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Abstract. We prove that the geodesic flow on any geometrically finite locally symmetric space
of negative curvature is super-polynomially mixing with respect to the Bowen-Margulis-Sullivan
measure. When the critical exponent δ is close enough to the dimension D of the boundary at
infinity, we show that the flow is in fact exponentially mixing. The latter result in particular holds
when δ > 2D/3 in the real hyperbolic case and δ > 5D/6 in the general case.

The method is dynamical in nature and is based on constructing anisotropic Banach spaces on
which the generator of the flow admits an essential spectral gap of size depending only on the
critical exponent and the ranks of the cusps of the manifold (if any). Our analysis also yields that
the Laplace transform of the correlation function of smooth observables extends meromorphically
to the entire complex plane in the convex cocompact case and to a strip of explicit size beyond
the imaginary axis in the case the manifold admits cusps. Along the way, we construct a Margulis
function to control recurrence to compact sets when the manifold has cusps.

1. Introduction

Let X be the unit tangent bundle of a quotient of a real, complex, quaternionic, or a Cayley
hyperbolic space by a discrete, geometrically finite, non-elementary group of isometries Γ. Denote
by gt the geodesic flow on X and by mBMS the Bowen-Margulis-Sullivan probability measure of
maximal entropy for gt. Let δΓ be the critical exponent of Γ and D be the dimension of the boundary
at infinity of the associated symmetric space. We refer the reader to Section 2 for definitions. The
following is the main result of this article in its simplest form.

Theorem A. The geodesic flow is super-polynomially mixing with respect to mBMS. More precisely,
for all f, g ∈ C∞c (X), and p, t ≥ 0,∫

X
f ◦ gt · g dmBMS =

∫
X
f dmBMS

∫
X
g dmBMS +Of,p

(
‖g‖C1 t

−p) .
If we further assume that δΓ > 2D/3 in the real hyperbolic case or that δΓ > 5D/6 in the other
cases, then there exist σ0 = σ0(X) > 0 and k ∈ N such that∫

X
f ◦ gt · g dmBMS =

∫
X
f dmBMS

∫
X
g dmBMS + ‖f‖C2 ‖g‖Ck O

(
e−σ0t

)
.

The implied constants also depend on the injectivity radius of the support of g.

In fact, we show that the correlation function admits a finite resonance expansions. We state
this result in the exponential mixing case.

Theorem B. Suppose that either δΓ > 2D/3 in the real hyperbolic case or δΓ > 5D/6 other-
wise. Then, there exists σ > 0, depending only on δΓ and the ranks of the cusps of X (if any)
such that the following holds. There exist k ∈ N, finitely many complex numbers λ1, . . . , λN in
{−σ < Re(z) < 0} ∪ {0}, and finitely many bilinear forms Πi : C2

c (X)× Ckc (X)→ C such that for
all (f, g) ∈ C2

c × Ckc and t ≥ 0,∫
X
f ◦ gt · g dmBMS =

N∑
i=1

Πi(f, g)eλit +Of,g(e
−σt).

Moreover, for λi = 0, we have Πi(f, g) =
∫
f dmBMS

∫
g dmBMS.

1
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Remark 1.1. The above results also hold for functions with unbounded support and controlled
growth in the cusp; cf. Section 8. The dependence on f in the rapidly mixing case is through
its C1 norm as well as a number of its derivatives in the flow direction depending on the rate of
polynomial decay p.

With a little more work, our method can in fact show that exponential mixing along with
Theorem B hold whenever δΓ > D/2 in the real hyperbolic case and when δΓ > 2D/3 in the other
cases. We expect these results to hold without such restrictions on the critical exponent.

The “eigenvalues” λi in Theorem B are commonly referred to as Pollicott-Ruelle resonances.
The phenomenon of having a strip with finitely many resonances in different contexts is commonly
referred to as having an essential spectral gap.

It is worth noting that Theorem B implies that the the size of the essential spectral gap σ
does not change if we replace Γ with a finite index subgroup. The interested reader is referred
to [MN20,MN21] for recent developments yielding uniform resonance free regions for the Laplacian
operator in random covers of convex cocompact hyperbolic surfaces.

Among the motivations for Theorem B is the Jakobson-Naud conjecture concerning the closely
related problem of the size of the essential spectral gap of the hyperbolic Laplacian operator for
convex cocompact hyperbolic surfaces [JN12]. It asserts that the size of such essential spectral gap
is exactly half the critical exponent. We defer the study of essential spectral gaps for Laplacians,
as well as Ruelle/Selberg zeta functions, to future work.

Our analysis also yields the following result. Let δΓ denote the critical exponent of Γ and define

σ(Γ) :=

{
∞, if Γ is convex cocompact,

min {δΓ, 2δΓ − kmax, kmin} , otherwise,

where kmax and kmin denote the maximal and minimal ranks of parabolic fixed points of Γ respec-
tively; cf. Section 2 for definitions.

Given two bounded functions f and g on X, the associated correlation function is defined by

ρf,g(t) :=

∫
X
f ◦ gt · g dmBMS, t ∈ R.

Its (one-sided) Laplace transform is defined for any z ∈ C with positive real part Re(z) as follows:

ρ̂f,g(z) :=

∫ ∞
0

e−ztρf,g(t) dt.

The following result is valid without restrictions on the critical exponent.

Theorem C. Let k ∈ N. For all f, g ∈ Ck+1
c (X), ρ̂f,g is analytic in the half plane Re(z) > 0 and

admits a meromorphic continuation to the half plane:

Re(z) > −min {k, σ(Γ)/2} ,

with the only possible pole on the imaginary axis being the origin. In particular, when Γ is convex
cocompact and f, g ∈ C∞c (X), ρ̂f,g admits a meromorphic extension to the entire complex plane.

Theorem C is deduced from an analogous result on the meromorphic continuation of the family
of resolvent operators z 7→ R(z),

R(z) :=

∫ ∞
0

e−ztLt dt : C∞c (X)→ C∞(X),

defined initially for Re(z) > 0, where Lt is the transfer operator given by f 7→ f ◦ gt. Analogous
results regarding resolvents were obtained for Anosov flows in [GLP13] and Axiom A flows in [DG16,
DG18] leading to a resolution of a conjecture of Smale on the meromorphic continuation of the
Ruelle zeta function; cf. [Sma67]. We refer the reader to [GLP13] for a discussion the history of the
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latter problem and to [GBW22] for related results for finite volume negatively curved manifolds
with hyperbolic cusps.

1.1. Prior results. In the case Γ is convex cocompact, Theorem A is a special case of the results
of [Sto11] which extend the arguments of Dolgopyat [Dol98] to Axiom A flows under certain as-
sumptions on the regularity of the foliations and the holonomy maps. The special case of convex
cocompact hyperbolic surfaces was treated in earlier work of Naud [Nau05]. The extension to frame
flows on convex cocompact hyperbolic manifolds was treated in [SW20].

In the case of real hyperbolic manifolds with δΓ strictly greater than half the dimension of the
boundary at infinity, Theorem A and B follow from the work of [EO21], with much more precise
and explicit estimates on the size of the essential spectral gap. The methods of [EO21] are unitary
representation theoretic, building on results of [LP82], for which the restriction on the critical
exponent is necessary. Earlier instances of these results under more stringent assumptions on the
size of δΓ were obtained in [MO15], albeit the latter results are stronger in that they in fact hold
for the frame flow rather than the geodesic flow.

The case of real hyperbolic geometrically finite manifolds with cusps and arbitrary critical ex-
ponent was only resolved very recently in [LP20] where a symbolic coding of the geodesic flow was
constructed. This approach relies on extensions of Dolgopyat’s method to suspension flows over
shifts with infinitely many symbols; cf. [AM16,AGY06]. However, it seems the approach does not
yield information on the size of the essential spectral gap or the meromorphic continuation of ρ̂f,g.

Finally, we refer the reader to [DG16] and the references therein for a discussion of the history
of the microlocal approach to the problem of spectral gaps via anisotropic Sobolev spaces.

1.2. Organization of the article. After recalling some basic facts in Section 2, we prove a key
doubling result, Proposition 3.1, in Section 3 for the conditional measures of mBMS along the strong
unstable foliation.

In Section 4, we construct a Margulis function which shows, roughly speaking, that generic
orbits with respect to mBMS are biased to return to the thick part of the manifold. In Section 5,
we prove a statement on average exapnsion of vectors in linear representation which is essential for
our construction of the Margulis function. The main difficulty in the latter result in comparison
with the classical setting lies in controlling the shape of sublevel sets of certain polynomials with
respect to conditional measures of mBMS along the unstable foliation.

In Section 6, we define anisotropic Banach spaces arising as completions of spaces of smooth
functions with respect to a dynamically relevant norm and study the norm of the transfer operator
as well as the resolvent in their actions on these spaces in Section 7. The proof of Theorem C
is completed in Section 7. The approach of these two sections follows closely the ideas of [GL06,
GL08,AG13], originating in [BKL02].

The key technical estimate towards establishing Theorems A and B is proven in Section 8, where
the proofs of these latter results are completed. This result is a Dolgopyat-type estimate on the
norm of resolvents with large imaginary parts. The main idea, going back to Dolgopyat, is to
exploit the non-joint integrability of the stable and unstable foliations via a certain oscillatory
integral estimate; cf. [Dol98,Liv04,GLP13,BDL18].

A major difficulty in implementing such philosophy lies in1 estimating certain oscillatory integrals
against the (possibly) fractal Patterson-Sullivan measures. We introduce a dynamical method
which replaces these fractal measures with smooth ones and is based on a refinement of the idea
of transverse intersections used in Roblin’s thesis in the proof of his mixing theorems [Rob03]. We
hope this method can provide a fruitful alternative route to symbolic coding in establishing rates
of mixing of hyperbolic flows in greater generality beyond the case of SRB measures.

1For low dimensional real hyperbolic manifolds, we refer the reader to [BD17] for a breakthrough in this direction in
the case of convex cocompact surfaces and its extension to Schottky 3-manifolds in [LNP21].



4 OSAMA KHALIL

Finally, in Sections 9 and 10, we prove auxiliary technical results needed for the main estimate
in Section 8. For the reader’s convenience, an index of notation for Section 8 is provided at the end
of the article.

Acknowledgements. The author thanks the Hausdorff Research Institute for Mathematics at
the Universität Bonn for its hospitality during the trimester program “Dynamics: Topology and
Numbers” in Spring 2020 where part of this research was conducted. The author also acknowledges
the support of the NSF under grant number DMS-2055364.

2. Preliminaries

We recall here some background and definitions regarding geometrically finite manifolds.

2.1. Geometrically Finite Manifolds. The standard reference for the material in this section
is [Bow93]. Suppose G is a connected simple Lie group of real rank one. Then, G can be identified
with the group of orientation preserving isometries of a real, complex, quaternionic or Cayley
hyperbolic space, denoted Hd

K, of dimension d ≥ 2, where K ∈ {R,C,H,O}. In the case K = O,
d = 2.

Fix a basepoint o ∈ Hd
K. Then, G acts transitively on Hd

K and the stabilizer K of o is a maximal

compact subgroup of G. We shall identify Hd
K with K\G. Denote by A = {gt : t ∈ R} a one

parameter subgroup of G inducing the geodesic flow on the unit tangent bundle of Hd
K. Let M < K

denote the centralizer of A inside K so that the unit tangent bundle T1Hd
K may be identified with

M\G. In Hopf coordinates, we can identify T1Hd
K with R× (∂Hd

K × ∂Hd
K −∆), where ∂Hd

K denotes
the boundary at infinity and ∆ denotes the diagonal.

Let Γ < G be an infinite discrete subgroup of G. The limit set of Γ, denoted ΛΓ, is the set of
limit points of the orbit Γ · o on ∂Hd

K. Note that the discreteness of Γ implies that such limit points
exist and that they all belong to the boundary. Moreover, ΛΓ is the smallest closed Γ invariant
set in ∂Hd

K and as such Γ acts minimally on Λ. In particular, this definition is independent of
the choice of o. We often use Λ to denote ΛΓ when Γ is understood from context. We say Γ is
non-elementary if ΛΓ is infinite.

The hull of ΛΓ, denoted Hull(ΛΓ), is the smallest convex subset of Hd
K containing all the geodesics

joining points in ΛΓ. The convex core of the manifold Hd
K/Γ is the smallest convex subset containing

the image of Hull(ΛΓ). We say Hd
K/Γ is geometrically finite if the unit neighborhood of the convex

core has finite volume, cf. [Bow93]. The non-wandering set for the geodesic flow is the closure of the
set of vectors in the unit tangent bundle whose orbit accumulates on itself. In Hopf coordinates,
this set, denoted Ω, coincides with the projection of R× (ΛΓ × ΛΓ −∆) mod Γ.

A useful equivalent definition of geometric finiteness is that the limit set of Γ consists entirely of
radial and bounded parabolic limit points; cf. [Bow93]. This characterization of geometric finiteness
will be of importance to us and so we recall here the definitions of these objects.

