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Abstract. We study the problem of rigidity of closures of totally geodesic plane immersions
in geometrically finite manifolds containing rank 1 cusps. We show that the key notion of
K-thick recurrence of horocycles fails generically in this setting. This property played a
key role in the recent breakthroughs of McMullen, Mohammadi and Oh. Nonetheless, in
the setting of geometrically finite groups whose limit sets are circle packings, we derive 2
density criteria for non-closed geodesic plane immersions, and show that closed immersions
give rise to surfaces with finitely generated fundamental groups. We also obtain results on
the existence and isolation of proper closed immersions of elementary surfaces.

1. Introduction

1.1. Formulation of Results. Let M be a hyperbolic manifold of dimension 3. Let f :
H2 → M be a totally geodesic immersion of the hyperbolic plane. Ratner [Rat91] and
Shah [Sha91] independently classified the possibilities for the closures of f(H2) inside M , in
the case when M has finite volume. Recently, in [MMO16a], a complete classification was
obtained in the case when M is a convex cocompact manifold whose convex core has a totally
geodesic boundary 1. This class of manifolds will be referred to as rigid acylidrical manifolds.
In both cases, it is shown that such closures are always immersed submanifolds of M . See
also the related results in [MMO16b, MS17] on the topological dynamics of horocycles in 3
manifolds.

In this article, we study the rigidity problem of closures of geodesic plane immersions
in geometrically finite manifolds containing rank-1 cusps. We begin by showing that a
certain desirable recurrence property of unipotent orbits (K-thickness) fails generically in this
setting, Theorem 1.1. This property plays a crucial role in [MMO16a]. We then formulate
sufficient conditions for certain geodesic plane immersions to be dense, Theorems 1.2 and 1.3.
In addition, when the limit set associated with our kleinian manifold M is a circle packing, we
show that a closed geodesic plane immersion gives rise to a geometrically finite surface (i.e.
having a finitely generated fundamental group) and further characterize the limit set of such
a surface, Theorem 1.4. Finally, we establish the existence of properly immersed elementary
surfaces (Theorem 1.5) and study the situation when a compact set meets infinitely many
of them (Proposition 1).

1.2. Preliminary Notions. To state our results precisely, we recall some necessary notions
and refer the reader to § 2 for detailed definitions.

The frame bundle of H3, denoted by FH3, consists of the set of orthonormal 3-frames
at every point in H3. The group G = Isom+(H3) ∼= PSL2(C) acts simply transitively on
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FH3 and the two can thus be identified. The following 1-parameter subgroups of G will be
important to us.

U =

{
ut =

(
1 t
0 1

)
: t ∈ R

}
, A =

{
at =

(
et/2 0
0 e−t/2

)
: t ∈ R

}
.

The action of the group A induces the frame flow and generates the parametrized geodesics
on the unit tangent bundle T1H3. Orbits of the group U project to horocycles in H3.

Let Γ be a Kleinian group (a discrete subgroup of G) so that M is identified with Γ\H3.
The limit set Λ of Γ is defined to be

Λ = Γ · o ∩ ∂H3,

where o ∈ H3 is any point and ∂H3 is the boundary at infinity. In the ball model of H3,
we can identify ∂H3 with S2. The non-wandering set for the A action on Γ\FH3 consists
of those frames (v1, v2, v3) for which any lift of the geodesic tangent to v1 to H3 joins two
points on the boundary belonging to Λ. Keeping the notation of [MMO16a], we denote this
set by RFM. For a frame x ∈ FH3, we will use x+ (resp. x−) to denote the forward (resp.
backward) endpoint in ∂H3 of the geodesic tangent to its first vector.

By lifting a geodesic immersion of H2 to the universal cover, we obtain a totally geodesic
hyperplane inside H3. The closure of any such geodesic hyperplane inside H3 ∪ ∂H3 meets
the boundary in a Euclidean circle. We will denote the space of circles in ∂H3 by C and the
subset of C which meets Λ by CΛ.

The group G acts transitively on C and the stabilizer of a point is a conjugate of the
subgroup H = PGL2(R). Hence, we can identify C with G/H. Orbits of the right action of
H on FH3 project to all geodesic hyperplanes in H3. Thus, understanding the orbit closures
of H on Γ\FH3 is a finer question than the closures of totally geodesic immersions on Γ\H3.

The action of Γ on H3 extends to a conformal action on ∂H3. In particular, circles are
mapped to circles, extending this action to an action on C which agrees with the action of
Γ on G/H by left multiplication. Orbit closures of Γ acting on C = G/H are in one-to-one
correspondence with orbit closures of H on Γ\G. Following [MMO16a], we shall adopt this
point of view throughout the paper.

1.3. Dynamics of Horocycles. The key technique used in the classification problem in
finite volume dates back to Margulis’ resolution of the Oppenheim conjecture [Mar89]. It
relies on the fact that unipotent trajectories spend a positive proportion of their time in
big compact sets. This fails in infinite volume but a suitable substitute was introduced
in [MMO16a]. A set T ⊆ R is said to be K-thick for some K > 1 if for all t > 0,

T ∩ ([−Kt,−t] ∪ [t,Kt]) 6= ∅.

In the context of rigid acylindrical manifolds, it was shown in [MMO16a] that the set
of return times to RFM, of the unipotent orbit of a frame x ∈ RFM is K-thick, for some
K > 1 which is independent of x. This key property was shown to be sufficient to carry out
the classical polynomial shearing arguments of unipotent trajectories which drive transverse
smoothness of the closures of totally geodesic planes.

Our first result says that the presence of rank-1 parabolics prohibits even such weak notion
of recurrence. The following is the precise statement.
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Theorem 1.1. Assume Γ is a geometrically finite Kleinian group containing rank-1 parabolic
subgroups. Suppose x ∈ RFM is such that xA = RFM. Then, the set of return times

R(x) = {t ∈ R : xut ∈ RFM}

is not K-thick for any K > 1.

1.4. Density Criteria. The lack of recurrence of unipotent orbits significantly limits the
applicability of many classical techniques to the rigidity problem. Thus, we restrict our
attention to geometrically finite manifolds whose limit sets on the boundary of H3 form a
circle packing in order to leverage their geometric structure in our study. Recall that the
limit set is said to be a circle packing if it is the complement of countably many open
round disks in ∂H3.

An important example of circle packings which arise as limit sets of geometrically finite
Kleinian groups is Apollonian circle packings, see figure 1. In these examples, stabilizers
of tangency points between circles in the packing give rise to rank 1 cusps. Geometric and
number theoretic properties of (Apollonian) circle packings have been studied extensively in
the literature. See [OS12,GLM+03] for example. Beyond the Apollonian group, it is shown
in [KMS93] that every isomorphism class of geometrically finite groups contains one whose
limit set is a circle packing.

In this setting, we prove two criteria for density of totally geodesic immersions which we
now discuss. Our first rigidity criterion demonstrates that K-thick recurrence of certain
unipotent orbits can in fact be sufficient for the geodesic plane containing these horocycles
to be dense.

We say that a point α ∈ Λ is rank-1 unbounded if there exists a rank-1 parabolic
fixed point σ ∈ Λ such that for every horoball H centered at σ and every geodesic ray
γ : [0,∞)→ H3 ending at α, the set

{t ≥ 0 : γ(t) ∈ ΓH}

is unbounded.

Theorem 1.2. Assume Γ is a geometrically finite Kleinian group containing rank-1 parabolic
subgroups. Assume further that the limit set of Γ is a circle packing. Let x ∈ Γ\H3 be such
that x− ∈ Λ but x− /∈ ∂B for any connected component B ⊂ ∂H3\Λ. Suppose that x− is
rank-1 unbounded and the set

R(x) = {t ∈ R : xut ∈ RFM}

is K-thick for some K > 1. Then, the geodesic plane tangent to x is dense in M .

Note that the condition on x− in the above Theorem is well-defined since Λ is Γ invariant.

Remark 1. We remark that, in the setting of Theorem 1.2, the limit set Λ is infinite.
In this case, a result of Eberlein [Ebe72, Theorem 3.11] states that the geodesic flow on
T1(Γ\H3), restricted to the non-wandering set, is topologically transitive. In particular, this
implies that a dense Gδ subset of the limit set is rank-1 unbounded. The notion of rank-1
unboundedness is also generic in the measurable sense (with respect to ergodic Γ-invariant,
fully supported conformal densities on Λ) for similar reasons.

