · · ◦Adc1 ,

and set
Fn,b(a) = R (an1 ) ◦R

(
b1n
)−1

. (10.11)
Note that for σ ∈ S r Sue, the adjoint action of Fn,b(a) on gσ is trivial for any n, b, a.

Using Lemma 10.3, we can run the core of the exponential drift argument.

Proposition 10.5 (cf. [BQ11, Prop. 7.1]). For any δ0 > 0, for βX-almost every z ∈ E there exist
u ∈ uue and z′ ∈ E such that

0 < ‖u‖ < δ0, Ψu(z′) ∈ E, σΨu(z′) ∝ σz′ ∝ σz. (10.12)

Proof. Let QX∞ be the σ-algebra defined by (10.4), let ε ∈ (0, 1) be arbitrary and fix a compact
subset K ⊂ E such that σ is continuous on K and such that βX(K) > 1 − ε2/2. We denote by
1K the indicator function of K. Recall that the conditional expectation E

(
1K |QX∞

)
(·) is an almost

everywhere defined QX∞-measurable function on BX which is uniquely defined up to a nullset; we
fix one representative and continue to denote it by E

(
1K |QX∞

)
. We let

Fε =
{
z ∈ E : E

(
1K |QX∞

)
(z) > 1− ε

}
.

One computes that

1− ε2

2
< βX(K) ≤ (1− ε)

(
1− βX(Fε)

)
+ βX(Fε)

= 1− ε+ εβX(Fε).

Hence βX(Fε) > 1− ε
2 . Given n ∈ N, let

ψn : BX −→ R, ψn(z)
def
=

∑
a∈(supp µ̄)n

β̄([a]) 1K ◦ hn,z(a).
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Using (10.10), we fix a full measure subset E1 ⊂ E such that

∀z ∈ E1, ψn(z)
n→∞−→ E

(
1K |QX∞

)
(z). (10.13)

We let L1 ⊂ E1 be a compact continuity set for E
(
1K |QX∞

)
such that βX(L1) > 1 − ε. Using

Egorov’s theorem, we can additionally assume that the convergence in (10.13) is uniform on L1,
and thus there exists n0 ∈ N such that

∀n ≥ n0, ∀z ∈ L1, ψn(z) > 1− ε. (10.14)

This implies that

∀n ≥ n0, ∀z ∈ L1, β̄
(⋃
{[a] : a ∈ (supp µ̄)n, hn,z(a) ∈ K}

)
> 1− ε.

Using Theorem 9.1, we fix a compact set L ⊂ L1 such that βX(L) > 1− ε and

∀(b, x) ∈ L, νb(W
stx) = 0.

We further fix a compact subset L′ ⊂ L of measure βX(L′) > 1 − ε satisfying the conclusion of
Lemma 10.3.

For what follows, we fix an element z0 = (b, x) ∈ L′ and a sequence (vm)m∈N of vectors in grwst

such that exp(vm) is well-defined for all m, vm → 0 as m→∞, and

∀m ∈ N zm ∈ L, where zm
def
=
(
b, exp(vm)x

)
.

Using (10.14), we know that for all m ≥ 0 and for all n ≥ n0 we have

β
(
{a ∈ (supp µ̄)n : hn,zm(a) ∈ K}

)
> 1− ε. (10.15)

Extending the definition in (10.2), we write Ψv(b, x) = (b, exp(v)x) for every v ∈ g for which
exp(v) is well-defined. Note that the map (z, v) 7→ Ψv(z) is continuous where defined. Recall
(or see [BQ13, §5]) that if exp(v) is well-defined, then so is exp(Ad(g)v) for every g ∈ GS , with
exp(Ad(g)v) = g exp(v)g−1. From this and using (10.11) we see that if y ∈ X satisfies y = exp(v)x,
where exp(v) is well-defined, then

∀a ∈ (supp µ̄)n hn,(b,y)(a) =
(
ΨFn,b(a)v ◦ hn,(b,x)

)
(a).

Given σ ∈ S, let v(σ)
m ∈ gσ denote the projection of vm to gσ. Given m,n ∈ N and σ ∈ S, define

rn,m,σ
def
= |%|nσ

∥∥∥R (b1n)−1
v(σ)
m

∥∥∥
σ

and rn,m
def
= max

σ∈S
rn,m,σ.