A point ξ ∈ Λ is said to be a radial point if any geodesic ray terminating at ξ returns infinitely
often to a bounded subset of Hd

K/Γ. The set of radial limit points is denoted by Λr.
Denote by N+ the expanding horospherical subgroup of G associated to gt, t ≥ 0. A point p ∈ Λ

is said to be a parabolic point if the stabilizer of p in Γ, denoted by Γp, is conjugate in G to an
unbounded subgroup of MN+. A parabolic limit point p is said to be bounded if (Λ− {p} /Γp)
is compact. An equivalent charachterization is that p ∈ Λ is parabolic if and only if any geodesic
ray terminating at p eventually leaves every compact subset of Hd

K/Γ. The set of parabolic limit
points will be denoted by Λp.

Given g ∈ G, we denote by g+ the coset of P−g in the quotient P−\G, where P− = N−AM is
the stable parabolic group associated to {gt : t ≥ 0}. Similarly, g− denotes the coset P+g in P+\G.
Since M is contained in P±, such a definition makes sense for vectors in the unit tangent bundle
M\G. Geometrically, for v ∈M\G, v+ (resp. v−) is the forward (resp. backward) endpoint of the
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geodesic determined by v on the boundary of Hd
K. Given x ∈ G/Γ, we say x± belongs to Λ if the

same holds for any representative of x in G; this notion being well-defined since Λ is Γ invariant.

Notation. Throughout the remainder of the article, we fix a discrete non-elementary geometrically
finite group Γ of isometries of some (irreducible) rank one symmetric space Hd

K and denote by X

the quotient G/Γ, where G is the isometry group of Hd
K.

2.2. Standard horoballs. Since parabolic points are fixed points of elements of Γ, Λ contains
only countably many such points. Moreover, Γ contains at most finitely many conjugacy classes of
parabolic subgroups. This translates to the fact that Λp consists of finitely many Γ orbits.

Let {p1, . . . , ps} ⊂ ∂Hd
K be a maximal set of nonequivalent parabolic fixed points under the action

of Γ. As a consequence of geometric finiteness of Γ, one can find a finite disjoint collection of open
horoballs H1, . . . ,Hs ⊂ Hd

K with the following properties (cf. [Bow93]):

(a) Hi is centered on pi, for i = 1, . . . , s.
(b) HiΓ ∩HjΓ = ∅ for all i 6= j.
(c) For all i ∈ {1, . . . , s} and γ1, γ2 ∈ Γ

Hiγ1 ∩Hiγ2 6= ∅ =⇒ Hiγ1 = Hiγ2, γ
−1
1 γ2 ∈ Γpi .

(d) Hull(ΛΓ) \ (
⋃s
i=1HiΓ) is compact mod Γ.

2.3. Conformal Densities and the BMS Measure. The critical exponent, denoted δΓ, is
defined to be the infimum over all real number s ≥ 0 such that the Poincaré series

PΓ(s, o) :=
∑
γ∈Γ

e−sd(o,γ·o) (2.1)

converges. We shall simply write δ for δΓ when Γ is understood from context. The Busemann
function is defined as follows: given x, y ∈ Hd

K and ξ ∈ ∂Hd
K, let γ : [0,∞)→ Hd

K denote a geodesic
ray terminating at ξ and define

βξ(x, y) = lim
t→∞

dist(x, γ(t))− dist(y, γ(t)).

A Γ-invariant conformal density of dimension s is a collection of Radon measures
{
νx : x ∈ Hd

K

}
on

the boundary satisfying
dνγx
dνx

(ξ) = e−sβξ(x,γx), ∀ξ ∈ ∂Hd
K.

Given a pair of conformal densities {µx} and {νx} of dimensions s1 and s2 respectively, we can
form a Γ invariant measure on T1Hd

K, denoted by mµ,ν as follows: for x = (ξ1, ξ2, t) ∈ T1Hd
K

dmµ,ν(ξ1, ξ2, t) = es1βξ1 (o,x)+s2βξ2 (o,x) dµo(ξ1) dνo(ξ2) dt.

Moreover, the measure mµ,ν is invariant by the geodesic flow.
When Γ is geometrically finite and K = R, Patterson [Pat76] and Sullivan [Sul79] showed

the existence of a unique (up to scaling) Γ-invariant conformal density of dimension δΓ, denoted{
µPS
x : x ∈ Hd

R
}

. When Γ is geometrically finite, the measure mµPS,µPS
descends to a finite measure

of full support on Ω and is the unique measure of maximal entropy for the geodesic flow. This
measure is called the Bowen-Margulis-Sullivan (BMS for short) measure and is denoted mBMS.

Since the fibers of the projection from G/Γ to T1Hd
K/Γ are compact and parametrized by the

group M , we can lift such a measure to one G/Γ, also denoted mBMS, by taking locally the product
with the Haar probability measure on M . Since M commutes with the geodesic flow, this lift is
invariant under the group A. We refer the reader to [Rob03] and [PPS15] and references therein
for details of the construction in much greater generality than that of Hd

R.



6 OSAMA KHALIL

2.4. Stable and unstable foliations and leafwise measures. The fibers of the projection
G → T1Hd

K are given by the compact group M , which is the centralizer of A inside the maximal

compact group K. In particular, we may lift mBMS to a measure on G/Γ, also denoted mBMS,
and given locally by the product of mBMS with the Haar probability measure on M . The leafwise
measures of mBMS on N+ orbits are given as follows:

dµux(n) = e
δΓβ(nx)+ (o,nx)

dµPS
o ((nx)+). (2.2)

They satisfy the following equivariance property under the geodesic flow:

µugtx = eδtAd(gt)∗µ
u
x. (2.3)

Moreover, it follows readily from the definitions that for all n ∈ N+,

(n)∗µ
u
nx = µux, (2.4)

where (n)∗µ
u
nz is the pushforward of µunz under the map u 7→ un from N+ to itself. Finally, since M

normalizes N+ and leaves mBMS invariant, this implies that these conditionals are Ad(M)-invariant:
for all m ∈M ,

µumx = Ad(m)∗µ
u
x. (2.5)

2.5. Carnot-Caratheodory metrics. We recall the definition of Carnot-Caratheodory metric
on N+, denoted dN+ . These metrics are right invariant under translation by N+, and satisfy the
following convenient scaling property under conjugation by gt. For all r > 0, if N+

r denotes the
ball of radius r around identity in that metric and t ∈ R, then

Ad(gt)(N
+
r ) = N+

etr. (2.6)

To define the metric, we need some notation which we use throughout the article. For x ∈
K, denote by x̄ its K-conjugate and by |x| :=

√
x̄x its modulus. Recall that such norms are

multiplicative in the sense that ‖uv‖ = ‖u‖ ‖v‖. We let ImK denote those x ∈ K such that x̄ = −x.
For example, ImK is the pure imaginary numbers and the subspace spanned by the quaternions i, j
and k in the cases K = C and K = H respectively. For u ∈ K, we write Re(u) = (u + ū)/2 and
Im(u) = (u− ū)/2.

The Lie algebra n+ of N+ splits under Ad(gt) into eigenspaces as n+
α ⊕ n+

2α, where n+
2α = 0 if

and only if K = R. Moreover, we have the identification n+
α
∼= Kd−1 and n+

2α
∼= Im(K) as real vector

spaces; cf. [Mos73, Section 19]. With this notation, we can define the metric as follows: given
(u, s) ∈ n+

α ⊕ n+
2α, the distance of n := exp(u, s) to identity is given by:

dN+(n, Id) :=
(
‖u‖4 + ‖s‖2

)1/4
. (2.7)

Given n1, n2 ∈ N+, we set dN+(n1, n2) = dN+(n1n
−1
2 , Id).

2.6. Local stable holonomy. In this Section, we recall the definition of (stable) holonomy maps
which are essential for our arguments. We give a simplified discussion of this topic which is sufficient
in our homogeneous setting homogeneous. Let x = u−y for some y ∈ Ω and u− ∈ N−2 . Since the
product map N− × A×M ×N+ → G is a diffeomorphism near identity, we can choose the norm
on the Lie algebra so that the following holds. We can find maps p− : N+

1 → P− = N−AM and
u+ : N+

2 → N+ so that

nu− = p−(n)u+(n), ∀n ∈ N+
2 . (2.8)

Then, it follows by (2.2) that for all n ∈ N+
2 , we have

dµuy(u+(n)) = e
δβ(nx)+ (u+(n)y,nx)

dµux(n).



SPECTRAL GAPS ON HYPERBOLIC SPACES 7

Moreover, by further scaling the metrics if necessary, we can ensure that these maps are diffeomor-
phisms onto their images. In particular, writing Φ(nx) = u+(n)y, we obtain the following change
of variables formula: for all f ∈ C(N+

2 ),∫
f(n) dµux(n) =

∫
f((u+)−1(n))e

−δβΦ−1(ny)(ny,Φ
−1(ny))

dµuy(n). (2.9)

Remark 2.1. To avoid cluttering the notation with auxiliary constants, we shall assume that the
N− component of p−(n) belongs to N−2 for all n ∈ N+

2 whenever u− belongs to N−1 .

2.7. Notational convention. Throughout the article, given two quantities A and B, we use the
Vingogradov notation A � B to mean that there exists a constant C ≥ 1, possibly depending on
Γ and the dimension of G, such that |A| ≤ CB. In particular, this dependence on Γ is suppressed
in all of our implicit constants, except when we wish to emphasize it. The dependence on Γ may
include for instance the diameter of the complement of our choice of cusp neighborhoods inside Ω
and the volume of the unit neighborhood of Ω. We write A �x,y B to indicate that the implicit
constant depends parameters x and y. We also write A = Ox(B) to mean A�x B.

3. Doubling Properties of Leafwise Measures

The goal of this section is to prove the following useful consequence of the global measure formula
on the doubling properties of the leafwise measures. The result is immediate in the case Γ is convex
cocompact. In particular, the content of the following result is the uniformity, even in the case Ω
is not compact. The argument is based on the topological transitivity of the flow.

Define the following exponents:

∆ := min {δ, 2δ − kmax, kmin} ,
∆+ := max {δ, 2δ − kmin, kmax} . (3.1)

where kmax and kmin denote the maximal and minimal ranks of parabolic fixed points of Γ respec-
tively. If Γ has no parabolic points, we set kmax = kmin = δ, so that ∆ = ∆+ = δ.

Proposition 3.1 (Global Doubling and Decay). For every 0 < σ ≤ 5, x ∈ N−2 Ω and 0 < r ≤ 1,
we have

µux(N+
σr)�

{
σ∆ · µux(N+

r ) ∀0 < σ ≤ 1, 0 < r ≤ 1,

σ∆+ · µux(N+
r ) ∀σ > 1, 0 < r ≤ 5/σ.

Remark 3.2. The above proposition has very different flavor when applied with σ < 1, compared
with σ > 1. In the former case, we obtain a global rate of decay of the measure of balls on the
boundary, centered in the limit set. In the latter case, we obtain the so-called Federer property for
our leafwise measures.

Remark 3.3. The restriction that r ≤ 5/σ in the case σ > 1 allows for a uniform implied constant.
The proof shows that in fact, when σ > 1, the statement holds for any 0 < r ≤ 1, but with an
implied constant depending on σ.

3.1. Global Measure Formula. Our basic tool in proving Proposition 3.1 is the extension of
Sullivan’s shadow lemma known as the global measure formula, which we recall in this section.

Given a parabolic fixed point p ∈ Λ, with stabilizer Γp ⊂ Γ, we define the rank of p to be
twice the critical exponent of the Poincaré series PΓp(s, o) associated with Γp; cf. (2.1). This rank
is always an integer. In the case of real hyperbolic spaces, it agrees with the dimension of the
unipotent radical Np of the Zariski closure of Γp inside the parabolic subgroup of G stabilizing p.
For general hyperbolic spaces, such a unipotent radical is a nilpotent group of step size at most 2
and fits in an exact sequence

0→ Rl → Np → Rk → 0,
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extending the abelian group Rk by the center Rl. In this case, the rank is equal to 2l + k.
Given ξ ∈ ∂Hd

K, we let [oξ) denote the geodesic ray. For t ∈ R+, denote by ξ(t) the point at

distance t from o on [oξ). For x ∈ Hd
K, define the O(x) to be the shadow of unit ball B(x, 1) in

Hd
K on the boundary as viewed from o. More precisely,

O(x) :=
{
ξ ∈ ∂Hd

K : [oξ) ∩B(x, 1) 6= ∅
}
.

Shadows form a convenient, dynamically defined, collection of neighborhoods of points on the
boundary.

The following generalization of Sullivan’s shadow lemma gives precise estimates on the measures
of shadows with respect to Patterson-Sullivan measures.

Theorem 3.4 (Theorem 3.2, [Sch04]). There exists C = C(Γ, o) ≥ 1 such that for every ξ ∈ Λ and
all t > 0,

C−1 ≤ µPS
o (O(ξ(t)))

e−δted(t)(k(ξ(t))−δ) ≤ C,

where
d(t) = dist(ξ(t),Γ · o),

and k(ξ(t)) denotes the rank of a parabolic fixed point p if ξ(t) is contained in a standard horoball
centered at p and otherwise k(ξ(t)) = δ.