Our second density criterion is stated in terms of orbits of circles in CΛ and does not rely
on recurrence of horocycles.
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Figure 1. Apollonian circle packing (solid). Inversions through dual circles
(dashed) generate a geometrically finite group containing rank-1 parabolic sub-
groups.

Theorem 1.3. Let Γ be a geometrically finite group whose limit set Λ is a circle packing. Let
C be a circle which meets Λ in at least 2 points. Suppose that there exists a circle D ∈ ΓC
such that D meets Λ in only one point. Then, ΓC = CΛ.

We note that the Γ orbit of a circle is dense in CΛ if and only if the corresponding geodesic
plane immersion is dense in M .

1.5. Rigidity of Closed Immersions. We now turn to the study of closed geodesic plane
immersions. We show that in the setting of circle packing limit sets, every closed plane
immersion gives rise to a geometrically finite surface.

We further characterize the limit set of the fundamental group of such a surface. When M
is rigid acylindrical, such a limit set coincides with the intersection of the circle at ∞ with
Λ. The presence of rank 1 parabolics, however, causes circles to meet Λ in non-perfect sets,
while limit sets of non-elementary Fuchsian groups are known to be perfect sets. We prove
that such limit sets coincide with the subset of non-isolated points of the intersection of the
invariant circle with Λ. The following is the precise statement.

Theorem 1.4. Let Γ be a geometrically finite group whose limit set Λ is a circle packing.
Let C be a circle such that ΓC is closed in C and let ΓC denote the stabilizer of C in Γ.
Then, ΓC is finitely generated and either |Λ(ΓC)| = |C ∩Λ| = 1, or Λ(ΓC) consists of the set
of non-isolated points in C ∩ Λ.

Here, for a subgroup Γ′ < Γ, the set Λ(Γ′) denotes the limit set of Γ′. We note that
Theorem 1.4 implies that the geodesic plane corresponding to the circle C as in the statement
projects to a geometrically finite surface inside Γ\H3.
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1.6. Existence and Isolation of Elementary Surfaces. Among the features of the pres-
ence of rank-1 limit points in the limit set is the presence of circles on the boundary of H3

which meet the limit set in only finitely many points. Dual circles in Apollonian packings
are examples of such circles. See figure 1. The following Theorem says that such circles give
rise to closed plane immersions.

Theorem 1.5. Let Γ be a geometrically finite group whose limit set Λ is a circle packing.
Let C be a circle such that |C ∩ Λ| <∞. Then, ΓC is closed.

Remark 2. Recall that a surface is elementary if its fundamental group is finite or virtually
isomorphic to Z. Theorem 1.5 implies that if |C ∩ Λ| < ∞, then the geodesic plane in H3,
determined by C, projects to a closed subsurface S inside Γ\H3 whose fundamental group is
ΓC (the stabilizer of C in Γ). Theorem 1.4 thus implies that Λ(ΓC) = ∅ and, in particular,
ΓC is finite in this case. Hence, the surfaces arising in the situation of Theorem 1.5 are
elementary.

Our motivation for studying manifolds for which the limit set is a circle packing with
regards to the rigidity problem comes from the fact that groups with circle packing limit sets
contain many lattice surface subgroups. These are subgroups which leave one of the circles
of the packing invariant. Equivalently, such groups give rise to geometrically finite manifolds
containing totally geodesic finite volume hyperbolic surfaces. The presence of such ”rich”
submanifolds was shown to be an important feature driving topological rigidity in the proofs
of [MMO16a,Sha91,Mar89].

Elementary surfaces, however, pose a serious challenge to applying such key technique.
It is thus very important to understand the distribution of such elementary surfaces within
Γ\H3.

We view the cardinality of the intersection C ∩ Λ as a measure of complexity of an el-
ementary surface with corresponding invariant circle C ⊂ S2. The following proposition
shows that complexity must drop in the limit if a sequence of elementary surfaces of a given
complexity accumulates on some elementary surface.

Proposition 1. Let k ≥ 3 be an integer and let Bk denote the set of circles C ⊂ S2 such that
|C∩Λ| = k. Then, Bk is a discrete Γ-invariant set. Moreover, if a circle C with |C∩Λ| <∞
is an accumulation point of Bk, then |C ∩ Λ| < k.

The paper is organized as follows: we recall some background material on geometrically
finite manifolds and prove some preliminary results on the topology of the space of circles in
Section 2. The proofs of Theorems 1.1, 1.2, 1.3 and 1.5 are given in Sections 3-6 respectively.
In Section 7, we study properly closed immersions and establish Theorem 1.4. Proposition 1
is proved in Section 8.

2. Background and Preliminaries

2.1. Geometrically Finite Manifolds. The standard reference for the material in this
section is [Bow93]. A discrete subgroup Γ < G of isometries of H3 is geometrically finite if
its action on H3 admits a finite sided fundamental domain. A geometrically finite hyperbolic
manifold is a quotient of H3 by a geometrically finite Kleinian group. Bowditch [Bow93]
proved the equivalence of this definition to the limit set of Γ consisting entirely of radial
and bounded parabolic limit points. This characterization of geometric finiteness will be of
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importance to us and so we recall here the definitions and basic properties of all the objects
involved.

Let o be any point in H3. The limit set of Γ, denoted by Λ(Γ), is defined to be

Λ(Γ) = Γo ∩ ∂H3.

We often use Λ to denote Λ(Γ) when Γ is understood from context. Λ is the smallest closed
Γ invariant set in ∂H2 and as such Γ acts minimally on Λ. In particular, this definition
is independent of the choice of o. The domain of discontinuity of Γ, denoted by Ω, is the
complement of Λ in ∂H3. The action of Γ on Ω is properly discontinuous.

A point ξ ∈ Λ is said to be a radial point if there exists R > 0, a geodesic ray l : [0,∞]→
H3 ∪ ∂H3 and a sequence tn →∞ such that for each n there exists γn ∈ Γ so that

dH3(γno, l(tn)) ≤ R.

In other words, any geodesic ray terminating at ξ returns infinitely often to a bounded subset
of Γ\H3. The set of radial limit points is denoted by Λr.

Denote by N the following subgroup of G.

N =

{
nz =

(
1 z
0 1

)
: z ∈ C

}
.

A point σ ∈ Λ is said to be a parabolic point if the stabilizer of σ in Γ, denoted by Γσ,
is conjugate in G to a subgroup of N . This implies that σ is the only fixed point under Γσ
in ∂H3. A geodesic ray terminating at a parabolic limit point doesn’t accumulate in Γ\H3.
The set of parabolic limit points will be denoted by Λp.

Since parabolic points are fixed points of elements of Γ, Λ contains only countably many
such points. Moreover, Γ contains at most finitely many conjugacy classes of parabolic
subgroups. This translates to the fact that Λp consists of finitely many Γ orbits.

The rank of a parabolic point is the rank of its stabilizer Γσ which is an abelian group.
A rank 1 parabolic fixed point in Λ will be referred to as a rank 1 cusp.

A parabolic limit point σ is said to be bounded if Γ\ (Λ− {σ}) is compact. All full rank
(rank 2) parabolic points are bounded.

The key geometric property of a bounded rank-1 parabolic limit point of Γ is that it admits
a double horocycle. The following is the precise definition.

Definition 2.1. Let σ ∈ Λ be a rank-1 parabolic fixed point. A pair of circles L1, L2 ⊂ ∂H3

is said to be a double horocycle at σ if L1 ∩L2 = {σ} and if they bound open disks which
are completely contained in Ω.

2.2. Cusp Neighborhoods. Let {σ1, . . . , σs} ⊂ ∂H3 be a maximal set of nonequivalent
parabolic fixed points under the action of Γ. As a consequence of geometric finiteness of Γ,
one can find a finite disjoint collection of open horoballs H1, . . . , Hs ⊂ H3 with the following
properties (cf. [Bow93]):

(a) Hi is centered on σi, for i = 1, . . . , s.
(b) ΓHi ∩ ΓHj = ∅ for all i 6= j.
(c) For each i ∈ {1, . . . , s}, γ1Hi ∩ γ2Hi = ∅ for all γ1, γ2 ∈ Γ, γ1 6= γ2.