We claim that
lim sup
n→∞

rn,m =∞. (10.16)

To see this, let a = diag(%, . . . , %, 1), and for each σ ∈ Sue, let

gσ = uσ ⊕ u⊥σ,1 ⊕ u⊥σ,%

be the decomposition of gσ into the eigenspaces for the adjoint action of a−1, corresponding respec-
tively to the eigenvalues %−1, 1, %. Using this direct sum decomposition we write

v(σ)
m = v

(σ)
m,1 + v

(σ)
m,2 + v

(σ)
m,3.

Since vm /∈ wst we see from (10.7) that there is σ ∈ Sue such that at least one of v(σ)
m,2 and v(σ)

m,3 is

nonzero. For this choice of σ and each i we can write h̄(σ)
i = aui, where ui is in the group U (σ)

defined by (3.15). The adjoint action of u−1
i satisfies

Ad−1
ui

(
v

(σ)
m,2

)
− v(σ)

m,2 ∈ u and Ad−1
ui

(
v

(σ)
m,3

)
− v(σ)

m,3 ∈ u⊕ u⊥σ,1.
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Using this one verifies that
inf
n

∥∥∥R (b1n)−1
v(σ)
m

∥∥∥
σ
> 0;

indeed, the component in at least one of u⊥σ,1, u⊥σ,% is not contracted by R
(
b1n
)−1. Since σ ∈ Sue, we

have |%|σ > 1. From this it follows that |%|nσ
∥∥∥R (b1n)−1

v
(σ)
m

∥∥∥
σ
→∞. This shows (10.16).

Let C > 1 be as in Lemma 7.2, let

C1
def
= max{|%|σ : σ ∈ S}, C2

def
= max

{∥∥Ad(h̄−1
i )
∥∥
σ

: σ ∈ S, h̄i ∈ supp µ̄
}
,

and
A′

def
=

δ0

2C1C2C
.

For each n ∈ N let nm ∈ N be the minimal index for which A′ ≤ rnm,m, which is well-defined in
light of (10.16). It follows from the definition of C1 and C2 that rn+1,m ≤ C1C2rn,m, and hence

∀m ∈ N A′ ≤ rnm,m ≤ A′C1C2.

Since vm → 0 we have nm
m→∞−→ ∞, and since the action of Fn,b(a) on gσ is trivial for σ /∈ Sue, the

place σ for which the maximum in the definition of rnm,m is attained, belongs to Sue for all large
enough m.

Given σ ∈ Sue and m,M ∈ N, let

Shσm,M (b)
def
=

{
a ∈ B : dist(QσFnm,b(a)v(σ)

m , uσ) ≤ 1

M

}
,

Eqσm(b)
def
=

{
a ∈ B :

1

C
rnm,m,σ ≤

∥∥∥Fnm,b(a)v(σ)
m

∥∥∥
σ
≤ Crnm,m,σ

}
.

Given m ∈ N, we let Mm,σ ∈ N ∪ {∞} maximal such that

∀M ≤Mm,σ β
(
Shσm,M (b)

)
> 1− ε.

Since ε was small, using Lemmas 7.2 and 7.5, there exists m0 ∈ N such that for every m ≥ m0

we can find a word
am ∈

⋂
σ∈Sue

(
Shσm,Mm,σ

(b) ∩ Eqσm(b)
)

such that hnm,z0(am), hnm,zm(am) ∈ K. Note that

for all σ ∈ Sue, Mm,σ
m→∞−→ ∞. (10.17)

Hence, after passing to a subsequence, there is u ∈ g such that

hnm,z0(am)→ z′ ∈ K, hnm,zm(am)→ z′′ ∈ K, and Fnm,b(am)vm → u.

We claim that u ∈ uue. Indeed, for σ /∈ Sue the action of Fn,b(a) on gσ is trivial and hence the
σ-component of Fnm,b(am)vm is equal to v(σ)

m , which goes to zero as m → ∞. Furthermore, for
σ ∈ Sue, it follows from the definition of Shσm,M (b) and from (10.17) that any limit of Fnm,b(am)vm
belongs to uσ (and in particular, to the domain of definition of Ψ). From the definition of Eqσm(b)
that for σ ∈ Sue for which the maximum in the definition of rnm,m is realized, we have

0 <
A′

C
≤ ‖u(σ)‖ ≤ ‖u‖ ≤ A′C1C2C < δ0.