A version of Theorem 3.4 was obtained earlier for real hyperbolic spaces in [SV95] and for complex
and quaternionic hyperbolic spaces in [New03].

3.2. Proof of Proposition 3.1. Assume that σ ≤ 1, the proof in the case σ > 1 being identical.
Fix a non-negative C∞ bump function ψ supported inside N+

1 and having value identically 1 on
N+

1/2. Given ε > 0, let ψε(n) = ψ(Ad(g− log ε)(n)). Note that the condition that ψε(Id) = ψ(Id) = 1

implies that for x ∈ X with x+ ∈ Λ,

µux(ψε) > 0, ∀ε > 0. (3.2)

Note further that for any r > 0, we have that χN+
r
≤ ψr ≤ χN+

2r
.

First, we establish a uniform bound over x ∈ Ω. Consider the following function fσ : Ω→ (0,∞):

fσ(x) = sup
0<r≤1

µux(ψσr)

µux(ψr)
.

We claim that it suffices to prove that

fσ(x)� σ∆, (3.3)

uniformly over all x ∈ Ω and 0 < σ ≤ 1. Indeed, fix some 0 < r ≤ 1 and 0 < σ ≤ 1. By enlarging
our implicit constant if necessary, we may assume that σ ≤ 1/4. From the above properties of ψ,
we see that

µux(N+
σr) ≤ µux(ψ(4σ)(r/2))� σ∆µux(ψr/2) ≤ σ∆µux(N+

r ).

Hence, it remains to prove (3.3). By [Rob03, Lemme 1.16], for each given r > 0, the map
x 7→ µux(ψσr)/µ

u
x(ψr) is a continuous function on Ω. Indeed, the weak-∗ continuity of the map

x 7→ µux is the reason we work with bump functions instead of indicator functions directly. Moreover,
continuity of these functions implies that fσ is lower semi-continuous.

The crucial observation regarding fσ is as follows. In view of (2.3), we have for t ≥ 0,

fσ(gtx) = sup
0<r≤e−t

µux(ψσr)

µux(ψr)
≤ fσ(x).

Hence, for all B ∈ R, the sub-level sets Ω<B := {fσ < B} are invariant by gt for all t ≥ 0. On
the other hand, the restriction of the (forward) geodesic flow to Ω is topologically transitive. In
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particular, any invariant subset of Ω with non-empty interior must be dense in Ω. Hence, in view
of the lower semi-continuity of fσ, to prove (3.3), it suffices to show that fσ satisfies (3.3) for all x
in some open subset of Ω.

Recall we fixed a basepoint o ∈ Hd
K belonging to the hull of the limit set. Let xo ∈ G denote

a lift of o whose projection to G/Γ belongs to Ω. Let E denote the unit neighborhood of xo. We
show that E ∩ Ω ⊂

{
fσ � σ∆

}
. Without loss of generality, we may further assume that σ < 1/2,

by enlarging the implicit constant if necessary.
First, note that the definition of the conditional measures µux immediately gives

µux|N+
4
� µPS

o |(N+
4 ·x)

+ , ∀x ∈ E.

It follows that

µPS
o ((N+

r · x)+)� µux(ψr)� µPS
o ((N+

2r · x)+),

for all 0 ≤ r ≤ 2 and x ∈ E. Hence, it will suffice to show

µPS
o ((N+

σr · x)+)

µPS
o ((N+

r · x)+)
� σ∆,

for all 0 < σ < 1.
To this end, there is a constant C1 ≥ 1 such that the following holds; cf. [Cor90, Theorem 2.2].

For all x ∈ E, if ξ = x+, then, the shadow Sr = {(nx)+ : n ∈ N+
r } satisfies

O(ξ(| log r|+ C1)) ⊆ Sr ⊆ O(ξ(| log r| − C1)), ∀0 < r ≤ 2. (3.4)

Here, and throughout the rest of the proof, if s ≤ 0, we use the convention

O(ξ(s)) = O(ξ(0)) = ∂Hd
K.

Fix some arbitrary x ∈ E and let ξ = x+. To simplify notation, set for any t, r > 0,

tσ := max {| log σr| − C1, 0} , tr := | log r|+ C1,

d(t) := dist(ξ(t),Γ · o), k(t) := k(ξ(t)),

where k(ξ(t)) is as in the notation of Theorem 3.4.
By further enlarging the implicit constant, we may assume for the rest of the argument that

− log σ > 2C1.

This insures that tσ ≥ tr and avoids some trivialities.
Let 0 < r ≤ 1 be arbitrary. We define constants σ0 := σ ≤ σ1 ≤ σ2 ≤ σ3 := 1 as follows. If

k(tσ) = δ (i.e. ξ(tσ) is in the complement of the cusp neighborhoods), we set σ1 = σ. Otherwise,
we define σ1 by the property that ξ(| log σ1r|) is the first point along the geodesic segment joining
ξ(tσ) and ξ(tr) (travelling from the former point to the latter) meets the boundary of the horoball
containing ξ(tσ). Similarly, if k(tr) = δ, we set σ2 = 1. Otherwise, we define σ2 by the property
that ξ(| log σ2r|) is the first point along the same segment, now travelling from ξ(tr) towards ξ(tσ),
which intersects the boudary of the horoball containing ξ(tr). Define

tσ0 := tσ, tσ3 := tr, tσi := | log σir| for i = 1, 2.

In this notation, we first observe that k(tσ1) = k(tσ2) = δ. In particular, Theorem 3.4 yields

µPS
o (Sσ1r)

µPS
o (Sσ2r)

�
(
σ1

σ2

)δ
.

Note further that the projection map Hd
K → Hd

K/Γ restricts to an (isometric) embedding on cusp

horoballs. Combined with convexity of horoballs and the fact that geodesics in Hd
K are unique

distance minimizers, this implies that, for i = 0, 2, the distance between the projections of ξ(tσi)
and ξ(tσi+1) to Hd

K/Γ is equal to |tσi − tσi+1 |. In particular, there is a constant C2 ≥ 1, depending
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only on the diameter of the complement of the cusp neighborhoods in the quotient Hd
K and on the

constant C1, such that, for i = 0, 2, we have

−C2 − log(σi/σi+1) ≤ d(tσi) ≤ − log(σi/σi+1) + C2.

Hence, it follows using Theorem 3.4 and the above discussion that

µPS
o (Sσ0r)

µPS
o (Sσ1r)

�
(
σ0

σ1

)δ
ed(tσ0 )(k(tσ0 )−δ) �

(
σ0

σ1

)2δ−k(tσ0 )

.

Similarly, we obtain

µPS
o (Sσ2r)

µPS
o (Sσ3r)

�
(
σ2

σ3

)δ
e−d(tσ3 )(k(tσ3 )−δ) �

(
σ2

σ3

)k(tσ3 )

.

Therefore, using the following trivial identity

µPS
o (Sσr)

µPS
o (Sr)

=
µPS
o (Sσ0r)

µPS
o (Sσ1r)

µPS
o (Sσ1r)

µPS
o (Sσ2r)

µPS
o (Sσ2r)

µPS
o (Sr)

,

we see that f(x)� σ∆, where ∆ is as in the statement of the proposition. As x ∈ E was arbitrary,
we find that E ⊂

{
fσ � σ∆

}
, thus concluding the proof in the case σ ≤ 1. Note that in the case

σ > 1, the constants σi satisfy σi/σi+1 ≥ 1, so that combining the 3 estimates requires taking the
maximum over the exponents, yielding the bound with ∆+ in place of ∆ in this case.

Now, let r ∈ (0, 1] and suppose x = u−y for some y ∈ Ω and u− ∈ N−2 . By [Cor90, Theorem 2.2],
the analog of (3.4) holds, but with shadows from the viewpoint of x and y, in place of the fixed
basepoint o. Recalling the map n 7→ u+(n) in (2.8), one checks that this implies that this map is
Lipschitz on N+

1 with respect to the Carnot metric, with Lipschitz constant � C1. Moreover, the
Jacobian of the change of variables associated to this map with respect to the measures µux and µuy
is bounded on N+

1 , independently of y and u−; cf. (2.9) for a formula for this Jacobian. Hence, the
estimates for x ∈ N−2 Ω follow from their counterparts for points in Ω.

4. Margulis Functions In Infinite Volume

We construct Margulis functions on Ω which allow us to obtain quantitative recurrence estimates
to compact sets. Our construction is similar to the one in [BQ11] in the case of lattices in rank 1
groups. We use geometric finiteness of Γ to establish the analogous properties more generally. The
idea of Margulis functions originated in [EMM98].

Throughout this section, we assume Γ is non-elementary, geometrically finite group containing
parabolic elements. The following is the main result of this section.

Theorem 4.1. Let ∆ > 0 denote the constant in (3.1). For every 0 < β < ∆/2, there exists a
proper function Vβ : N−1 Ω→ R+ such that the following holds. There is a constant c ≥ 1 such that

for all x ∈ N−1 Ω and t ≥ 0,

1

µux(N+
1 )

∫
N+

1

Vβ(gtnx) dµux(n) ≤ ce−βtVβ(x) + c.

Our key tool in establishing Theorem 4.1 is Proposition 4.2, which is a statement regarding
average expansion of vectors in linear represearntations of G. The fractal nature of the conditional
measures µux poses serious difficulties in establishing this latter result.
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4.1. Construction of Margulis functions. Let p1, . . . , pd ∈ Λ be a maximal set of inequivalent
parabolic fixed points and for each i, let Γi denote the stabilizer of pi in Γ. Let Pi < G denote the
parabolic subgroup of G fixing pi. Denote by Ui the unipotent radical of Pi and by Ai a maximal
R-split torus inside Pi. Then, each Ui is a maximal connected unipotent subgroup of G admitting
a closed (but not necessarily compact) orbit from identity in G/Γ. As all maximal unipotent
subgroups of G are conjugate, we fix elements hi ∈ G so that hiUih

−1
i = N+. Note further that G

admits an Iwasawa decomposition of the form G = KAiUi for each i, where K is our fixed maximal
compact subgroup.

Denote by W the the adjoint representation of G on its Lie algebra. The specific choice of
representation is not essential for the construction, but is convenient for making some parameters
more explicit. We endow that W is endowed with a norm that is invariant by K.

Let 0 6= v0 ∈W denote a vector that is fixed by N+. In particular, v0 is a highest weight vector
for the diagonal group A (with respect to the ordering determined by declaring the roots in N+ to
be positive). Let vi = hiv0/ ‖hiv0‖. Note that each of the vectors vi is fixed by Ui and is a weight
vector for Ai. In particular, there is an additive character χi : Ai → R such that

a · vi = eχi(a)vi, ∀a ∈ Ai. (4.1)

We denote by A+
i the subsemigroup of Ai which expands Ui (i.e. the positive Weyl chamber deter-

mined by Ui). We let αi : Ai → R denote the simple root of Ai in Lie(Ui). Then,

χi = χKαi, χK =

{
1, if K = R,
2 if K = C,H,O.

(4.2)

Given β > 0, we define a function Vβ : G/Γ→ R+ as follows:

Vβ(gΓ) := max
w∈

⋃d
i=1 gΓ·vi

‖w‖−β/χK . (4.3)

The fact that Vβ(gΓ) is indeed a maximum will follow from Lemma 4.6.

4.2. Linear expansion. The following result is our key tool in establishing the contraction esti-
mate on Vβ in Theorem 4.1. A similar result was obtained in [MO20, Lemma 5.6] in the case of
representations of SL2(R).

Proposition 4.2. For every 0 ≤ β < ∆/2, there exists C = C(β) ≥ 1 so that for all t > 0,
x ∈ N−1 Ω, and all non-zero vectors v in the orbit G · v0 ⊂W , we have

1

µux(N+
1 )

∫
N+

1

‖gtn · v‖−β/χK dµux(n) ≤ Ce−βt ‖v‖−β/χK .

We postpone the proof of Proposition 4.2 to Section 5. Let π+ : W →W+ denote the projection
onto the highest weight space of gt. The difficulty in the proof of Proposition 4.2 beyond the case
G = SL2(R) lies in controlling the shape of the subset of N+ on which ‖π+(n · v)‖ is small, so that
we may apply the decay results from Proposition 3.1, that are valid only for balls of the form N+

ε .
We deal with this problem by using a convexity trick. A suitable analog of the above result holds
for any non-trivial linear representation of G.

The following proposition establishes several geometric properties of the functions Vβ which are
useful in proving, and applying, Theorem 4.1. summarizes the main geometric properties of the
functions Vβ. This result is proved in Section 4.4.

Proposition 4.3. Suppose Vβ is as in (4.3). Then,

(1) For every x in the unit neighborhood of Ω, we have that

inj(x)−1 �Γ V
χK/β
β (x),

where inj(x) denotes the injectivity radius at x. In particular, Vβ is proper on Ω.
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(2) For all g ∈ G and all x ∈ X,

‖g‖−β Vβ(x) ≤ Vβ(gx) ≤
∥∥g−1

∥∥β Vβ(x).

(3) There exists a constant ε0 > 0 such that for all x = gΓ ∈ X, there exists at most one vector
v ∈

⋃
i gΓ · vi satisfying ‖v‖ ≤ ε0.