Let H = π−1(
⋃s
i=1 ΓHi) ⊂ FH3, where π : FH3 → H3 denotes the standard projection.

We shall refer to H as a cusp neighborhood.
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2.3. Topology of the space of circles. As discussed in the introduction, our arguments
will take place in the space of circles C = PSL2(C)/PGL2(R) on the boundary. In this
section, we prove some simple facts about the topology of this space which will be useful for
us. We shall need the following

Definition 2.2. Let C be a circle, η be the center of one of the disks bounded by C and r
be the radius of that disk. For ε ∈ (0, r), let Nε(C) be defined as follows:

Nε(C) =
{
x ∈ S2 : dS2(x, η) ∈ (r − ε, r + ε)

}
.

Then, the ε-annulus around C is defined to be

Nε(C) =
{
D : D a circle in S2, D ⊂ Nε(C)

}
.

Note that the definition of Nε(C) is independent of the choice of the disk bounded by C
and hence the choice of η. Thus, Nε(C) is well-defined. This definition provides a convenient
description of a neighborhood of a circle as explained in the following simple proposition.

Proposition 2. Every ε-annulus around a circle C contains an open neighborhood in the
space of circles.

Proof. Recall from the proof of Proposition 3 that there is a continuous 2-1 covering map

ϕ : S2 × (0, π)→ C,
where C is the space of circles in S2. Let Nε(C) be an ε-annulus around C for some ε. Let
δ ∈ (0, ε). Let η be the center of one of the disks bounded by C and let r > 0 be its radius.
We shall show that

ϕ[B(η, δ)× (r − ε+ δ, r + ε− δ)] ⊆ Nε(C),

where B(η, δ) is the open disk of radius δ around η in S2 in the spherical metric. Note that
we may assume that ε is small enough so that (r − ε+ δ, r + ε− δ) ⊆ (0, π).

To see this, let x ∈ B(η, δ) and d ∈ (r − ε + δ, r + ε − δ). Let D = ϕ(x, d) be the circle
bounding the disk of radius d around x. Let y ∈ D. Then, dS2(y, x) = d. The following 2
inequalities show that y ∈ Nε(C) (Def.2.2)

dS2(y, η) ≤ dS2(y, x) + dS2(x, η) < r + ε− δ + δ = r + ε,

dS2(y, η) ≥ dS2(y, x)− dS2(x, η) > d− δ > r − ε.
�

Proposition 3. Let K ⊂ H3 be a compact set. Then, the set

C(K) = {C : hull(C) ∩K 6= ∅}
is compact.

Proof. Let C denote the space of circles in S2. It is clear that C(K) is closed. Thus, it suffices
to prove this in the case where K is a closed ball since any compact set is contained in a
closed ball. Moreover, it suffices to take K to be a closed ball centered around the origin
in the ball model of H3. That is because for any g ∈ G = Isom(H3), it is easy to see that
C(gK) = gC(K) and G acts continuously on C ∼= G/PGL2(R).

Next, note that there is a continuous 2-to-1 covering map from ϕ : S2 × (0, π)→ C given
by sending (x, r) to the boundary circle of the Euclidean disk in S2 centered at x and of
radius r. Hence, it suffices to prove that the pre-image of ϕ−1(C(K)) is compact.
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Figure 2. Proof of Lemma 3.2

Since K is a compact ball centered around the origin in the ball model, for every x ∈ S2,
there exists a compact subinterval I ⊂ (0, π) such that

{x} × I = {x} × (0, π) ∩ ϕ−1(C(K)).

Moreover, from symmetry, the interval I is independent of x. Hence, ϕ−1(C(K)) = S2 × I
which is compact as desired. �

3. Failure of Recurrence of Unipotent Orbits

This section is dedicated to the proof of Theorem 1.1. We shall need some technical
lemmas before the proof.

3.1. Some hyperbolic geometry. For background on hyperbolic geometry, we refer the
reader to [BP92, Chapter A]. Throughout this section, we assume Γ to be a torsion-free
geometrically finite Kleinian group containing rank-1 parabolic subgroups and we use Λ to
denote its limit set. We will need the following notion of a shrinking neighborhood of a cusp.

Definition 3.1. A sequence of closed horoballs Hn centered at a point σ ∈ ∂H3 is said to
be shrinking to σ if Hn+1 ⊂ Hn and given any point o ∈ H3, dH3(o,Hn)→∞.

For any two points a, b ∈ ∂H3, let l(a, b) denote the geodesic joining a and b. Given two
geodesic lines l1, l2 ⊂ H3, the hyperbolic distance between l1 and l2 is defined as follows.

dH3(l1, l2) = inf {dH3(x1, x2) : x1 ∈ l1, x2 ∈ l2} .
When l1 does not meet l2 on the boundary of H3 is that the infimum in the above definition
is realized by a unique pair of points xi ∈ li, i = 1, 2. This is a consequence of the strict
convexity of the distance function on H3.

Lemma 3.2. Let σ ∈ Λ(Γ) be a rank-1 parabolic point and let L1 and L2 be a double horocycle
at σ. Let C ⊂ ∂H3 be a circle. Suppose that there exists a sequence γn ∈ Γ such that
|γnC∩Li| = 2, for i = 1, 2. For each n, let {un, vn} = γnC∩L1 and let {wn, zn} = γnC∩L2.
Assume further that the following holds.

(1) σ /∈ γnC for all n ≥ 1.
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(2) There exists some δ > 0 such that for all n, if we let θn ∈ [0, π/2] denote the angle
between γnC and L1, then θn > δ.

(3) There exists a sequence of horoballs Hn shrinking to σ such that l(un, vn) ∩ Hn 6= ∅
for all n.

Then,
dH3(l(un, vn), l(wn, zn))→ 0.

Before proceeding to the proof, let us motivate the statement of the lemma. In [MMO16a,
Lemma 9.2], the proof of the K-thickness property was derived from a certain isolation prop-
erty of the boundary circles in the limit set. Lemma 3.2 provides us with concrete sufficient
conditions for the failure of such isolation property in the presence of rank-1 parabolics.
Using the assumption on the density of the geodesic x in Theorem 1.1, we will be able to
arrange for the Γ orbit of the circle corresponding the plane defined by x to satisfy the
geometric configuration given by the sufficient conditions in Lemma 3.2.

proof of Lemma 3.2. Choose coordinates in the upper half space such that σ =∞. In these
coordinates, L1 and L2 become two parallel lines in R2. Without loss of generality, we will
assume that the Euclidean distance between L1 and L2 is 1. Let n ∈ N. By assumption,
σ /∈ γnC. Hence, in these coordinates, γnC is a Euclidean circle in R2.

Let ηn be the Euclidean center of the circle γnC and let rn be its Euclidean radius. Let
hn ≥ 0 be the vertical distance from ηn to the line L1. Let

dn = |un − vn|,
where | · | denotes the Euclidean norm. See figure 2.

Note that since θn > δ, we get that the ratio hn
rn

= sin θn is bounded away from 0 for all

n. Moreover, since l(un, vn) meets Hn, we have that

dn
n→∞−−−→∞.

But, then, since rn ≥ dn/2, one has that as n → ∞, rn → ∞. Hence, we get hn → ∞ as
n→∞.

For all n ≥ 1, let αn (resp. βn) denote the highest point on the geodesic l(un, vn) (resp.
l(wn, zn)). Note that

dH3(l(un, vn), l(wn, zn)) ≤ dH3(αn, βn). (1)

Using the triangle inequality, the distance dH3(αn, βn) can be estimated using the sum of
vertical (parallel to the z-axis) and horizontal (parallel to R2) distances in the upper half
space. Recall that the hyperbolic distance between two points lying on the same vertical
line in upper half space is given by the absolute value of the logarithm of the ratio of their
heights. Since l(un, vn) is a half circle which is perpendicular which is perpendicular to R2,
we see that the height of αn is dn/2. Similarly, the height of βn is |zn − wn|/2.