From the continuity of the map Ψ we have

z′′ = Ψuz
′.

Because K is a continuity set, we have that

σz′ = σz0 and σz′′ = σz0 .
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This proves (10.12). �

In what follows, given z ∈ BX , we denote by Wz the stabilizer of σz in Uue. Combining Propo-
sition 10.5 and formula (10.6), we obtain:

Corollary 10.6. There exists E ⊂ BX of full measure such that Wz is non-trivial for every z ∈ E.

Lemma 10.7. There exists a conull subset E ⊂ BX such that:
(1) If z = (b, x) ∈ E and TXz ∈ E, then WTXz = b−1

1 Wzb1 and σTXz = (Adb−1
1 )∗σz.

(2) For every z ∈ E, we have that

Wz =
∏
σ∈Sue

Wz,σ,

where Wz,σ = exp(wz,σ) for a Lie subalgebra wz,σ ⊂ uσ.
(3) For every z ∈ E, σz is Wz-invariant.

Proof. The proof is mostly a combination of facts about closed subgroups of unipotent S-arithmetic
groups and techniques used in [BQ13, §8.2]. Item (1) is an immediate consequence of the charac-
terizing properties of leafwise measures. For item (2), we know from Corollary 10.6 that for typical
z ∈ BX the stabilizer Wz of σz is non-trivial. Let u be a nontrivial element of Wz. Then the
logarithm v = log u ∈ uue is well-defined and non-zero, and we write v = (v(σ))σ∈Sue . It follows
from strong approximation (see [Cas78, Ch. 3, Lem. 3.1]) that

Zv =
⊕
σ∈Sue

Zσv(σ).

In particular, for any element inWz, each component fixes σz separately, i.e., Wz is a direct product
of subgroups of Uue. We denote these groups by Wz,σ, and note that each of the Wz,σ is closed,
since Wz is closed.

Let wz,σ ⊂ uue be the Lie algebra generated by log(Wz,σ) and note that, since Wz is abelian,

wz,σ = spanQσ log(Wz,σ).

By the preceding argument wz,σ = {0} if and only if Wz,σ is trivial. We claim that

exp(wz,σ) = Wz,σ.

This certainly holds ifWz,σ is trivial. By construction,Wz,σ ⊂ exp(wz,σ). For the opposite inclusion,
we use the argument given in the proof of [BQ13, Lem. 8.3]. We suppose by contradiction that the
opposite inclusion does not hold for some z ∈ BX , and let

ϕσ(z) = inf
{∥∥∥v(σ)

∥∥∥ : v(σ) ∈ wz,σ, exp(v) 6∈Wz,σ

}
.

Then there is a subset of BX of positive measure on which ϕσ > 0. By the definition of Sue

we have that |%|σ > 1 for every σ ∈ Sue, and this implies that for every b ∈ B we have that∥∥(bn1 )−1|uσ
∥∥ → 0 as n → ∞. By item (1) we have that ϕσ((TX)n(z)) tends to zero for βX -a.e. z,

and this contradiction to the Poincaré recurrence theorem proves the claim.
In order to prove item (3), note that, since uue is abelian and since the action of u on Radon

measures on Uue is continuous, for every σ ∈ Sue the map αz,σ : wz,σ → R given by

∀vσ ∈ wz,σ τvσ∗σz = eαz,q(vσ)σz

is a continuous group homomorphism. Since wz,σ is a Qσ-vector space, αz,σ is trivial. �

Proof of Theorem 10.1. For the proof we disintegrate each measure νb along the map that sends
z = (b, x) to the Lie algebra wz = Lie(Wz). This is done as in Propositions 7.5 and 7.6 in [BQ11].
Note that [BQ11] treats actions of Rd. Recall that we showed in the proof of Lemma 10.7 that if
v ∈ uue satisfies that exp(v) fixes a leafwise measure, then so does exp(v′) for any v′ ∈ spanQσ(v).
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Since the exponential map is a bijection between uue and Uue, all the statements in [BQ11, §4] adapt
mutatis mutandi to our situation. �

11. Ratner’s Theorem and Conclusion of the Proof of Theorem 6.1

In this section we complete the proof of Theorem 6.1. Let νz,Wz be as in the conclusion of
Theorem 10.1, where z = (b, x) ∈ B × X. Applying Ratner’s theorem in the S-adic setting (see
[Rat98]), and a refinement of Tomanov (see [Tom00]) we have: There is a subset E ⊂ BX , which
is TX -invariant and satisfies βX(BX r E) = 0, such that for all z = (b, x) ∈ E, there are groups
M ′(z) such that the following hold:
(i) Wz ⊂M ′(z);
(ii) M ′(z)x = Wzx = supp(νz) is a closed orbit, and νz is a M ′(z)-invariant probability measure

which is ergodic for the action of Wz;
(iii) For z = (b, x) ∈ E, M ′(TXz) = b−1

1 M ′(z)b1.
(iv) If g satisfies x = gΓS then the group M = M(z, g)

def
= g−1M ′(z)g and its Zariski closure

M = M(z, g) satisfy that M is Q-algebraic subgroup of G and M is a finite-index subgroup
of M(QS).

Since M(z, g) is defined over Q, it belongs to a collection which is at most countable. The
conjugacy class [M(z, g)] of M(z, g) depends only on z, and we denote it by [M(z)]. By (iii), the
assignment z 7→ [M(z)] is constant along TX -orbits. By ergodicity of the stationary measure ν, the
conjugacy class [M(z)] is the same for βX -a.e. z. Since the collection of finite-index subgroups of
M(QS) is also countable, the conjugacy class of M ′(z) is the same for βX -a.e. z.

Proposition 11.1. Let M ′(z)x = Wzx as above, suppose M ′(z) is not a unipotent group, and let
U0 ⊂ M ′(z) be a normal unipotent subgroup. Then U0 does not act ergodically on M ′(z)x (with
respect to the M ′(z)-invariant measure).

Proof. Let g ∈ GS so that x = gΓS . By a conjugation by g we can replace M ′ with M . That
is, we can assume that x represents the identity coset and M ′(z) is a subgroup of finite index in
M(QS), for a Q-algebraic subgroup M ⊂ G. Let R = Radu(M) denote the unipotent radical of
M. Since M ′(z) is not unipotent, R is a proper subgroup of M, and is also defined over Q. Let
R

def
= M ′ ∩R(QS). Then R is normal in M ′, contains U0, and the orbit Rx is closed and is strictly

contained in M ′x. Since R is normal, U0mx ⊂ Rmx = mRx is a closed proper subset of M ′x for
any m ∈ M ′. In particular, the U0-action on M ′x has no dense orbits, and hence the U0-action is
not ergodic. �

We will need the following facts about the group U and its normalizer P.

Proposition 11.2. • For any proper Q-algebraic subgroup H ⊂ G, we have dim H ≤ dim P.
• U is not contained in any unipotent abelian subgroup of larger dimension.

Proof. The first assertion can be inferred from the list of maximal subalgebras of simple Lie algebras,
due to Dynkin [Dyn57]. See [Stu91] or [OVG94, p. 187]. For the second assertion, note from [BT71]
that if V is a unipotent abelian group properly containing U, then after applying a conjugation we
can assume that V is a contained in the unipotent radical of a Borel subgroup of G. However, it
can be checked explicitly that U is maximal, as an abelian subgroup of the unipotent radical of the
Borel subgroup of G. �

For any r0 ∈ {1, . . . ,dim P} and any σ ∈ S we define V ∧r0(σ) and P(V ∧r0(σ)) as in §7.2. Each
of the elements h̄i acts on each V ∧r0(σ) via the rth0 exterior power of the Adjoint representation,
and hence on P(V ∧r0(σ)). The measure µ̄ determines a random walk on V ∧r0(σ). For σ ∈ Str each
h̄i acts trivially on V ∧r0(σ) and this random walk is trivial. For σ ∈ Sdt each h̄i acts in the same
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way on V ∧r0(σ) and this random walk is deterministic, i.e., amounts to repeated application of one
map.