4.3. Proof of Theorem 4.1. In this section, we use Proposition 4.3 to translate the linear ex-
pansion estimates in Proposition 4.2 into a contraction estimate for the functions Vβ.

Let t0 > 0 be be given and define

ω0 := sup
n∈N+

1

max
{
‖gt0n‖

1/χK ,
∥∥(gt0n)−1

∥∥1/χK
}
,

where ‖·‖ denotes the operator norm of the action of G on W . Then, for all n ∈ N+
1 and all x ∈ X,

we have

ω−1
0 V1(x) ≤ V1(gt0nx) ≤ ω0V1(x), (4.4)

where V1 = Vβ for β = 1.
Let ε0 be as in Proposition 4.3(3). Suppose x ∈ X is such that V1(x) ≤ ω0/ε0. Then, by (4.4),

for any β > 0, we have that

1

µux(N+
1 )

∫
N+

1

Vβ(gt0nx) dµux(n) ≤ B0 := (ω2
0ε
−1
0 )β. (4.5)

Now, suppose x ∈ N−1 Ω is such that V1(x) ≥ ω0/ε0 and write x = gΓ for some g ∈ G. Then,

by Proposition 4.3(3), there exists a unique vector v? ∈
⋃
i gΓ · vi satisfying V1(x) = ‖v?‖−1/χK .

Moreover, by (4.4), we have that V1(gt0nx) ≥ 1/ε0 for all n ∈ N+
1 . And, by definition of ω0, for

all n ∈ N+
1 , ‖gt0nv?‖

1/χK ≤ ε0. Thus, applying Proposition 4.3(3) once more, we see that gt0nv? is
the unique vector in

⋃
i gt0ngΓ · vi satisfying

Vβ(gt0nx) = ‖gt0nv?‖
−1/χK , ∀n ∈ N+

1 .

Moreover, since the vectors vi all belong to the G-orbit of v0, it follows that v? also belongs to
G · v0. Thus, we may apply Proposition 4.2 as follows. Fix some β > 0 and let C = C(β) ≥ 1 be
the constant in the conclusion of the proposition. Then,

1

µux(N+
1 )

∫
N+

1

Vβ(gt0nx)dµux =
1

µux(N+
1 )

∫
N+

1

‖gt0nv?‖
−β/χK dµux ≤ Ce−βt0 ‖v?‖

−β/χK = Ce−βt0Vβ(x).

Combining this estimate with (4.5), we obtain for any fixed t0,

1

µux(N+
1 )

∫
N+

1

Vβ(gt0nx) dµux(n) ≤ Ce−βt0Vβ(x) +B0, (4.6)

for all x ∈ Ω. We claim that there is a constant c1 = c1(β) > 0 such that, if t0 is large enough,
depending on β, then

1

µux(N+
1 )

∫
N+

1

Vβ(gkt0nx) dµux(n) ≤ ck1e−βkt0Vβ(x) + 2B0, (4.7)

for all k ∈ N. By Proposition 4.3, this claim completes the proof since Vβ(gty)� Vβ(gbt/t0ct0y), for
all t ≥ 0 and y ∈ X, with an implied constant depending only on t0 and β.

The proof of (4.7) is by now a standard argument, with the key ingredient in carrying it out
being the doubling estimate Proposition 3.1. We proceed by induction. Let k ∈ N be arbitrary and
assume that (4.7) holds for such k. Let

{
ni ∈ Ad(gkt0)(N+

1 ) : i ∈ I
}

denote a finite collection of
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points in the support of µugkt0x
such that N+

1 ni covers the part of the support inside Ad(gkt0(N+
1 )).

We can find such a cover with uniformly bounded multiplicity, depending only on N+. That is∑
i∈I

χN+
1 ni

(n)� χ∪iN+
1 ni

(n), ∀n ∈ N+.

Let xi = nigkt0x. By (4.6), and a change of variable, cf. (2.3) and (2.4), we obtain

eδkt0
∫
N+

1

Vβ(g(k+1)t0nx) dµux ≤
∑
i∈I

∫
N+

1

Vβ(gt0nxi) dµ
u
xi ≤

∑
i∈I

µuxi(N
+
1 )
(
Ce−βt0Vβ(xi) +B0

)
.

It follows using Proposition 4.3 that µuy(N+
1 )Vβ(y)�

∫
N+

1
Vβ(ny) dµuy(n) for all y ∈ X. Hence,∫

N+
1

Vβ(g(k+1)t0nx) dµux(n)� e−δkt0
∑
i∈I

∫
N+

1

(
Ce−βt0Vβ(nxi) +B0

)
dµuxi(n).

Note that since gt expands N+ by at least et, we have

Ak := Ad(g−kt0)

(⋃
i

N+
1 ni

)
⊆ N+

2 .

Using the bounded multiplicity property of the cover, we see that, for any non-negative function
ϕ, we have∑

i∈I

∫
N+

1

ϕ(nxi) dµ
u
xi =

∫
N+

ϕ(ngkt0x)
∑
i∈I

χN+
1 ni

(n) dµugkt0x
�
∫
⋃
iN

+
1 ni

ϕ(ngkt0x) dµugkt0x
.

Changing variables back so the integrals take place against µux, we obtain

e−δkt0
∑
i∈I

∫
N+

1

(
Ce−βt0Vβ(nxi) +B0

)
dµuxi �

∫
Ak

(
Ce−βt0Vβ(gkt0nx) +B0

)
dµux

≤ Ce−βt0
∫
N+

2

Vβ(gkt0nx) dµux +B0µ
u
x(N+

2 ).

To apply the induction hypothesis, we again pick a cover of N+
2 by balls of the form N+

1 n, for a
collection of points n ∈ N+

2 in the support of µux. We can arrange for such a collection to have a
uniformly bounded cardinality and multiplicity. By essentially repeating the above argument, and
using our induction hypothesis for k, in addition to the doubling property in Proposition 3.1, we
obtain

Ce−βt0
∫
N+

2

Vβ(gkt0nx) dµux +B0µ
u
x(N+

2 )� (Cck1e
−β(k+1)t0Vβ(x) + 2B0Ce

−βt0 +B0)µux(N+
1 ),

where we also used Proposition 4.3 to ensure that Vβ(nx) � Vβ(x), for all n ∈ N+
3 . Taking c1 to

be larger than the product of C with all the uniform implied constants accumulated thus far in the
argument, we obtain

1

µux(N+
1 )

∫
N+

1

Vβ(g(k+1)t0nx) dµux(n) ≤ ck+1
1 e−β(k+1)t0Vβ(x) + 2c1e

−βt0B0 +B0.

Taking t0 large enough so that 2c1e
−βt0 ≤ 1 completes the proof.
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4.4. Geometric properties of Margulis functions and proof of Proposition 4.3. In this
section, we give a geometric interpretation of the functions Vβ which allows us to prove Proposi-
tion 4.3. Item (2) follows directly from the definitions, so we focus on the remaining properties.

The data in the definition of Vβ allows us to give a linear description of cusp neighborhoods as
follows. Given g ∈ G and i, write g = kau for some k ∈ K, a ∈ Ai and u ∈ Ui. Geometrically, the
size of the A component in the Iwasawa decomposition G = KAiUi corresponds to the value of the
Busemann cocycle |βpi(Kg, o)|, where Kg is the image of g in K\G; cf. [BQ16, Remark 6.5] and
the references therein for the precise statement. This has the following consequence. We can find
0 < εi < 1 such that ∥∥Ad(a)|Lie(Ui)

∥∥ < εi ⇐⇒ Kg ∈ Hpi , (4.8)

where Hpi is the standard horoball based at pi in Hd
K
∼= K\G.

The functions Vβ(x) roughly measure how far into the cusp x is. More precisely, we have the
following lemma.

Lemma 4.4. The restriction of Vβ to any bounded neighborhood of Ω is a proper map.

Proof. In view of Property (2) of Proposition 4.3, it suffices to prove that Vβ is proper on Ω.
Now, suppose that for some sequence gn ∈ G, we have gnΓ tends to infinity in Ω. Then, since
Γ is geometrically finite, this implies that the injectivity radius at gnΓ tends to 0. Hence, after
passing to a subsequence, we can find γn ∈ Γ such that gnγn belongs to a single horoball among
the horoballs constituting our fixed standard cusp neighborhood; cf. Section 2.2. By modifying γn
on the right by a fixed element in Γ if necessary, we can assume that Kgnγn converges to one of
the parabolic points pi (say p1) on the boundary of Hd

K
∼= K\G.

Moreover, geometric finiteness implies that (ΛΓ \ {p1})/Γ1 is compact. Thus, by multiplying
gnγn by an element of Γ1 on the right if necessary, we may assume that (gnγn)− belongs to a fixed
compact subset of the boundary, which is disjoint from {p1}.

Thus, for all large n, we can write gnγn = knanun, for kn ∈ K, an ∈ Ai and un ∈ Ui, such
that the eigenvalues of Ad(an) are bounded above; cf. (4.8). Moreover, as (gnγn)− belongs to a
compact set that is disjoint from {p1} and (gnγn)+ → p1, the set {un} is bounded. To show that
Vβ(gnΓ)→∞, since Ui fixes vi and K is a compact group, it remains to show that an contracts vi
to 0. Since gnγn is unbounded in G while kn and un remain bounded, this shows that the sequence
an is unbounded. Upper boundedness of the eigenvalues of Ad(an) thus implies the claim. �

Remark 4.5. The above lemma is false without restricting to Ω in the case Γ has infinite covolume
since the injectivity radius is not bounded above on G/Γ. Note also that this lemma is false in the
case Γ is not geometrically finite, since the complement of cusp neighborhoods inside Ω is compact
if and only if Γ is geometrically finite.

The next crucial property of the functions Vβ is the following linear manifestation of the existence
of cusp neighborhoods consisting of disjoint horoballs. This lemma implies Proposition 4.3(3).

Lemma 4.6. There exists a constant ε0 > 0 such that for all x = gΓ ∈ X, there exists at most one
vector v ∈

⋃
i gΓ · vi satisfying ‖v‖ ≤ ε0.

Remark 4.7. The constant ε0 roughly depends on the distance from a fixed basepoint to the cusp
neighborhoods.

Proof of Lemma 4.6. Let g ∈ G and i be given. Write g = kau, for some k ∈ K, a ∈ Ai and u ∈ Ui.
Since Ui fixes vi and the norm on W is K-invariant, we have ‖g · vi‖ = ‖a · vi‖ = eχi(a); cf. (4.1).
Moreover, since W is the adjoint representation, we have∥∥Ad(a)|Lie(Ui)

∥∥ � eχi(a),

and the implied constant, denoted C, depends only on the norm on the Lie algebra.
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Let 0 < εi < 1 be the constants in (4.8) and define ε0 := mini εi/C. Let x = gΓ ∈ G/Γ. Suppose
that there are elements γ1, γ2 ∈ Γ and vectors vi1 , vi2 in our finite fixed collection of vectors vi
such that

∥∥gγj · vij∥∥ < ε0 for j = 1, 2. Then, the above discussion, combined with the choice of

εi in (4.8), imply that Kgγj belongs to the standard horoball Hj in Hd
K based at pij . However,

this implies that the two standard horoballs H1γ
−1
1 and H2γ

−1
2 intersect non-trivially. By choice of

these standard horoballs, this implies that the two horoballs Hjγ
−1
j are the same and that the two

parabolic points pij are equivalent under Γ. In particular, the two vectors vi1 , vi2 are in fact the

same vector, call it vi0 . It also follows that γ−1
1 γ2 sends H1 to itself and fixes the parabolic point

it is based at. Thus, γ−1
1 γ2 fixes vi0 by definition. But, then, we get that

gγ2 · vi0 = gγ1(γ−1
1 γ2) · vi0 = gγ1 · vi0 .

This proves uniqueness of the vector in
⋃
i gΓ ·vi with length less than ε0, if it exists, and concludes

the proof.
�

Finally, we verify Proposition 4.3 (1) relating the injectivity radius to Vβ.

Lemma 4.8. For all x in the unit neighborhood of Ω, we have

inj(x)−1 �Γ V
χK/β
β (x), edist(x,o) �Γ V

1/β
β (x),

where χK is given in (4.2) and o ∈ Ω is our fixed basepoint.

Proof. Let x ∈ Ω and set x̃0 = Kx. Let x0 ∈ K\G ∼= Hd
K denote a lift of x̃0. Then, x0 belongs to

the hull of the limit set of Γ; cf. Section 2.
Since inj(·)−1 and Vβ are uniformly bounded above and below on the complement of the cusp

neighborhoods inside Ω, it suffices to prove the lemma under the assumption that x0 belongs to
some standard horoball H based at a parabolic fixed point p. We may also assume that the lift x0

is chosen so that p is one of our fixed finite set of inequivalent parabolic points {pi}.
Geometric finiteness of Γ implies that there is a compact subset Kp of ∂Hd

K\ {p}, depending
only on the stabilizer Γp in Γ, with the following property. Every point in the hull of the limit
set is equivalent, under Γp, to a point on the set of geodesics joining p to points in Kp. Thus,
after adjusting x0 by an element of Γp if necessary, we may assume that x0 belongs to this set.
In particular, we can find g ∈ G so that x0 = Kg and g can be written as kau in the Iwasawa
decomposition associated to p, for some k ∈ K, a ∈ Ap, and u ∈ Up2 with the property that Ad(a)
is contracting on Up and u is of uniformly bounded size.