Moreover, the hyperbolic distance between two points (x1, y1, z) and (x2, y2, z) at the same
height z > 0 in the upper half space is given by

dH3((x1, y1, z), (x2, y2, z)) =
1

2
ln

(
d2

z2
+ 1

)
, (2)

where d is the Euclidean distance between (x1, y1) and (x2, y2). This can be seen by con-
sidering the vertical plane containing the two points and doing the calculation in the upper
half plane instead.
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Now, note that in our chosen coordinates, the horospheres bounding our sequence of
shrinking horoballs are horizontal planes parallel to R2. Let kn denote the height of the
boundary of Hn. Then, since Hn are shrinking to σ, kn → ∞. Moreover, the heights of αn
and βn are at least kn. Combining the estimates of the horizontal and vertical distances, we
get

dH3(αn, βn) ≤ 1

2
ln

(
1 +

1

k2
n

)
+

∣∣∣∣ln( |zn − wn|dn

)∣∣∣∣ .
Elementary geometric considerations show that since θn is bounded away from 0, the ratio
|zn−wn|
dn

tends to 1 as n→∞. Thus, by (1), we get the desired conclusion. �

Our next Lemma shows how one can use Lemma 3.2 to prove the lack of K-thickness.

Lemma 3.3. Let x ∈ FH3 be such that x− ∈ Λ(Γ). Let C ⊂ ∂H3 be the circle determined
by the geodesic plane which is tangent to the first two components of x. Suppose that there
exist 2 distinct components B1 and B2 of the domain of discontinuity Ω and a sequence
γn ∈ Γ such that the following holds: for each n, there exist points un, vn ∈ C ∩ γnB1 and
wn, zn ∈ C ∩ γnB2 satisfying the following

(1) un and vn bound an open interval in C which is fully contained in B1.
(2) wn and zn bound an open interval in C which is fully contained in B2.
(3) un, vn lie in a different connected component of C − {x±} than that of wn, zn,
(4) dH3(l(un, vn), l(wn, zn))→ 0,

(5) un, vn, wn, zn
n→∞−−−→ x−.

Then, the set

R(x) = {u ∈ U : xu ∈ RFM}
is not K-thick for any K > 1.

Proof. Choose coordinates in the upper half space such that x− = ∞, x+ = 0, and C = R̂.
We may assume that π(x) = (0, 0, 1), where π : FH3 → H3 denotes the natural projection.
In these coordinates, we have that (xu(t))+ = t. Hence, the set R(x) may be identified with
the points where C meets Λ. Let K > 1. We will show that there exists a sequence tj →∞
such that for all j:

R(x) ∩ ([−Ktj,−tj] ∪ [tj, Ktj]) = ∅. (3)

Without loss of generality, we may assume that vn > un > 0 and zn < wn < 0 for all n.
We may also assume that

|wn| ≥ un.

By assumptions (1) and (2) in the statement, we have that

(zn, wn) ∪ (un, vn) ⊂ Ω,

where Ω is the domain of discontinuity. Now, for each n, we have

dH3(l(un, vn), l(wn,∞)) ≤ dH3(l(un, vn), l(wn, zn)). (4)

Case 1: For all n, |zn| ≥ vn. By applying a translation by −wn, which is a hyperbolic
isometry, the left hand side of inequality (4) becomes

dH3(l(un, vn), l(wn,∞)) = dH3(l(un − wn, vn − wn), l(0,∞)).
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Applying the isometry z 7→ z
un−wn

, we get

dH3(l(un − wn, vn − wn), l(0,∞)) = dH3

(
l

(
1,
vn − wn
un − wn

)
, l(0,∞)

)
.

Since the right hand side of inequality (4) tends to 0 by condition (4) in the statement of
the lemma, we necessarily have that

vn − wn
un − wn

=
1 + vn

|wn|

1 + un
|wn|
→∞.

Therefore, since |wn| ≥ un by assumption, we get that

vn
|wn|

→ ∞. (5)

Moreover, we have that

(−vn, wn) ∪ (|wn|, vn) ⊆ (zn, wn) ∪ (un, vn) ⊂ Ω. (6)

Thus, for all n sufficiently large, we have that K < vn/|wn| and hence we get

(Kwn, wn) ∪ (|wn|, K|wn|) ⊂ (−vn, wn) ∪ (|wn|, vn) ⊆ Ω.

This proves (3) by taking tn = |wn| for n sufficiently large. Condition (5) in the statement
of the lemma guarantees that |wn| → ∞ as n→∞.

Case 2: For all n, |zn| < vn. Note that we have

dH3(l(0,∞), l(wn, zn)) ≤ dH3(l(un, vn), l(wn, zn))→ 0.

Applying the isometry z 7→ z
|wn| , we get

dH3(l(0,∞), l(wn, zn)) = dH3

(
l(0,∞), l

(
−1,

zn
|wn|

))
→ 0.

Hence, we get that
zn
wn
→∞.

But, by assumption, we have that

(zn, wn) ∪ (|wn|, |zn|) ⊆ (zn, wn) ∪ (un, vn) ⊂ Ω.

Thus, arguing as in Case 1, we get that R(x) is not K-thick for any K. �

3.2. Proof of Theorem 1.1. Let x ∈ RFM be a dense frame for the A action on RFM. Our
strategy will be to use the denseness of xA to find elements of Γ to put the circle defined
by x into configurations satisfying the assumptions of Lemma 3.2. This will allow us to
verify condition (1) in Lemma 3.3. Along the course of the proof, we will insure that these
configurations also satisfy the other conditions in Lemma 3.3 which will allow us to conclude
the lack of K-thickness.

By abuse of notation, we also use x ∈ FH3 to denote a lift of x. Let σ ∈ Λ(Γ) be a rank-1
parabolic fixed point. Let L1 and L2 be a double horocycle at σ. Choose coordinates in the
upper half space model of H3 in which σ = ∞. Without loss of generality, we may assume
L1 = {z ∈ C : Im(z) = −1} and L2 = {z ∈ C : Im(z) = 1}. Let S be the strip defined by

S = {z ∈ C : −1 < Im(z) < 1} .
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Let Γσ ⊂ Γ denote the stabilizer of σ. Then, Γσ acts by horizontal translations. Without
loss of generality, we may assume Γσ is generated by z 7→ z + 1. Let F be a fundamental
domain for the action of Γσ. Let λ0 ∈ F ∩ Λ and let λn = λ0 + n for n ≥ 1. Since Λ is
Γ-invariant, we have that λn ∈ Λ for all n.

Consider the sequence of circles Cn centered at λ0 + n/2 and passing through λ0 and λn,
for n ≥ 1. Let yn ∈ FH3 be a frame whose first two vectors are tangent to to the geodesic
plane defined by Cn and satisfying the following conditions.

y+
n = λn, y−n = λ0, π(yn) = (0, λ0 + n/2, n/2).

Here π : FH3 → H3 is the natural projection.
Fix ε > 0 such that ε� 1. For each n, let Nε(Cn) denote the open ε-annulus around Cn

(Definition 2.2). Define the following neighborhood of Cn:

Nε(Cn) = {C ⊂ C : C ⊂ Nε(Cn)} .

For each n ≥ 0, let Bε(λn) denote the Euclidean ball of radius ε around λn and let

BH3

ε (π(yn)) denote the ball of radius ε around π(yn) in the hyperbolic metric on H3. For
each y ∈ FH3, let C(y) denote the circle defined by the plane to which y is tangent.

Let En ⊂ FH3 be an open neighborhood of yn in RFM defined as follows:

En =

{
y ∈ FH3 :

y− ∈ Bε(λn), y+ ∈ Bε(λ0),

C(y) ∈ Nε(Cn), π(y) ∈ BH3

ε (π(yn))

}
.

Since each En is open in RFH3 and since the A-orbit of x is dense in RFM by assumption,
then, for each n, we can find γn ∈ Γ and an ∈ A such that

γnxan ∈ En.

Claim 1. The circle C(x) and the sequence γn satisfy the hypotheses of Lemma 3.2.
First note that Cn ∩ Li 6= ∅ for i = 1, 2 for all n ≥ 2. Hence, since γnC(x) ∈ Nε(Cn)

and ε << 1, we see that |γnC(x) ∩ Li| = 2 for i = 1, 2 and all n ≥ 2. Moreover, clearly
σ =∞ /∈ γnC(x) for all n.

Next, let ρn ∈ [0, π/2] denote the angle between Cn and L1. Let a denote the Euclidean
distance from λ0 to L1. Then, since the center of Cn is λ0 +n/2, we see that cos(ρn) = 2a/n.
Hence, ρn → π/2 and in particular is bounded away from 0 as n → ∞ and therefore there
exists some δ > 0, depending only on ε and a, such that for all n ≥ 1 and for all C ∈ Nε(Cn),
the angle in [0, π/2] between C and L1 is at least δ. This verifies condition (2) of the Lemma.