For each σ, the stationary measure ν on X S
d+1 gives rise to stationary measures ν̄(σ) on V ∧r0(σ)

and ν̂(σ) on V ∧r0(σ) as follows. Write m′σ(z) for the Lie algebra of the projection of the Lie algebra
of M ′(z) to the σ-component gσ. Let [m′σ(z)] ∈ P(V ∧r) denote the class of m′σ(z), and let m′σ(z)
denote a vector in [m′σ(z)], whose length is equal to the volume of M ′(z)x with respect to the
r0-dimensional volume on X S

d+1. Note that m′σ(z) is uniquely defined up to ±. This ambiguity will
not play any role in what follows.

Now define measures on P(V ∧r) by

ν̄b
def
=

∫
δm′σ(z) dνb(z), and ν̄

def
=

∫
ν̄b dβ(b). (11.1)

ν̂b
def
=

∫
δ[m′σ(z)] dνb(z), and ν̂

def
=

∫
ν̂b dβ(b). (11.2)

Then ν̄ = ν̄(σ) (respectively ν̂ = ν̂(σ)) is a µ̄-stationary measure on V ∧r(σ) (respectively, on
P(V ∧r0(σ))). By uniqueness of the disintegration into leafwise measures, the measures (ν̄b)b∈B and
(ν̂b)b∈B are the systems of limit measures for ν̄ and ν̂.

Proof of Theorem 6.1. We assume that we are not in Case (2) of Theorem 6.1 and prove that we
must be in Case (1). Let r be the almost-sure value of dim M(z). Since we are not in Case (2), for
βX -almost every z we have M 6= G, and hence r < dim G. By the first item of Proposition 11.2 we
have r ≤ dim P = d2 + d.

Assume first that r ∈ {1, . . . , d}. We claim that in this case, for βX -a.e. z, the group M ′(z) is
contained in W st. Since M ′(z) has a finite volume orbit through x, this will imply that for βX -a.e.
(b, x), νb is supported on points whose stabilizer in W st is nontrivial. This implies that we are in
Case (1), completing the proof in this case.

In order to prove the claim, in view of (1.10) it suffices to show that for σ ∈ Sue we have
m′σ(z) ⊂ uσ. By item (ii) of Lemma 7.3, we have that each ν̂b is supported on P(W (r)) = P(

∧r uσ).
This implies that ν̂ is supported on P(

∧r uσ) and ν̄ is supported on
∧r uσ. The decomposition

(11.1) of ν̄b into Dirac masses now shows that for βX -a.e. z, we have m′σ(z) ⊂ uσ. The claim now
follows via (1.10).

Now suppose r ∈ {d + 1, . . . , d2 + d}. Let σ ∈ Sue. Consider again the measures ν̄b, ν̄, ν̂b, ν̂
defined in (11.1) and (11.2). In this case, applying item (ii) of Lemma 7.3, we have that each ν̂b is
supported on P(W (r)). The definition of W (r) implies that for βX -a.e. z,

uσ  m′σ(z) ⊂ pσ, and hence W ′z ⊂ Uσ  M ′σ(z) ⊂ Pσ.

Applying Proposition 11.1 we see that M ′(z) is unipotent for a.e. z, and Uσ is a proper normal
subgroup of M ′σ(z). Let C(z) denote the center of M ′(z) and denote its projection to the place
σ ∈ Sue by Cσ(z). Since M ′(z) is a unipotent group, the dimC(z) > 0 has positive dimension, and
by standard facts about lattices in nilpotent groups (see [Rag72, Chap. 2]), the intersection of any
lattice in M ′(z) with C(z) in a lattice in C(z), and in particular, contains nontrivial elements. In
particular, for βX -a.e. z = (b, x), C(z) contains nontrivial elements belonging to the stabilizer of
x. Thus it suffices to show that C(z) ⊂ W st, and hence, from (1.10), that for σ ∈ Sue we have
Cσ(z) ⊂ Uσ. Suppose to the contrary that Cσ(z) 6⊂ Uσ. Since M ′(z) contains Uσ as a normal
subgroup, Cσ(z)Uσ is an abelian unipotent group satisfying dimCσUσ > dimUσ. This contradicts
the second item of Proposition 11.2. �
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