Note that it suffices to prove the statement assuming the injectivity radius of x is smaller than
1/3, while the distance of x0 to the boundary of the cusp horoball Hp is at least 1. Now, let γ ∈ Γ
be a non-trivial element such that x0γ is at distance at most 1/2 from x0. Then, this implies
that both x0 and x0γ belong to Hp. In particular, the standard horoballs Hp and Hpγ intersect
non-trivially, and hence must be the same. It follows that γ belongs to Γp.

Let Mp denote the centralizer of Ap inside K. Since Γp is a subgroup of MpUp, we can find v in
the Lie algebra of MpUp so that γ = exp(v). In view of the discreteness of Γ, we have that ‖v‖ � 1.
Since the exponential map is close to an isometry near the origin, we see that

dist(gγg−1, Id) � ‖Ad(au)(v)‖ ≥ eχKα(a) ‖Ad(u)(v)‖ ,

where χK is given in (4.2) and we used K-invariance of the norm. Here, α is the simple root of Ap
in the Lie algebra of Up and eχKα(a) is the smallest eigenvalue of Ad(a) on the Lie algebra of the
parabolic group stabilizing p. Note that since x0 belongs to Hp, α(a) is strictly negative.

2The groups Ap and Up were defined at the beginning of the section.
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Recalling that u belongs to a uniformly bounded neighborhood of identity in G and that ‖v‖ � 1,

it follows that dist(gγg−1, Id)� eχKα(a). Since γ was arbitrary, this shows that the injectivity radius
at x satisfies the same lower bound.

Finally, let vp ∈ {vi} denote the vector fixed by Up. Using the above Iwasawa decomposition, we
see that

V
1/β
β (x) ≥ ‖avp‖−1/χK = e−χp(a)/χK , (4.9)

where χp is the character on Ap determined by vp, cf. (4.1). This concludes the proof of the first
estimate in view of (4.2) and the fact that χp = χKα.

The proof of the second estimate is very similar. We again note that it suffices to establish the
estimate in the case x0 belongs to a horoball H based at a parabolic point p. Let y be an arbitrary
point on the boundary of H. The above argument then shows that |dist(x0, o) − |βp(x0, y)|| � 1,
since the Busemann function |βp(x0, y)| provides the distance between x0 and the boundary of H.
By [BQ16, Remark 6.5], we have | − α(a)− |βp(x0, y)| � 1, where a ∈ Ap is as above. The second
estimate then follows from (4.9). �

5. Shadow Lemmas, Convexity, and Linear Expansion

The goal of this section is to prove Proposition 4.2 estimating the average rate of expansion of
vectors with respect to leafwise measures. This completes the proof of Theorem 4.1.

5.1. Proof of Proposition 4.2. We may assume without loss of generality that ‖v‖ = 1. Let W+

denote the highest weight subspace of W for A+ = {gt : t > 0}. Denote by π+ the projection from
W onto W+. In our choice of representation W , the eigenvalue of A+ in W+ is eχKt, , where χK is
given in (4.2). It follows that

1

µux(N+
1 )

∫
N+

1

‖gtn · v‖−β/χK dµux(n) ≤ e−βt 1

µux(N+
1 )

∫
N+

1

‖π+(n · v)‖−β/χK dµux(n).

Hence, it suffices to show that, for a suitable choice of β, the integral on the right side is uniformly
bounded, independently of v and x (but possibly depending on β).

For simplicity, set βK = β/χK. A simple application of Fubini’s Theorem yields∫
N+

1

‖π+(n · v)‖−βK dµux(n) =

∫ ∞
0

µux

(
n ∈ N+

1 : ‖π+(n · v)‖βK ≤ t−1

)
dt.

For v ∈W , we define a polynomial map on N+ by n 7→ pv(n) := ‖π+(n · v)‖2 and set

S(v, ε) :=
{
n ∈ N+ : pv(n) ≤ ε

}
.

To apply Proposition 3.1, we wish to efficiently estimate the radius of a ball in N+ containing the
sublevel sets S

(
v, t−2/βK

)
∩N+

1 . We have the following claim.

Claim 5.1. There exists a constant C0 > 0, such that, for all ε > 0, the diameter of S(v, ε) ∩N+
1

is at most C0ε
1/4χK .

Let us show how to conclude the proof assuming this claim. By estimating the integral over [0, 1]
trivially, we obtain∫ ∞

0
µux

(
n ∈ N+

1 : ‖π+(n · v)‖βK ≤ t−1

)
dt ≤ µux(N+

1 ) +

∫ ∞
1

µux

(
S
(
v, t−2/βK

)
∩N+

1

)
dt. (5.1)

Claim 5.1 implies that if µux
(
S(v, ε) ∩N+

1

)
> 0 for some ε > 0, then S(v, ε) ∩N+

1 is contained

in a ball of radius 2C0ε
1/4χK , centered at a point in the support of the measure µux|N+

1
. Recalling
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that βK = β/χK, we thus obtain∫ ∞
1

µux

(
S
(
v, t−2/βK

)
∩N+

1

)
dt ≤

∫ ∞
1

sup
n∈supp(µux)∩N+

1

µux

(
BN+

(
n, 2C0t

−1/2β
))

dt, (5.2)

where for n ∈ N+ and r > 0, BN+(n, r) denotes the ball of radius r centered at n.
To estimate the integral on the right side of (5.2), we use the doubling results in Proposition 3.1.

Note that if n ∈ supp(µux), then nx belongs to the limit set ΛΓ. Since x ∈ N−1 Ω by assumption,
this implies that nx belongs to N−2 Ω for all n ∈ N+

1 in the support of µux; cf. Remark 2.1. Hence,
changing variables using (2.4) and applying Proposition 3.1, we obtain for all n ∈ supp(µux) ∩N+

1 ,

µux

(
BN+

(
n, 2C0t

−1/2β
))

= µunx

(
BN+

(
Id, 2C0t

−1/2β
))
� t−∆/2βµunx(N+

1 ).

Moreover, for n ∈ N+
1 , we have, again by Proposition 3.1, that

µunx(N+
1 ) ≤ µux(N+

2 )� µux(N+
1 ).

Put together, this gives∫ ∞
1

sup
n∈supp(µux)∩N+

1

µux

(
BN+

(
n, 2C0t

−1/2β
))

dt� µux(N+
1 )

∫ ∞
1

t−∆/2β dt.

The integral on the right side above converges whenever β < ∆/2, which concludes the proof.

5.2. Prelimiary facts. We begin by recalling the Bruhat decomposition of G. Denote by P− the
subgroup MAN− of G.

Proposition 5.2 (Theorem 5.15, [BT65]). Let w ∈ G denote a non-trivial Weyl “element” satis-
fying wgtw

−1 = g−t. Then,

G = P−N+
⊔
P−w. (5.3)

We shall need the following result. It is a special case of the general results in [Yan20] which
does not require any tools from invariant theory since we work with vectors in the orbit of a highest
weight vector. This result is yet another reflection in linear representations of G of the fact that G
has real rank 1.

Proposition 5.3. Let V be a normed finite dimensional representation of G, and v0 ∈ V be any
highest weight vector for gt (t > 0) with weight eλt for some λ ≥ 0. Let v be any vector in the orbit
G · v0 and define

G(v, V <λ(gt)) =

{
g ∈ G : lim

t→∞

log ‖gtgv‖
t

< λ

}
.

Then, there exists gv ∈ G such that

G(v, V <λ(gt)) ⊆ P−gv.

Proof. Let h ∈ G be such that v = hv0 and let g ∈ G(v, V <λ(gt)). By the Bruhat decomposition,
either gh = pn for some p ∈ P− and n ∈ N+, or gh = pw for some p ∈ P− and w being the
long Weyl “element”. Suppose we are in the first case, and note that N+ fixes v0 since it is a
highest weight vector for gt. Moreover, Ad(gt)(p) converges to some element in G as t tends to
∞. Since gtgv = eλtAd(gt)(p)v0, we see that log ‖gtgv‖ /t→ λ as t tends to ∞, thus contradicting
the assumption that g belongs to G(v, V <λ(gt)). Hence, gh must belong to P−w. This implies the
conclusion by taking gv := wh−1.

�

The following immediate corollary is the form we use this result in our arguments.
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Corollary 5.4. Let the notation be as in Proposition 5.3. Then, N+ ∩G(v,W 0−(gt)) contains at
most one point.

Proof. Recall the Bruhat decomposition of G in Proposition 5.2. Let gv ∈ G be as in Proposition 5.3
and suppose that n0 ∈ P−gv ∩N+. Let p0 ∈ P− be such that n0 = p0gv.

First, assume gv = pvnv for some pv ∈ P− and nv ∈ N+. Then, n0 = p0pvnv. Then, n0n
−1
v ∈

P− ∩N+ = {Id}. In particular, n0 = nv, and the claim follows in this case.
Now assume that gv = pvw for some pv ∈ P−, so that n0 = p0pvw ∈ P−w ∩ N+. This is a

contradiction, since the latter intersection is empty as follows from the Bruhat decomposition.
�

5.3. Convexity and Proof of Claim 5.1. Let B1 ⊂ Lie(N+) denote a compact convex set whose
image under the exponential map contains N+

1 and denote by B2 a compact set containing B1 in
its interior.

Define n+
1 to be the unit sphere in the Lie algebra n+ of N+ in the following sense:

n+
1 :=

{
u ∈ n+ : dN+(exp(u), Id) = 1

}
,

where dN+ is the Carnot-Caratheodory metric on N+; cf. Section 2.5. Given u, b ∈ n+, define a
line `u,b : R→ n+ as follows:

`u,b(t) := tu+ b,

and denote by L the space of all such lines `u,b such that u ∈ n+
1 . We endow L with the topology

inherited from its natural identification with its n+
1 × n+. Then, the subset L(B1) of all such lines

such that b belongs to the compact set B1 is compact in L.
Recall that a vector v ∈ W is said to be unstable if the closure of the orbit G · v contains 0.

Highest weight vectors are examples of unstable vectors. Let N denote the null cone of G in W ,
i.e., the closed cone consisting of all unstable vectors. Let N1 ⊂ N denote the compact set of unit
norm unstable vectors. Note that, for any v ∈ N , the restriction of pv to any ` ∈ L is a polynomial
in t of degree at most that of pv. We note further that the function

ρ(v, `) := sup {pv(`(t)) : `(t) ∈ B2}
is continuous and non-negative on the compact space N1 × L(B1). We claim that

ρ? := inf {ρ(v, `) : (v, `) ∈ N1 × L(B1)}
is strictly positive. Indeed, by continuity and compactness, it suffices to show that ρ is non-
vanishing. Suppose not and let (v, `) be such that ρ(v, `) = 0. Since B1 is contained in the interior
of B2, the intersection

I(`) := {t ∈ R : `(t) ∈ B2}
is an interval (by convexity of B2) with non-empty interior. Since pv(`(·)) is a polynomial vanishing
on a set of non-empty interior, this implies it vanishes identically. On the other hand, Corollary 5.4
shows that pv has at most 1 zero in all of n+, a contradiction.

Positivity of ρ? has the following consequence. Our choice of the representation W implies that
the degree of the polynomial pv is at most 4χK, where χK is given in (4.2). This can be shown by
direct calculation in this case.3 By the so-called (C,α)-good property (cf. [Kle10, Proposition 3.2]),
we have for all ε > 0

| {t ∈ I(`) : pv(`(t)) ≤ ε} | ≤ Cd (ε/ρ?)
1/4χK |I(`)|,

where Cd > 0 is a constant depending only on the degree of pv, and | · | denotes the Lebesgue
measure on R.

3In general, such a degree can be calculated from the largest eigenvalue of gt in W ; for instance by restricting the
representation to suitable subalgebras of the Lie algebra of G that are isomoprhic to sl2(R) and using the explicit
description of sl2(R) representations.
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To use this estimate, we first note that the length of the intervals I(`) is uniformly bounded over
L(B1). Indeed, suppose for some u = (uα, u2α), b ∈ n+ and ` = `u,b ∈ L(B1), I(`) has endpoints
t1 < t2 so that the points `(ti) belong to the boundary of B2. Recall that the Lie algebra n+ of N+

decomposes into gt eigenspaces as n+
α ⊕ n+

2α, where n+
2α = 0 if and only if K = R. Set x1 = `(t1)

and x2 = `(t2). Since N+ is a nilpotent group of step at most 2, the Campbell-Baker-Hausdorff
formula implies that exp(x2) exp(−x1) = exp(Z), where Z ∈ n+ is given by

Z = x2 − x1 +
1

2
[x2,−x1] = (t2 − t1)u+

1

2
(t2 − t1)[b, u].