To verify the last condition, let {u′n, v′n} = Cn ∩ L1. Then, sin(ρn) = 2a/|u′n − v′n|, where
| · | denotes the Euclidean distance. Since ρn → π/2, we see that |u′n − v′n| → ∞. Let
{un, vn} = γnC(x) ∩ L1 and {wn, zn} = γnC(x) ∩ L2. Then, since γnC(x) ∈ Nε(Cn), we see
that

|un − vn| → ∞. (7)

Let Hn be the horoball centered at σ = ∞ and bounded by the horizontal plane parallel
to R2 at height |un − vn|/2. Then, Hn shrinks to σ and l(un, vn) ∩Hn 6= ∅ for all n. Thus,
condition (3) is verified and we conclude by Lemma 3.2 that

dH3(l(un, vn), l(wn, zn))→ 0.
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Claim 2. x satisfies the hypotheses of Lemma 3.3.
Note that Λ ⊂ S. Hence, {|Im(z)| > 1} ⊂ Ω. This implies conditions (1) and (2).

Moreover, since γnx
+, γnx

− ∈ S, condition (3) is also verified. Condition (4) follows by
Claim 1.

Let τn ∈ Γσ be the hyperbolic isometry acting by horizontal translation satisfying that the
Euclidean center of the circle τnγnC(x) belongs to the fundamental domain F for the action
of Γσ.

Then, by (7), we see that τnun and τnvn tend to σ as n→∞. Since the width of the strip
S is bounded, it is not hard to see that τnwn and τnzn also tend to σ =∞ as n→∞. Thus,
condition (5) is verified and we conclude that R(x) is not K-thick for any K as desired.

4. Recurrence of Horocycles and Rigidity of Planes

In this section, we give a proof of Theorem 1.2. We will use similar techniques to those
developed in the previous section. Throughout this section, we assume that Γ is a torsion-
free geometrically finite Kleinian group containing rank-1 parabolic subgroups. We further
assume that the limit set of Γ is a circle packing i.e. that the complement of Λ in S2 consists
of countably many round open disks.

We recall the notion of rank-1 unboundedness defined in the introduction.

Definition 4.1. A radial limit point α ∈ Λ is said to be rank -1 unbounded if there exists
a rank-1 parabolic fixed point σ such that for every horoball H centered at σ and every
geodesic ray γ : [0,∞)→ H3 ending at α, the set

{t ≥ 0 : γ(t) ∈ ΓH}
is unbounded.

The following result obtained in [MMO16a] will be useful for us. We refer the reader
to [Mar89] and [Sha91] for versions of this result in the finite volume setting. Recall the CΛ

denotes the set of circles C ⊂ ∂H3 such that C ∩ Λ 6= ∅.

Theorem 4.2 (Theorem 5.1 in [MMO16a]). Assume γnC → E where E is a circle whose
orbit is closed and ΓE is non-elementary. Assume further that for infinitely many n, γnC
meets a disk bounded by E in S2 which meets Λ. Then, ΓC = CΛ.

It will be convenient for us to introduce the notion of the height of a point in H3 with
respect to a point on the boundary. Suppose σ ∈ ∂H3. Given a choice of identification H3 ∼=
C2 × R>0 as the upper half space model sending σ to ∞, define a map heightσ : H3 → R>0

to be the projection on the R>0 factor. More precisely,

heightσ(z, t) = t. (8)

Remark 3. The following properties of the height function defined above will be used in
the proof.

(1) The notion of height introduced above depends on the choice of coordinates H3 ∼= C2×
R+. However, for any two points x, y ∈ H3, the inequality heightσ(x) ≥ heightσ(y)
remains valid in any choice of coordinates sending σ to ∞.

(2) In a choice of coordinates on H3 in the upper half space model sending σ to ∞,
parabolic isometries of H3, which fix σ, act by translations parallel to the complex
plane. In particular, these parabolic isometries preserve the level sets of heightσ
which are horospheres based at σ.
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Proof of Theorem 1.2. Let x be as in the statement and let C be a boundary circle corre-
sponding to the geodesic plane defined by the frame x. By definition of rank-1 unbounded-
ness, there exists a rank-1 parabolic fixed point σ ∈ Λ such that for all horoballs H centered
at σ, the geodesic ray r : [0,∞)→ H3 joining π(x) to x− has the property that the set

{t ≥ 0 : r(t) ∈ ΓH}
is unbounded. Since Γ is geometrically finite whose limit set is a circle packing, we can find
components B1, B2 ⊂ Ω such that

∂B1 ∩ ∂B2 = {σ} .
Let Li = ∂Bi−{σ}, for i = 1, 2. Choose coordinates in the upper half space in which σ =∞
and

L1 = {z ∈ C : Im(z) = 0} , L2 = {z ∈ C : Im(z) = 1} .
Let S denote the strip defined as follows:

S = {z ∈ C : Im(z) ∈ (0, 1)} .
Thus, Λ − {σ} is contained in S. Let n > 0. Let Hn be the horoball centered at σ = ∞

whose boundary horosphere is at height n. By the unboundedness of x−, for all n > 0, there
exists γn ∈ Γ and tn > 0 such that tn →∞ and

γnr(tn) ∈ Hn. (9)

Hence, the sequence {γnC : n ≥ 1} consists of Euclidean circles in R2 whose Euclidean
radii tend to ∞ or straight lines. And, since γnx

− ∈ γnC ∩ Λ− {σ}, we see that γnC meets
S for all n ≥ 1. Thus, γnC must meet at least one of L1 or L2 for all n � 1. Without loss
of generality, suppose that γnC ∩ L1 6= ∅ for all n � 1. For each n, let θn ∈ [0, π/2] denote
the angle between γnC and L1.

Case 1. γnC ∩ L2 = ∅ for all n� 1 or θn → 0.
Note that γnx

− ∈ γnC ∩ S and, in particular, γnC 6= L1. We will show that there exists a
sequence γ′n in Γ such that γ′nC 6= L1 and ∂B1 = L1 ∪{σ} ∈ {γ′nC}. Hence, by Theorem 4.2
(Theorem 5.1 in [MMO16a]), we conclude that ΓC is dense in CΛ.

Let Γσ be the stabilizer of σ in Γ. Then, in our chosen coordinates, Γσ acts on R2 by
horizontal translations parallel to the real axis. Let F denote a fixed fundamental domain
for the action of Γσ. So, F is an infinite vertical strip with finite width.

Let un ∈ γnC∩L1. For each n, let τn ∈ Γσ be such that τnun ∈ F . The circles τnγnC meet
the fixed compact set F ∩ L1 and hence must accumulate. As we noted before, τnγnC are
either straight lines or circles whose Euclidean radii tend to ∞. Hence, any accumulation
point of {τnγnC} must be a straight line which meets L1 at a point in L1 ∩ F . Thus, if
θn → 0, we can see that τnγnC → L1.

On the other hand, if τnγnC ∩L2 = ∅ for n� 1, any limiting straight line L cannot meet
L2, while L∩L1∩F 6= ∅. Thus, we get that τnγnC → L1 in this case as well, which concludes
the proof in this case.

Case 2. After possibly passing to subsequence, γnC ∩L2 6= ∅ and θn is bounded away from
0 for all n� 1. We show that this case is incompatible with our assumption on K-thickness.
As a first step, we show that the sequence γnC satisfies the hypotheses of Lemma 3.2.

To that end, we claim that γnx
+ 6= σ for n� 1. Suppose otherwise. Then, we get (after

passing to a subsequence if necessary) that γmγ
−1
n ∈ Γσ for m,n� 1. In particular, we see
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that γnC and γmC differ by a horizontal translation. Recall that the unboundedness of x−

allowed us to find a sequence tn → ∞ such that r(tn) → x− while γnr(tn) → σ = ∞. Fix
n� 1 so that for allm > n, γmγ

−1
n ∈ Γσ. As m tends to infinity, we see that γnr(tm)→ γnx

−.
Moreover, by assumption, x− is a radial limit point while σ is a parabolic point. This

implies that γnx
− 6= σ. In particular, we get that γnx

− ∈ Λ− {σ} ⊂ S and hence

heightσ(γnr(tm))→ 0,

as m→∞ (see (8) for the definition of heightσ). Thus, it follows that for all m� n,

heightσ(γnr(tm)) 6 heightσ(γnr(tn)).