Note that since n+
2α is the center of n+, [b, u] = [b, uα] belongs to n+

2α. Hence, we have by (2.7) that

dN+(exp(x1), exp(x2)) =

(
(t2 − t1)4 ‖uα‖4 + (t22 − t21)2

∥∥∥∥u2α +
1

2
[b, u]

∥∥∥∥2
)1/4

.

Since exp(u) is at distance 1 from identity, at least one of ‖uα‖ and ‖u2α‖ is bounded below by
10−1. Moreover, we can find a constant θ ∈ (0, 10−2) so that for all b ∈ B1 and all yα ∈ n+

α with
‖yα‖ ≤ θ such that ‖[b, yα]‖ ≤ 10−2. Together this implies that

min
{
t2 − t1, (t22 − t21)1/2

}
� diam (B1) ,

where diam (B1) denotes the diameter of B1. This proves that |I(`)| = t2 − t1 � 1, where the
implicit constant depends only on the choice of B1. We have thus shown that

| {t ∈ I(`) : pv(`(t)) ≤ ε} | � ε1/4χK . (5.4)

We now use our assumption that v belongs to the G orbit of a highest weight vector v0. Since
v0 is a highest weight vector, it is fixed by N+. Hence, the Bruhat decomposition, cf. (5.3) with
the roles of P− and P+ reversed, implies that the orbit G · v0 can be written as

G · v0 = P+ · v0

⊔
P+w · v0,

where w is the long Weyl “element”. Recall that P+ = N+MA, where M is the centralizer of
A = {gt} in the maximal compact group K. In particular, M preserves eigenspaces of A and
normalizes N+. Recall further that the norm on W is chosen to be K-invariant.

First, we consider the case v ∈ P+w · v0 and has unit norm. For v′ ∈ W , we write [v′] for its
image in the projective space P(W ). Then, since w · v0 is a joint weight vector of A, we see that
the image of P+w · v0 in P(W ) has the form N+M · [w · v0]. Setting v1 := w · v0, we see that

S(nm · v1, ε) = S(mv1, ε) · n−1 = Ad(m−1)(S(v1, ε)) · n−1, (5.5)

where we implicitly used the fact that M commutes with the projection π+ and preserves the norm
on W . Since the metric on N+ is right invariant under translations by N+ and is invariant under
Ad(M), the above identity implies that it suffices to estimate the diameter of S(v1, ε) ∩ N+

1 in
the case v ∈ P+w · v0. Similarly, in the case v ∈ P+ · v0, it suffices to estimate the diameter of
S(v0, ε) ∩N+

1 .

Let S̃(v, ε) = logS(v, ε) denote the pre-image of S(v, ε) in the Lie algebra n+ of N+ under the
exponential map. By Corollary 5.4, for any non-zero v ∈ N , either S(v, ε) is empty for all small
enough ε, or there is a unique global minimizer of pv(·) on N+, at which pv vanishes. In either

case, for any given v ∈ N \ {0}, the set S̃(v, ε) is convex for all small enough ε > 0, depending on

v. Let s0 > 0 be such that S̃(v, ε) is convex for v ∈ {v0, v1} and for all 0 ≤ ε ≤ s0.

Fix some v ∈ {v0, v1} and ε ∈ [0, s0]. Suppose that x1 6= x2 ∈ S̃(v, ε) ∩ B1. Let r denote the
distance dN+(x1, x2). Let u′ = x2−x1, u = u′/r and b = x1. Set ` = `u,b and note that `u,b(0) = x1

and `u,b(r) = x2. Since B1 is convex, the set S̃(v, ε) ∩B1 is also convex. Hence, the entire interval
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(0, r) belongs to the set on the left side of (5.4) and, hence, that r � ε1/4χK . Since x1 and x2 were

arbitrary, this shows that the diameter of S̃(v, ε) ∩B1 is O(ε1/4χK) as desired.

6. Anisotropic Banach Spaces and Transfer Operators

In this section, we define the Banach spaces on which the transfer operator and resolvent asso-
ciated to the geodesic flow have good spectral properties.

The transfer operator, denoted Lt, acts on continuous functions as follows: for a continuous
function f , let

Ltf := f ◦ gt. (6.1)

For z ∈ C, the resolvent R(z) : Cc(X)→ C(X) is defined formally as follows:

R(z)f :=

∫ ∞
0

e−ztLtf dt.

If Γ is not convex cocompact, we fix a choice of β > 0 so that Theorem 4.1 holds and set V = Vβ.
If Γ is convex cocompact, we take V = Vβ ≡ 1 and we may take β as large as we like in this case.
Note that the conclusion of Theorem 4.1 holds trivially with this choice of V . In particular, we
shall use its conclusion throughout the argument regardless of whether Γ admits cusps.

Denote by Ck+1
c (X)M the subspace of Ck+1

c (X) consisting of M -invariant functions, where M is
the centralizer of the geodesic flow inside the maximal compact group K. In particular, Ck+1

c (X)M

is naturally identified with the space of Ck+1
c functions on the unit tangent bundle of Hd

K/Γ; cf. Sec-
tion 2. The following is the main result of this section.

Theorem 6.1 (Essential Spectral Gap). Let k ∈ N be given. Then, there exists a seminorm ‖·‖k
on Ck+1

c (X)M , non-vanishing on functions whose support meets Ω, and such that for every z ∈ C,
with Re(z) > 0, the resolvent R(z) extends to a bounded operator on the completion of Ck+1

c (X)M

with respect to ‖·‖k and having spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) is bounded above by 1/(Re(z) + σ0), where

σ0 := min {k, β} .
In particular, if Γ is convex cocompact, we can take σ0 = k.

By the completion of a topological vector space V with respect to a seminorm ‖·‖, we mean the
Banach space obtained by completing the quotient topological vector space V/W with respect to
the induced norm, where W is the kernel of ‖·‖.

The proof of Theorem 6.1 occupies Sections 6 and 7.

6.1. Anisotropic Banach Spaces. We construct a Banach space of functions on X containing
C∞ functions satisfying Theorem 6.1.

Given r ∈ N, let V−r denote the space of all Cr vector fields on N+ pointing in the direction of
the Lie algebra n− of N− and having norm at most 1. More precisely, V−r consists of all Cr maps
v : N+ → n−, with Cr norm at most 1. Similarly, we denote by V0

r the set of Cr vector fields
v : N+ → a := Lie(A), with Cr norm at most 1. Note that if ω ∈ a is the vector generating the
flow gt, i.e. gt = exp(tω), then each v ∈ V0

r is of the form v(n) = φ(n)ω, for some φ ∈ Cr(N+) such
that ‖φ‖Cr(N+) ≤ 1. Define

Vr = V−r ∪ V0
r .

For v ∈ V, denote by Lv the differential operator on C1(X) given by differentiation with respect
to the vector field generated by v. Hence, for ϕ ∈ C1(G/Γ),

Lvϕ(x) = lim
s→0

ϕ(exp(sv)x)− ϕ(x)

s
.

For each k ∈ N, we define a norm on Ck(N+) functions as follows. Letting V+ be the unit ball
in the Lie algebra of N+, 0 ≤ ` ≤ k, and φ ∈ Ck(N+), we define c`(φ) to be the supremum of



SPECTRAL GAPS ON HYPERBOLIC SPACES 21

|Lv1 · · ·Lv`(φ)| over N+ and all tuples (v1, . . . , v`) ∈ (V+)`. We define ‖φ‖Ck to be
∑k

`=0 2−`c`(φ).

One then checks that for all φ1, φ2 ∈ Ck(N+), we have

‖φ1φ2‖Ck ≤ ‖φ1‖Ck ‖φ2‖Ck . (6.2)

Following [GL06, GL08], we define a norm on Ck+1
c (X) as follows. Given f ∈ Ck+1

c (X), k, `
non-negative integers, γ = (γ1, . . . , γ`) ∈ V`k+` (i.e. ` tuple of Ck+` vector fields) and x ∈ X, define

ek,`,γ(f ;x) :=
1

V (x)
sup

1

µux
(
N+

1

) ∣∣∣∣∣
∫
N+

1

φ(n)Lγ1 · · ·Lγ`(f)(gsnx) dµux(n)

∣∣∣∣∣ , (6.3)

where the supremum is taken over all s ∈ [0, 1] and all functions φ ∈ Ck+`(N+
1 ) which are compactly

supported in the interior of N+
1 and having ‖φ‖Ck+`(N+

1 ) ≤ 1.

For γ ∈ V`k+`+1, we define e′k,`,γ(f ;x) analogously to ek,`,γ(f ;x), but where we take s = 0 and

take the supremum over φ ∈ Ck+`+1(N+
1/10) instead4 of Ck+`(N+

1 ). Given r > 0, set

Ω−r := N−r Ω. (6.4)

We define

ek,`,γ(f) := sup
x∈Ω−1

ek,`,γ(f ;x), ek,`(f) = sup
γ∈V`k+`

ek,`,γ(f). (6.5)

Finally, we define ‖f‖k and ‖f‖′k by

‖f‖k := max
0≤`≤k

ek,`(f), ‖f‖′k := max
0≤`≤k−1

sup
γ∈V`k+`+1,x∈Ω−

1/2

e′k,`,γ(f ;x). (6.6)

Note that the (semi-)norm ‖f‖′k is weaker than ‖f‖k since we are using more regular test functions
and vector fields, and we are testing fewer derivatives of f .

Remark 6.2. Since the suprema in the definition of ‖·‖k are restricted to points on Ω−1 , ‖·‖k
defines a seminorm on Ck+1

c (X)M . Moreover, since Ω−1 is invariant by gt for all t ≥ 0, the kernel of
this seminorm, denoted Wk, is invariant by Lt. The seminorm ‖·‖k induces a norm on the quotient

Ck+1
c (X)M/Wk, which we continue to denote ‖·‖k.

Definition 6.3. We denote by Bk the Banach space given by the completion of the quotient
Ck+1
c (X)M/Wk with respect to the norm ‖·‖k, where Ck+1

c (X)M denotes the subspace consisting
of M -invariant functions.

Note that since ‖·‖′k is dominated by ‖·‖k, ‖·‖
′
k descends to a (semi-)norm on Ck+1

c (X)M/Wk

and extends to a (semi-)norm on Bk, again denoted ‖·‖′k.
The following is a reformulation of Theorem 6.1 in the above setup.

Theorem 6.4. For all z ∈ C, with Re(z) > 0, and for all k ∈ N, the operator R(z) extends to
a bounded operator on Bk with spectral radius at most 1/Re(z). Moreover, the essential spectral
radius of R(z) acting on Bk is bounded above by 1/(Re(z) + σ0), where

σ0 := min {k, β} .

In particular, if Γ is convex cocompact, we can take σ0 = k.

4The restriction on the supports allows us to handle non-smooth conditional measures; cf. proof of Prop. 6.6.
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6.2. Hennion’s Theorem and Compact Embedding. Our key tool in estimating the essential
spectral radius is the following refinement of Hennion’s Theorem, based on Nussbaum’s formula.

Theorem 6.5 (cf. [Hen93] and Lemma 2.2 in [BGK07]). Suppose that B is a Banach space with
norm ‖·‖ and that ‖·‖′ is a seminorm on B so that the unit ball in (B, ‖·‖) is relatively compact in
‖·‖′. Suppose R is a bounded operator on B such that for some n ∈ N, there exist constants r > 0
and C > 0 satisfying

‖Rnv‖ ≤ rn ‖v‖B + C ‖v‖′ , (6.7)

for all v ∈ B. Then, the essential spectral radius of R is at most r.

In this Section, we show, roughly speaking, that the unit ball in Bk is relatively compact in the
weak norm ‖·‖′k; Proposition 6.6.

Proposition 6.6. Let K ⊆ X be such that

sup {V (x) : x ∈ K} <∞.

Then, every sequence fn ∈ Ck+1
c (X)M , such that fn is supported in K and has ‖fn‖k ≤ 1 for all

n, admits a Cauchy subsequence in ‖·‖′k.

6.3. Proof of Proposition 6.6. We adapt the arguments in [GL06,GL08] with the main difference
being that we bypass the step involving integration by parts over N+ since our conditionals µux
need not be smooth in general. The idea is to show that since all directions in the tangent space
of X are accounted for in the definition of ‖·‖k (differentiation along the weak stable directions

and integration in the unstable directions), one can estimate ‖·‖′k using finitely many coefficients
ek(f ;xi). More precisely, we first show that there exists C ≥ 1 so that for all sufficiently small
ε > 0, there exists a finite set Ξ ⊂ Ω so that for all f ∈ Ck+1

c (X)M , which is supported in K,

‖f‖′k ≤ Cε ‖f‖k + C sup

∫
N+

1

φLv1 · · ·Lv`f dµ
u
xi , (6.8)

where the supremum is over all 0 ≤ ` ≤ k−1, all (v1, . . . , v`) ∈ V`k+`+1, all functions φ ∈ Ck+`+1(N+
2 )

with ‖φ‖Ck+`+1 ≤ 1 and all xi ∈ Ξ.

First, we show how (6.8) completes the proof. Let fn ∈ Ck+1
c (K) be as in the statement.