However, by (9), we have that heightσ(γnr(tn))→∞. In particular, we can find some m > n
so that the following inequalities hold.

heightσ(γmr(tm)) > heightσ(γnr(tn)), heightσ(γnr(tm)) 6 heightσ(γnr(tn)).

Now note that γmr(tm) = (γmγ
−1
n )γnr(tm) while γmγ

−1
n is a horizontal translation which does

not increase height, a contradiction. This proves our claim that γnx
+ 6= σ for n� 1.

This argument implies that the geodesic lines γnl(x
−, x+) are not vertical lines and in

particular that

γnx
+, γnx

− ∈ Λ ∩ S.
The next step is to show that γnC is a Euclidean circle for n � 1, i.e. not a straight line.
Assume otherwise. Since γnl(x

−, x+)∩Hn 6= ∅, we necessarily get that the Euclidean distance
between γnx

− and γnx
+ tends to ∞. But, since both γnx

− and γnx
+ belong to S, we see

that the angle θn between the lines L1 and γnC must tend to 0, contrary to our assumption.
Next, we wish to show that |γnC ∩ Li| = 2 for i = 1, 2 and n � 1. Since γnC are

Euclidean circles and γn∩Li 6= ∅ for i = 1, 2 and n� 1 by assumption, we may assume that
|γnC ∩ L1| = 2. If |γnC ∩ L2| = 1 for n � 1, it is straight forward to check that θn → 0 in
this case using the fact that γnx

± ∈ S and the Euclidean distance between γnx
− and γnx

+

tends to ∞.
This completes the verification of the hypotheses of Lemma 3.2. Thus, if we let γnC∩L1 =
{un, vn} and γnC ∩ L2 = {wn, zn}, we get that

dH3(l(un, vn), l(wn, zn))→ 0.

Next, we verify the hypotheses of Lemma 3.3. The first 4 conditions have been already
verified. As for the last condition, we may left multiply γn by an element of Γσ so as to
translate the midpoint between un and vn so that it’s inside F ∩ L1. Since the distance
between γnx

− and γnx
+ tends to ∞, along with our assumption that θn remains bounded

away from 0, it is elementary to check that this forces |un|, |vn|, |wn| and |zn| to tend to ∞,
which is the last condition in the Lemma. Lemma 3.3 then implies that R(x) is not K-thick
for any K > 1 which is the desired contradiction. �

5. A Recurrence-free Criterion for Denseness

This section is dedicated to the proof of Theorem 1.3. Throughout this section, we assume
Γ is a torsion-free geometrically finite Kleinian group with limit set Λ and that Λ is a circle
packing. We use CΛ to denote the set of circles which meet Λ. The following lemma is the
key ingredient in the proof.
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Lemma 5.1. Let E be a circle such that ΓE is closed. Let Cn be a sequence of circles
such that |Cn ∩ Λ(ΓE)| = 2 and Cn converge to a circle D which is tangent to E. Then,

E ∈
⋃
n ΓCn.

Proof. Let B ⊂ S2 be the disk bounded by E such that D ∩ B 6= ∅. Since Γ is torsion free,
we have that ΓB = ΓE. Hence, we can endow B with a hyperbolic metric in which ΓE acts
by isometries. Moreover, by Theorem 1.4, we have ΓE is finitely generated. Thus, ΓE acts
on B as a geometrically finite Fuchsian group.

Let p1, . . . , pk ∈ E be a maximal set of inequivalent parabolic fixed points under the
action of ΓE. Let H1, . . . , Hk ⊂ B be open disjoint horoballs such that Hi is centered at pi
for i = 1, . . . , k. Since ΓE is geometrically finite, we can also choose these horoballs to satisfy
conditions (a), (b) and (c) in § 2.2. Moreover, we get that ΓE\(hull(Λ(ΓE)) − ∪iΓEHi) is
compact. Here, we take hull(Λ(ΓE)) to be a subset of B in its hyprebolic metric.

Next, for each n, let an, bn ∈ Λ(ΓE) be the 2 distinct points where Cn meets E. Let ln ⊂ B
denote the geodesic joining an and bn in the hyperbolic metric on B.

We claim that for all n,

(hull(Λ(ΓE))− ∪iΓEHi) ∩ ln 6= ∅.

To see this, fix some n and suppose ln∩αHi 6= ∅ for some α ∈ ΓE and some i. Then, since
ln must exit αHi, one has ln ∩ ∂αHi 6= ∅. However, from conditions (b) and (c) in § 2.2, the
horoballs in ΓEHi have disjoint closures, and thus

ln ∩ ∂αHi ⊂ (hull(Λ(ΓE))− ∪iΓEHi).

But, then, by compactness of ΓE\(hull(Λ(ΓE)) − ∪iΓEHi), for each n, one can find an
element βn ∈ ΓE such that βnln meets some fixed compact set K ⊂ B.

Pass to a subsequence and assume βnan and βnbn converge to a and b respectively. Since
βnln meets K for all n, we necessarily have that a 6= b. Thus, we get that that the sequence
of circles βnCn converges to some circle F passing through a and b. We claim that F = E.

Note that if F 6= E, then F ∩B 6= ∅. Now, let An denote the arc Cn ∩B for each n. Note
that, by assumption, Cn → D where D is a horocycle in the hyperbolic metric on B (being
a circle internally tangent to its boundary). Therefore, we get that the geodesic curvature
of An in the hyperbolic metric on B tends to 1 as n→∞.

However, since ΓE acts by isometries on B, the geodesic curvature of An and βnAn are
equal. Therefore, the geodesic curvature of the arc F ∩B must be equal to 1.

But, if F ∩ B is an arc of a circle meeting E in two points, which is an equidistant curve
from the geodesic joining a and b, its curvature cannot be equal to 1. Thus, we get that
F = E as desired.

�

Theorem 1.3 will now follow from Lemma 5.1 and Theorem 4.2 [MMO16a, Theorem 5.1].

Proof of Theorem 1.3. In the notation of Theorem 1.3, let σ be the point where D meets Λ.
Then there exists a component B ⊂ Ω such that

D − {σ} ⊂ B.

Then, since Γ is assumed to be geoemtrically finite, we have that Λ is not contained in a
circle and thus,

(S2 −B) ∩ Λ 6= ∅.
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Let γn ∈ Γ be a sequence such that γnC → D. Since |C ∩ Λ| > 1, we have that for all n:

γnC ∩ (S2 −B) 6= ∅.

Let E = ∂B. We have that Λ(ΓE) = E, since ΓE\B is a finite volume surface. Thus, we
have that

|γnC ∩ E| = |γnC ∩ Λ(ΓE)| = 2.

Now, we can apply Lemma 5.1 with Cn = γnC, D and E to conclude that, after passing
to a subsequence if necessary, γnC → E. Therefore, we can apply Theorem 4.2 to conclude
that

ΓC = CΛ.

�

Theorem 1.3 has the following corollary: if a plane P meets the convex core of M and
such that P is not closed in M , then the closure of P contains uncountably many planes Q
whose invariant circle meets Λ in at most 2 parabolic points. The precise statement is the
following:

Corollary 1. Let C be a circle such that |C ∩ Λ| > 1 and ΓC is not closed. Then, ΓC
contains uncountably many circles, each meeting Λ in uncountably many points, at most 2
of which are parabolic fixed points.

Proof. If ΓC is dense in CΛ, then the statement follows trivially. If not, then by Theorem 1.3,
we know that ΓC cannot contain a circle meeting Λ in only one point. Moreover, by ho-
mogeneity, we know that ΓC contains uncountably many circles. On the other hand, since
any 3 points determine a unique circle and there are only countably many parabolic fixed
points in Λ, we see that ΓC contains at most countably many circles meeting Λ in 3 or more
parabolic points. Thus, the claim follows. �

6. Elementary Closed Orbits

In this section, we prove sufficient conditions for orbits to be closed. Throughout the
section, we fix the following notation

• Γ is a torsion-free geometrically finite Kleinian group.
• The limit set Λ is a circle packing i.e. Ω = S2 − Λ is a union of round open disks.
• C ⊂ S2 is a circle.

6.1. Orbits of Parabolic Subgroups. This section is dedicated to studying orbits of circles
under the action of parabolic subgroups of Γ. A useful first observation is the following

Remark 4. The orbit ΓC is closed if and only if it is discrete. This follows from the
homogeneity of the orbit and countability of Γ.

Lemma 6.1. Let σ ∈ Λ be a rank 1 parabolic fixed point and let Γσ be its stabilizer. Then,
ΓσC is closed.

Proof. Choose coordinates in the upper half space model of H3 such that σ = ∞. In those
coordinates, Γσ ∼= Z acts by discrete translations on the complex plane, fixing ∞. Thus,
ΓσC is a discrete set of parallel circles (or lines if σ ∈ C) in the plane. Hence, ΓσC is closed,
by remark 4. �
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Definition 6.2. Let σ ∈ Λ be a rank 2 parabolic fixed point and let Γσ be its stabilizer.
Put σ =∞ in the upper half space model and let u and v be a basis for the action of Γσ on
R2 i.e. u and v define the 2 lines parallel to the axes of translations of Γσ. A circle C is said
to have a σ-rational slope if σ ∈ C, and for any vector w = au + bv ∈ R2 parallel to C,
b/a ∈ Q.

Lemma 6.3. Let C be a circle such that C ∩ Λ contains a rank 2 parabolic fixed point σ.
Then, ΓσC is closed if and only if C has a σ-rational slope.

Proof. This is an exact analogue of the dichotomy between the behavior of lines with rational
and irrational slopes on the standard torus. �

Remark 5. It should be noted that that in Lemma 6.3, if ΓσC is not closed, then ΓC is in
fact dense in the space of circles which meet Λ.

6.2. Elementary Surfaces. In the remainder of this section, we study planes whose circle at
infinity meets Λ in finitely many (parabolic) points. We prove that all such plane immersions
are closed which is the content of Theorem 1.5.

We split this study into 3 cases depending on the cardinality of the intersection of a circle
with the limit set. The proof relies on endowing connected components of the domain of
discontinuity with a hyperbolic metric in which the Γ action is by isometries. This technique
was used fruitfully in [MMO16a].

Lemma 6.4. Let C ⊂ S2 be a circle such that C ∩ Λ = ∅, then ΓC is closed.

Proof. This follows from the fact that the action of Γ on Ω is properly discontinuous. �

Lemma 6.5 (cf. Section 3 of [MMO16a]). Let C be a circle meeting Λ in only one point, σ.
Suppose σ is a parabolic fixed point. Then, ΓC is closed.

Proof. Let B be the component of the domain of discontinuity Ω such that C − {σ} ⊂ B,
so that σ ∈ ∂B. Let (γn) be a sequence of elements of Γ. We shall show that

{γnC} ⊆ ΓC.

If for infinitely many n 6= m, we have that γnB 6= γmB, then, after passing to a sub-
sequence, we get area(γnB) → 0. But, then we get that the diameter of C also tends to
0.

Thus, after passing to a subsequence, we may assume that there exists some n0 ≥ 1 such
that γnB = γn0B for all n ≥ n0. So, we can reduce to the case where

γn ∈ ΓB

for all n, where ΓB denotes the stabilizer of B in Γ.
Note that B, being a round disk, can be endowed with the hyperbolic metric on H2. In

this metric, the action ΓB is by isometries and C is a horocycle. Also, σ is a parabolic fixed
point for ΓB. Thus, the orbit of C under ΓB is closed by [Dal00, Proposition C]. �

Proof of Theorem 1.5. By Lemmas 6.4 and 6.5, it remains to show the conclusion when
1 < |C ∩ Λ| < ∞. Let σ ∈ C ∩ Λ. Since σ is isolated in C ∩ Λ and |C ∩ Λ| > 1, there
exist 2 distinct components B1, B2 ⊂ Ω such that ∂B1 ∩ ∂B2 = {σ}. We say σ is a point of
tangency of B1 and B2.
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Let B1, . . . , Bn be the distinct components of Ω which C meets. Let Ci = C ∩ Bi, for
i = 1, . . . , n. Then, each Ci is an arc of positive length and C = ∪iCi. Moreover, one has

length(C) =
n∑
i=1

length(Ci),

where length(·) is taken in the Euclidean metric on S2. Note that length(Ci) is bounded
above by the circumference of Bi, for each i.

Let (γk) be a sequence of elements of Γ. We shall show that

{γkC} ⊆ ΓC.

Suppose that for infinitely many k 6= j, we have that γkBi 6= γjBi, for some fixed i ∈
{1, . . . , n}. Then, after passing to a subsequence, we get area(γkBi)→ 0. But, then we get
length(Ci) also tends to 0. If this happens for all Bi, then length(C)→ 0 as k →∞.

Thus, after passing to a subsequence, we may assume without loss of generality that for
all k ≥ 1

γkB1 = B1.

In particular, γk ∈ ΓB1 . Write C ∩ ∂B1 = {σ1, σ2}. As in the proof of Lemma 6.5, we endow
B1 with the hyperbolic metric on H2 in which ΓB1 acts by isometries. Denote this metric by
dH2 . Let l denote the geodesic in this metric whose endpoints are σ1 and σ2.

Now, note that C1 is an equidistant curve from l, i.e. there exists a constant r > 0, for all
x ∈ C1 − {σ1, σ2} such that

dH2(x, l) < r.

Thus, γkC1 is equidistant from γkl for all k. Now, suppose that for all i 6= 1, we have that
area(γkBi)→ 0. Then, it must be that γkσ1 → σ and γkσ2 → σ for the same point σ ∈ ∂B1.
But, since γkl is the geodesic connecting γkσ1 and γkσ2, we have that the Euclidean length
of γkl must tend to 0 as k →∞.

Therefore, we get that the Euclidean length of γkC1 also tends to 0, being equidistant
curves from γkl (in dH2). Finally, since area(γkBi) → 0 for all i 6= 1 by assumption, we get
that length(γkCi)→ 0 for all i 6= 1. But, then length(γkC)→ 0 as k →∞. And, thus, there
exists some i 6= 1 such that area(γkBi) 9 0.

Now, assume that B1, . . . , Bn are ordered using the cyclic order defined by the circle C.
Then, choose Bj (j 6= 1) so that all the components Bi for i between 1 and j (in the cyclic
order on C) on one side have that area(γkBi)→ 0.

Thus, after passing to a further subsequence, since area(γkBj) 9 0, then for all k ≥ 1,

γkBj = Bj.

Hence, we get that for all k ≥ 1

γk ∈ ΓB1 ∩ ΓBj .

Next, suppose that C∩∂B1∩∂Bj 6= ∅. Then, without loss of generality, σ1 ∈ C∩∂B1∩∂Bj.
Thus, we get that ΓB1 ∩ ΓBj ⊆ Γσ1 and, so, for all k ≥ 1

γk ∈ Γσ1 .

Hence, since σ1 is a rank 1 parabolic fixed point, by Lemma 6.1, we get that

{γkC} ⊆ Γσ1C = Γσ1C ⊆ ΓC,

as desired.
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Otherwise, write C ∩ ∂B2 = {σ3, σ4}. Then, since the length of one of the arcs of C
connecting B1 and Bj, say the arc connecting σ1 and σ3, goes to 0 under γk, there exists
α ∈ ∂B1 ∩ ∂Bj such that γkσ1 → α and γkσ3 → α. But, then we get that

ΓB1 ∩ ΓBk ⊆ Γα.

And, thus, similarly, since α is a rank 1 parabolic fixed point (being a tangency point of two
components of Ω), we get the desired conclusion.

7. Limit Sets of Closed Orbits

In this section, we prove Theorem 1.4 concerning the rigidity of closed plane immersions.
The proof is broken up into separate cases handled by the following Lemmas. A complete
proof of the theorem is given at the end of the section. Recall that for a circle C, ΓC denotes
the stabilizer of C in Γ. For a point σ ∈ ∂H3, Γσ denotes the stabilizer of σ in Γ.

Lemma 7.1. Let C be a circle such that ΓC is closed and 1 < |C ∩ Λ| < ∞. Then,
Λ(ΓC) = ∅.