Let ε > 0 be small enough so that (6.8) holds. Since Ck+`+1(N+
2 ) is compactly included inside

Ck+`(N+
2 ), we can find a finite collection {φj : j} ⊂ Ck+`(N+

2 ) which is ε dense in the unit ball of

Ck+`+1(N+
2 ). Similarly, we can find a finite collection of vector fields {(vm1 , . . . , vm` ) : m} ⊂ V`k+`

which is ε dense in V`k+`+1 in the Ck+`+1 topology. Then, we can find a subsequence, also denoted
fn, so that the finitely many quantities

{∫
N+

1

φjLvm1 · · ·Lvm` fn dµ
u
xi : i, j,m

}
converge. Together with (6.8), this implies that

‖fn1 − fn2‖
′
k � ε,

for all large enough n1, n2, where we used the fact that ‖fn‖k ≤ 1 for all n. As ε was arbitrary, one
can extract a Cauchy subequence by a standard diagonal argument. Thus, it remains to prove (6.8).

Fix some f ∈ Ck+1
c (X)M which is supported inside K. Let an arbitrary tuple γ = (v1, . . . , v`) ∈

V`k+`+1 be given and set

ψ = Lv1 · · ·Lv`f.
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Let φ ∈ Ck+`+1(N+
1/10) and write Q = N+

1/10. To estimate e′k,`,γ(f ; z) using the right side of (6.8),

we need to estimate integrals of the form

1

V (z)

1

µuz
(
N+

1

) ∫
N+

1

φ(n)ψ(nz) dµuz (n), (6.9)

for all z ∈ Ω−1/2.

Denote by ρ : X → [0, 1] a smooth function which is identically one on the 1-neighborhood Ω1

of Ω and vanishes outside its 2-neighborhood. Note that if f is supported outside of Ω1, then the
integral in (6.9) vanishes for all z and the estimate follows. The same reasoning implies that

‖ρf‖k = ‖f‖k , ‖ρf‖′k = ‖f‖′k .

Hence, we may assume that f is supported inside the intersection of K with Ω1. In particular, for
the remainder of the argument, we may replace K with (the closure of) its intersection with Ω1.

This discussion has the important consequence that we may assume that K is a compact set in
light of Proposition 4.3. Let K1 denote the 1-neighborhood of K and fix some z ∈ K1 ∩ Ω−1/2. By

shrinking ε, we may assume it is smaller than the injectivity radius of K1. Hence, we can find a
finite cover B1, . . . , BM of K1∩Ω−1/2 with flow boxes of radius ε and with centers Ξ := {xi} ⊂ Ω−1/2.

Step 1: We first handle the case where z belongs to the same unstable manifold as one of the
xi’s. Note that we may assume that Q intersects the support of µuz non-trivially, since otherwise
the integral in question is 0. Let u ∈ Q be one point in this intersection and let x = uz. Thus,
by (2.4), we get∫

N+
1

φ(n)ψ(nz) dµuz (n) =

∫
Q
φ(n)ψ(nz) dµuz (n) =

∫
Qu−1

φ(nu)ψ(nx) dµux(n).

Let φu(n) := φ(nu). Then, φu is supported inside Qu−1. Moreover, since u ∈ Q, Qu := Qu−1 is a
ball of radius 1/10 containing the identity element. Hence, Qu−1 ⊂ N+

1 and, thus,∫
Qu

φ(nu)ψ(nx) dµux(n) =

∫
N+

1

φu(n)ψ(nx) dµux(n).

Fix some ε > 0. We may assume that ε < 1/10. Note that x belongs to the 1-neighborhood of
K. Then, x = u−1

2 xi for some i and some u2 ∈ N+
ε , by our assumption in this step that z belongs

to the unstable manifold of one of the xi’s. By repeating the above argument with z, u, x, Q and
φ replaced with x, u2, xi, Qu and φu respectively, we obtain∫

N+
1

φu(n)ψ(nx) dµux(n) =

∫
Quu

−1
2

φu(nu2)ψ(nxi) dµ
u
xi(n).

Note that Qu is contained in the ball of radius 1/5 centered around identity. Since u2 ∈ N+
ε and

ε < 1/10, we see that Quu
−1
2 ⊂ N+

1 . It follows that∫
N+

1

φu(n)ψ(nxi) dµ
u
xi(n) =

∫
N+

1

φu2u(n)ψ(nxi) dµ
u
xi(n),

where φu2u(n) = φu(nu2) = φ(nu2u). The function φu2u satisfies ‖φu2u‖Ck+`+1 = ‖φ‖Ck+`+1 ≤ 1.

Finally, let ϕ1, ϕ2 : N+ → [0, 1] be non-negative bump C0 functions where ϕ1 ≡ 1 on N+
1 and while

ϕ2 is equal to 1 at identity and its support is contained inside N+
1 . Since y 7→ µuy(ϕi) is continuous

for i = 1, 2, by [Rob03, Lemme 1.16], and is non-zero on Ω−1 , we can find, by compactness of K1, a
constant C ≥ 1, depending only on K (and the choice of ϕ1, ϕ2), such that

1/C ≤ µuy
(
N+

1

)
≤ C, ∀y ∈ K1 ∩ Ω−1 . (6.10)

Hence, recalling that ψ = Lv1 · · ·Lv`f and that V (z)� 1, we conclude that the integral in (6.9) is
bounded by the second term in (6.8).
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Step 2: We reduce to the case where z is contained in the unstable manifolds one of the xi’s.
Let i be such that z ∈ Bi. Set z1 = z and let z0 ∈ (N+

ε · xi) be the unique point in the intersection
of N+

ε · xi with the local weak stable leaf of z1 inside Bi. Let p−1 ∈ P− := MAN− be an element
of the ε neighborhood of identity P−ε in P− such that z1 = p−1 z0.

We will estimate the integral in (6.9) using integrals at z0. The idea is to perform weak stable
holonomy between the local strong unstable leaves of z0 and z1. To this end, we need some notation.
Let Y ∈ p− be such that p−1 = exp(Y ) and set

p−t = exp(tY ), zt = p−t z0,

for t ∈ [0, 1]. Let us also consider the following maps u+
t : N+

1 → N+ and p̃−t : N+
1 → P− defined

by the following commutation relations

np−t = p̃−t (n)u+
t (n), ∀n ∈ N+

1 .

Recall we are given a test function φ ∈ Ck+`+1(N+
1/10). We can rewrite the integral we wish to

estimate as follows:∫
N+

1

φ(n)ψ(nz1) dµuz1(n) =

∫
N+

1

φ(n)ψ(np−1 z0) dµuz1(n) =

∫
φ(n)ψ(p̃−1 (n)u+

1 (n)z0) dµuz1(n).

Let U+
t ⊂ N+ denote the image of u+

t . Note that if ε is small enough, U+
t ⊆ N

+
2 for all t ∈ [0, 1].

We may further assume that ε is small enough so that the map u+
t is invertible on U+

t for all
t ∈ [0, 1] and write φt := φ ◦ (u+

t )−1. For simplicity, set

p−t (n) := p̃−t ((u+
t )−1(n)).

Write mt(n) ∈M and b−t (n) ∈ AN− for the components of p−t (n) along M and AN− respectively
so that

p−t (n) = mt(n)b−t (n).

We denote by Jt the Radon-Nikodym derivative of the pushforward of µuz1 by u+
t with respect to

µuzt ; cf. (2.9) for an explicit formula. Thus, changing variables using n 7→ u+
1 (n), and using the

M -invariance of f , we obtain∫
N+

1

φ(n)ψ(nz1) dµuz1 =

∫
φ1(n)ψ(p−1 (n)nz0)J1(n) dµuz0 =

∫
φ1(n)ψ̃1(b−1 (n)nz0)J1(n) dµuz0 ,

where ψ̃t is given by

ψ̃t := Lṽt1 · · ·Lṽt`f, ṽi(n) := Ad(mt((u
+
t )−1(n)))(vi((u

+
t )−1(n))).

Here, we recall that Ad(M) commutes with A and normalizes N− so that ṽti is a vector field with
the same target as vi.

Let b− denote the Lie algebra of AN− and denote by w̃′t : U+
t × [0, 1] → b− the vector field

tangent to the paths defined by b−t . More explicitly, w̃′t is given by the projection of tY to b−.
Denote w̃t(n) := Ad(mt(n))(w̃′t(n)). Then, using the M -invariance of f as above once more, we
can write

ψ(b−1 (n)nz0)− ψ(nz0)) =

∫ 1

0

∂

∂t
ψ̃t(b

−
t (n)nz0) dt =

∫ 1

0
Lw̃t(ψ̃t)(p

−
t (n)nz0) dt.

To simplify notation, let us set wt = w̃t ◦ u+
t , and

Ft := Lṽt1◦u
+
t
· · ·Lṽt`◦u+

t
f.
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Using a reverse change of variables, we obtain for every t ∈ [0, 1] that∫
φ1(n)Lw̃t(ψ̃t)(p

−
t (n)nz0)J1(n) dµuz0 =

∫
(φ1J1) ◦ u+

t (n)Lwt(Ft)(p̃
−
t (n)u+

t (n)z0)J−1
t (n) dµuzt

=

∫
(φ1J1) ◦ u+

t (n) · Lwt(Ft)(nzt) · J−1
t (n) dµuzt(n),

where we used the identities p̃−t (n)u+
t (n) = np−t and zt = p−t z0. Let us write

Φt(n) := (φ1J1) ◦ u+
t (n) · J−1

t (n),

which we view as a test function5. Hence, the last integral above amounts to integrating ` + 1
weak stable derivatives of f against a Ck+` function. Moreover, since φ is supported in N+

1/10, we

may assume that ε is small enough so that Φt is supported in N+
1 for all t ∈ [0, 1], and meets

the requirements on the test functions in the definition of ‖f‖k. Since z = z1 belongs to Ω−1/2 by

assumption, we may further shrink ε if necessary so that the points zt all6 belong to Ω−1 . Thus,
decomposing wt into its A and N− components, and noting that ‖wt‖ � ε, we obtain the estimate∫

Φt(n) · Lwt(Ft)(nzt) dµuzt(n)� ε ‖f‖k V (zt)µ
u
zt(N

+
1 ). (6.11)

To complete the argument, note that the integral we wish to estimate satisfies∫
N+

1

φ(n)ψ(nz1) dµuz1 =

∫
(φ1J1)(n)ψ(nz0) dµuz0 +

∫ 1

0

∫
Φt(n) · Lwt(Ft)(nzt) dµuzt(n) dt. (6.12)

Moreover, recall that z0 belongs to the same unstable manifold as some xi ∈ Ξ. Additionally, since
φ is supported in N+

1/10, by taking ε small enough, we may assume that φ1 is supported inside N+
1/5.

Hence, arguing similarly to Step 1, viewing φ1J1 as a test function, we can estimate the first term
on the right side above using the right side of (6.8).

The second term in (6.12) is also bounded by the right side of (6.8), in view of (6.11). Here we
are using that y 7→ µuy(N+

1 ) and y 7→ V (y) are uniformly bounded as y varies in the compact set
K1; cf. (6.10). This completes the proof of (6.8) in all cases, since φ and z were arbitrary.

7. The Essential Spectral Radius of Resolvents

In this section, we study the operator norm of the transfer operators Lt and the resolvents R(z)
on the Banach spaces constructed in the previous section. These estimates constitute the proof of
Theorem 6.1. With these results in hand, we deduce Theorem C at the end of the section.

7.1. Strong continuity of transfer operators. Recall that a collection of measurable subsets
{Bi} of a space Y are said to have intersection multiplicity bounded by a constant C ≥ 1 if for
all i, the number of sets Bj in the collection that intersect Bi non-trivially is at most C. In this
case, one has ∑

i

χBi(y) ≤ Cχ∪iBi(y), ∀y ∈ Y.

The following lemma implies that the operators Lt are uniformly bounded on Bk for t ≥ 0.

Lemma 7.1. For every k, ` ∈ N ∪ {0}, γ ∈ V`k+`, t ≥ 0, and x ∈ Ω−1 ,

ek,`,γ(Ltf ;x)�β e
−ε(γ)tek,`,γ(f)(e−βt + 1/V (x)),

where ε(γ) ≥ 0 is the number of stable derivatives determined by γ. In partitcular, ε(γ) = 0 if only
if ` = 0 or all components of γ point in the flow direction.

5The Jacobians are smooth maps as they are given in terms of Busemann functions; cf. (2.9).
6This type of estimate is the reason we use stable thickenings Ω−r of Ω in the definition of the norm instead of Ω.
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Proof. Fix some x ∈ Ω and γ = (v1, . . . , v`) ∈ V`k+`. Since the Lie algebra of N− has the orthogonal
decomposition g−α⊕ g−2α, where α is the simple positive root in g with respect to gt, we have that
gt contracts the norm of each stable vector v ∈ V−k+` by at least e−t. It follows that for all v ∈ V−k+`

and w ∈ V0
k+`,

Lv(Ltf)(x) = ‖vt‖Lv̄t(f)(gtx), Lw(Ltf)(x) = Lw(f)(gtx), (7.1)

for all f ∈ Ck+1(X)M , where vt = Ad(gt)(v) and v̄t = vt/ ‖vt‖. Moreover, we have

‖vt‖ ≤ e−t ‖v‖ = e−t ‖v‖ .