Proof. Observe first that Λ(ΓC) ⊆ Λ ∩ C. In particular, the finiteness of the limit set of the
group ΓC implies that it is elementary (i.e. virtually abelian). Hence, each point of Λ(ΓC)
is fixed by an element of ΓC .

Suppose towards a contradiction that Λ(ΓC) 6= ∅. Let σ ∈ Λ(ΓC). Choose coordinates
in the upper half space model so that σ = ∞ and C is the real axis. If σ is a parabolic
point, then Γσ ∩ΓC acts by horizontal translations. Note that because Λ is a circle packing,
|C ∩ Λ| ≥ 3. Thus, there exists a point σ2 ∈ C ∩ Λ, such that σ 6= σ2. And, hence, we get

(Γσ ∩ ΓC) · σ2 ⊆ C ∩ Λ.

But, (Γσ ∩ ΓC) · σ2 is an infinite collection of points, contrary to the assumption that
|C∩Λ| <∞. Thus, σ must be fixed by a hyperbolic isometry γ ∈ ΓC . Let σ2 ∈ C∩Λ be the
other fixed point of γ and without loss of generality, assume σ is the attracting fixed point.

Choose coordinates so that σ =∞, σ2 = 0 and C is the real axis in the upper half space
model. In these coordinates, γ acts on C by x 7→ xt, for all x ∈ R and some t > 0. Since
|C ∩ Λ| ≥ 3, we can find σ3 in C ∩ Λ, different from σ and σ2. But, then, we get that
γnσ3 ∈ C ∩ Λ for all n ∈ Z. This again contradicts the finiteness of |C ∩ Λ|. �

Lemma 7.2. Let C be such that ΓC is closed. Let σ be a non-isolated point in C ∩ Λ and
assume σ is a parabolic fixed point. Then, σ ∈ Λ(ΓC).

Proof. Choose coordinates in the upper half space model so that σ = ∞ and C is the real
axis. Then, Γσ acts by translations on the complex plane. If σ is a rank 1 parabolic fixed
point, then Λ−{σ} lies inside an infinite strip between two parallel straight lines L1, L2 and
Γσ acts by translations in the direction parallel to these two lines.

Since σ is not isolated in C ∩ Λ, then C ∩ Λ ⊆ R contains sequence λn → ±∞. Hence, C
meets the strip containing the limit set infinitely often and thus must be parallel to L1 and
L2. Hence, C is invariant under Γσ. That is Γσ ⊆ ΓC and so σ ∈ Λ(ΓC).

If σ is a rank 2 parabolic point, then by Lemma 6.3 and Remark 5, since ΓC is closed, C
must have a σ-rational slope. Moreover, by the proof of Lemma 6.3, C is invariant under an
infinite cyclic subgroup of Γσ. Thus, in particular, σ is fixed by a non-trivial element of ΓC

and so σ ∈ Λ(ΓC). �
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Remark 6. Notice that the assumption that ΓC is closed in the statement of the above
lemma was only used when σ was a rank 2 parabolic fixed point.

Lemma 7.3. Let C be such that ΓC is closed. Let σ be a non-isolated point in C ∩ Λ and
assume σ is a radial limit point. Then, σ ∈ Λ(ΓC).

Proof. Let o ∈ hull(C). Since σ ∈ Λ, there exists a sequence (γn) of elements in Γ such that
γno → σ. Moreover, since σ is a radial limit point, there exists a constant r > 0, such that
for all n ≥ 1:

dH3(γno, l(o, σ)) = dH3(o, γ−1
n l(o, σ)) < r,

where l(o, σ) is the geodesic ray starting from o and ending at σ. Note that l(o, σ) ⊂ hull(C).
Thus, we get that for all n ≥ 1,

hull(γ−1
n C) ∩B(o, r) 6= ∅.

But, if the collection of circles γ−1
n C is infinite, then, by Proposition 3, the circles γ−1

n C
must accumulate. But, this would contradict the discreteness of the orbit ΓC. Hence, the
collection of circles γ−1

n C must be finite. Thus, after passing to a subsequence and without
loss of generality, we may assume that for all n ≥ 1,

γn ∈ ΓC .

But, then γno ∈ hull(C) for all n and hence σ ∈ Λ(ΓC) as desired. �

Remark 7. If σ ∈ C ∩Λ is a radial limit point which is isolated in C ∩Λ, then C ∩Λ = {σ}
and ΓC is not closed (by Lemma 6.5). Hence, Lemma 7.3 says that if |C ∩ Λ| > 1 and ΓC
is closed, then every radial limit point in C ∩ Λ belongs to Λ(ΓC).

Proof of Theorem 1.4. First, we automatically have Λ(ΓC) ⊆ C∩Λ. Assume that |C∩Λ| = 1.
Then, by Lemma 6.5 (and its proof), C meets Λ in a rank 1 parabolic fixed point σ and C
is invariant under Γσ. Thus, Γσ ⊆ ΓC and hence σ ∈ Λ(ΓC).

Next, assume that 1 < |C ∩ Λ| <∞. Then, by Lemma 7.1, we have that Λ(ΓC) = ∅ and
the claim follows in this case.

Now, assume |C ∩ Λ| =∞ and that ΓC is closed. Define the following set

A(C) = {λ ∈ C ∩ Λ : ∃λn ∈ C ∩ Λ, λn 6= λ, λn → λ} .
We need to show that Λ(ΓC) = A(C). Note that Λ(ΓC) = 0, 1, 2, or ∞. First, assume

that ΓC is elementary, so that |Λ(ΓC)| = 0, 1, or 2. Then, the same argument used in the
proof of Lemma 7.1 shows that in those cases, we always get that Λ(ΓC) ⊆ A(C). On the
other hand, if Λ(ΓC) is infinite, then it is known that Λ(ΓC) is a perfect closed set with no
isolated points yielding Λ(ΓC) ⊆ A(C) in this case as well.

For the reverse inclusion, let σ ∈ A(C). Since Γ is geometrically finite, σ is either a
parabolic or a radial limit point. In either case, Lemmas 7.2 and 7.3 give that σ ∈ Λ(ΓC) as
desired.

Moreover, the proof of Lemma 7.2 (resp. Lemma 7.3) show that if σ ∈ A(C) is parabolic
(resp. radial) for Γ, then σ is also parabolic (resp. radial) for ΓC . Again, since Γ is
geometrically finite, any point in A(C) is either radial or parabolic. Hence, Λ(ΓC) consists
of parabolic and radial limit points which proves that ΓC is a (non-elementary) geometrically
finite2 Fuchsian group in this case. Hence, ΓC is finitely generated. �

2For fuchsian groups, every parabolic point is bounded.
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8. Isolation and Finiteness of Elementary Orbits

The purpose of this section is to prove a weak form of isolation for closed H-orbits with
elementary stabilizers meeting Core(M), Proposition 1. The following lemma implies Propo-
sition 1.

Lemma 8.1. Let k ∈ N be such that k ≥ 3 and let Bk denote the set of circles C ⊂ S2 such
that |C ∩ Λ| = k. Then, Bk is discrete in the space of circles. Moreover, if a circle C with
|C ∩ Λ| <∞ is an accumulation of circles in Bk, then |C ∩ Λ| < k.

Proof. Suppose that there is some k ≥ 3 and C ∈ Bk such that there exists a sequence of
circles Cn ∈ Bk converging to C.

Let B1, . . . , Bk be the components of Ω meeting C. Let η be the center of one of the disks
in S2 bounded by C and let r be its radius. Let ε > 0 be small enough so that the 2 circles
bounding the 2 disks centered around η and of radius r − ε and r + ε respectively meet Bi

for all i. This is possible because we only have finitely many components Bi.
Next, let Nε(C) be the ε-annulus around C (Definition 2.2). Then, by Proposition 2, we

have that for all n� 1,

Cn ∈ Nε(C).

But, one has that any circle lying entirely inside the annulus Nε(C) must meet Bi, for all i
by choice of ε. Moreover, any circle lying inside Nε(C) and meeting exactly k components
of Ω must pass through all k tangency points of these components. Since k ≥ 3, there is one
unique such circle which is C. Then, Cn must meet strictly more than k components of Ω
for all n � 1, which contradicts the fact that Cn ∈ Bk for all n. The same argument also
implies the second assertion of the lemma. �
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