Let φ be a test function and ψ ∈ C(X)M . Using (2.3) to change variables, we get∫
N+

1

φ(n)ψ(gtnx) dµux(n) = e−δt
∫

Ad(gt)(N
+
1 )
φ(g−tngt)ψ(ngtx) dµugtx(n).

Let {ρi : i ∈ I} be a partition of unity of Ad(gt)(N
+
1 ) so that each ρi is non-negative, C∞, and

supported inside some ball of radius 1 centered inside Ad(gt)(N
+
1 ). Such a partition of unity can

be chosen so that the supports of ρi have a uniformly bounded multiplicity7, depending only on
N+. Denote by I(Λ) the subset of indices i ∈ I such that there is ni ∈ N+ in the support of the
measure µugtx with the property that the support of ρi is contained in N+

1 · ni. In particular, for
i ∈ I \ I(Λ), ρiµ

u
gtx is the 0 measure. Then, we obtain∫

Ad(gt)(N
+
1 )
φ(g−tngt)ψ(ngtx) dµugtx(n) =

∑
i∈I(Λ)

∫
N+

1 ·ni
ρi(n)φ(g−tngt)ψ(ngtx) dµugtx(n).

Setting xi = nigtx and changing variables using (2.4), we obtain∫
N+

1

φ(n)ψ(gtnx) dµux(n) = e−δt
∑
i∈I(Λ)

∫
N+

1

ρi(nni)φ(g−tnnigt)ψ(nxi) dµ
u
xi(n). (7.2)

The bounded multiplicity of the partition of unity implies that the balls N+
1 ·ni have intersection

multiplicity bounded by a constant C0, depending only on N+. Enlarging C0 if necessary, we may
also choose ρi so that ‖ρi‖Ck+` ≤ C0. In particular, C0 is independent of t and x.

For each i, let φ̄i(n) = ρi(nni)φ(g−tnnigt). Since ρi is chosen to be supported inside N+
1 ni, then

φ̄i is supported inside N+
1 . Moreover, since ρi is C∞, φ̄i is of the same differentiability class as

φ. Since conjugation by g−t contracts N+, we see that ‖φ ◦Ad(g−t)‖Ck+` ≤ ‖φ‖Ck+` ≤ 1 (note
that the supremum norm of φ ◦ Ad(g−t) does not decrease, and hence we do not gain from this
contraction). Hence, since ‖ρi‖Ck+` ≤ C0, (6.2) implies that

∥∥φ̄i∥∥Ck+` ≤ C0.

First, let us suppose that t ≥ 1. Then, using Remark 2.1, since x ∈ N−1 Ω, one checks that xi
belongs to N−1 Ω as well for all i. Applying (7.2) with ψ = Lv1 · · ·Lv`f , we obtain∫

N+
1

φ(n)ψ(gtnx) dµux = e−δt
∑
i∈I(Λ)

∫
N+

1

φ̄i(n)ψ(nxi) dµ
u
xi

≤ C0ek,`,γ(f) ‖φ ◦Ad(g−t)‖Ck+` e
−δt

∑
i∈I(Λ)

µuxi(N
+
1 )V (xi). (7.3)

7Note that the analog of the classical Besicovitch covering theorem fails to hold for N+ with the Carnot-Caratheodory
metric when N+ is not abelian; cf. [KR95, pg. 17]. Instead, such a partition of unity can be constructed using the
Vitali covering lemma with the aid of the right invariance of the Haar measure. To obtain a uniform bound on the
multiplicity here and throughout, it is important that such an argument is applied to balls with uniformly comparable
radii.
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By the log Lipschitz property of V provided by Proposition 4.3, and by enlarging C0 if necessary,
we have V (xi) ≤ C0V (nxi) for all n ∈ N+

1 . It follows that∑
i∈I(Λ)

µuxi(N
+
1 )V (xi) ≤ C0

∑
i∈I(Λ)

∫
N+

1

V (nxi) dµ
u
xi(n).

Recall that the balls N+
1 ·ni have intersection multiplicity at most C0. Moreover, since the support

of ρi is contained inside Ad(gt)(N
+
1 ), the balls N+

1 ni are all contained in N+
2 Ad(gt)(N

+
1 ). Hence,

applying the equivariance properties (2.3) and (2.4) once more yields∑
i∈I(Λ)

∫
N+

1

V (nxi) dµ
u
xi(n) ≤ C0

∫
N+

2 Ad(gt)(N
+
1 )
V (ngtx) dµugtx(n) ≤ C0e

δt

∫
N+

3

V (gtnx) dµux(n).

Here, we used the positivity of V and that Ad(g−t)(N
+
2 )N+

1 ⊆ N+
3 . Combined with (7.2) and the

contraction estimate on V , Theorem 4.1, it follows that∫
N+

1

φ(n)ψ(gtnx) dµux ≤ C3
0 (ce−βtV (x) + c)µux(N+

3 )ek,0(f),

for a constant c ≥ 1 depending on β. By Proposition 3.1, we have µux(N+
3 ) ≤ C1µ

u
x(N+

1 ), for a
uniform constant C1 ≥ 1, which is independent of x. This estimate concludes the proof in view
of (7.1).

Now, let s ∈ [0, 1] and t ≥ 0. If t + s ≥ 1, then the above argument applied with t + s in place
of t implies that∣∣∣∣∣

∫
N+

1

φ(n)ψ(gt+snx) dµux

∣∣∣∣∣�β e
−ε(γ)tek,`,γ(f)(e−βtV (x) + 1)µux(N+

1 ),

as desired. Otherwise, if t+ s < 1, then by definition of ek,`,γ , we have that∣∣∣∣∣
∫
N+

1

φ(n)ψ(gt+snx) dµux

∣∣∣∣∣ ≤ ek,`,γ(f)V (x)µux(N+
1 ).

Since t is at most 1 in this case and V (x)� 1 on Ω−1 , the conclusion of the lemma follows in this
case as well.

�

As a corollary, we deduce the following strong continuity statement which implies that the
infinitesimal generator of the semigroup Lt is well-defined as a closed operator on Bk with dense
domain. When restricted to Ck+1

c (X)M , this generator is nothing but the differentiation operator
in the flow direction. This strong continuity is also important in applying the results of [But16a]
to deduce exponential mixing from our spectral bounds on the resolvent in Section 8.

Corollary 7.2. The semigroup {Lt : t ≥ 0} is strongly continuous; i.e. for all f ∈ Bk,

lim
t↓0
‖Ltf − f‖k = 0.

Proof. For all f ∈ Ck+1
c (X)M , one easily checks that since V (·)� 1 on any bounded neighborhood

of Ω, then

‖Ltf − f‖k � sup
0≤s≤1

‖Lt+sf − Lsf‖Ck(X) .

Moreover, since f belongs to Ck+1, the right side above tends to 0 as t → 0+ by the mean value
theorem. Now, let f be a general element of Bk and let fn ∈ Ck+1

c be a sequence tending to f in
‖·‖k. Then, by the triangle inequality, we have

‖Ltf − f‖k ≤ ‖Ltf − Ltfn‖k + ‖Ltfn − fn‖k + ‖fn − f‖k .
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We note that the first term satisfies the bound

‖Ltf − Ltfn‖k � ‖f − fn‖k ,
uniformly in t ≥ 0, by Lemma 7.1. The conclusion of the corollary thus follows by the previous
estimate for elements of Ck+1

c (X)M . �

7.2. Towards a Lasota-Yorke inequality for the resolvent. Recall that for all n ∈ N,

R(z)n =

∫ ∞
0

tn−1

(n− 1)!
e−ztLt dt, (7.4)

as follows by induction on n. The following corollary is immediate from Lemma 7.1 and the fact
that ∣∣∣∣∫ ∞

0

tn−1

(n− 1)!
e−zt dt

∣∣∣∣ ≤ ∫ ∞
0

tn−1

(n− 1)!
e−Re(z)t dt = 1/Re(z)n, (7.5)

for all z ∈ C with Re(z) > 0.

Corollary 7.3. For all n, k, ` ∈ N ∪ {0}, f ∈ Ck+1
c (X)M and z ∈ C with Re(z) > 0, we have

ek,`(R(z)nf ;x)�β ek,`(f)

(
1

(Re(z) + β)n
+
V (x)−1

Re(z)n

)
�β ek,`(f)/Re(z)n.

In particular, R(z) extends to a bounded operator on Bk with spectral radius at most 1/Re(z).

Note that Lemma 7.1 does not provide contraction in the part of the norm that accounts for the
flow direction. In particular, the estimate in this lemma is not sufficient to control the essential
spectral radius of the resolvent. The following lemma provides the first step towards a Lasota-Yorke
inequality for resolvents for the coefficients ek,` when ` < k. The idea, based on regularization of
test functions, is due to [GL06]. The doubling estimates on conditional measures in Proposition 3.1
are crucial for carrying out the argument.

Lemma 7.4. For all t ≥ 2 and 0 ≤ ` < k, we have

ek,`(Ltf)�k,β e
−ktek,`(f) + e′k,`(f).

Proof. Fix some 0 ≤ ` < k. Let x ∈ Ω−1 and φ ∈ Ck+`(N+
1 ). Let (vi)i ∈ V`k+` and set F =

Lv1 · · ·Lv`f . We wish to estimate the following:

sup
0≤s≤1

∫
N+

1

φ(n)F (gt+snx) dµux.

To simplify notation, we prove the desired estimate for s = 0, the general case being essentially
identical.

Let ε > 0 to be determined and choose ψε to be a C∞ bump function supported inside N+
ε and

satisfying ‖ψε‖C1 � ε−1. Define the following regularization of φ

Mε(φ)(n) =

∫
N+ φ(un)ψε(u) du∫

N+ ψε(u) du
,

where du denotes the right-invariant Haar measure on N+. Recall the definition of the coefficients
cr above (6.2). Let 0 ≤ m < k + ` and (wj) ∈ (V+)m. Then,

|Lw1 · · ·Lwm(φ−Mε(φ))(n)| ≤
∫
|Lw1 · · ·Lwm(φ)(n)− Lw1 · · ·Lwm(φ)(un)|ψε(u) du∫

ψε(u) du

� cm+1(φ)

∫
dist(n, un)ψε(u) du∫

ψε(u) du
.

Now, note that if ψε(u) 6= 0, then dist(u, Id) ≤ ε. Hence, right invariance of the metric on N+

implies that cm(φ−Mε(φ))� εcm+1(φ).
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Moreover, we have that cm(Mε(φ)) ≤ cm(φ) for all 0 ≤ m ≤ k + `. It follows that ck+`(φ −
Mε(φ)) ≤ 2ck+`(φ). Finally, given (wi) ∈ (V+)k+`+1, integration by parts implies

Lw1 · · ·Lwk+`+1
(Mε(φ))(n) =

∫
N+ Lw2 · · ·Lwk+`+1

(φ)(un) · Lw1(ψε)(u) du∫
N+ ψε(u) du

.

In particular, since ‖ψε‖C1 � ε−1, we get ck+`+1(Mε(φ)) � ε−1ck+`(φ). Since gt expands N+ by
at least et, this discussion shows that for any t ≥ 0, if ‖φ‖Ck+` ≤ 1, then

‖(φ−Mε(φ)) ◦Ad(g−t)‖Ck+` � ε

k+`−1∑
m=0

e−mt

2m
+
e−(k+`)t

2k+`
,

‖Mε(φ) ◦Ad(g−t)‖Ck+`+1 �
k+∑̀
m=0

e−mt

2m
+
ε−1e−(k+`+1)t

2k+`+1
. (7.6)

Set At = Ad(gt)(N
+
1 ). Then, taking ε = e−kt, we obtain∫

N+
1

φ(n)F (gtnx) dµux =

∫
φ(n)F (gtnx) dµux

=

∫
(φ−Mε(φ))(n)F (gtnx) dµux +

∫
Mε(φ)(n)F (gtnx) dµux. (7.7)

To estimate the second term, we recall that the test functions for the weak norm were required
to be supported inside N+

1/10. On the other hand, the support of Mε(φ) may be larger, but still

inside N+
1+ε. To remedy this issue, we pick a partition of unity {ρi : i ∈ I} of N+

2 , so that each
ρi is smooth, non-negative, and supported inside some ball of radius 1/20. We also require that
‖ρi‖Ck+`+1 �k 1. We can find such a partition of unity with cardinality and multiplicity, depending
only on N+ (through its dimension and metric).

Similarly to Lemma 7.1, we denote by I(Λ) ⊆ I, the subset of those indices i such that there
is some ni ∈ N+ in the support of of µux so that the support of ρi is contained inside N+

1/10. In

particular, for i ∈ I \ I(Λ), ρiµ
u
x is the 0 measure.

Now, observe that the functions n 7→ ρi(nni)Mε(φ)(nni) are supported inside N+
1/10. Thus,

writing xi = nig1x, using a change of variable, and arguing as in the proof of Lemma 7.1, cf. (7.3),
we obtain

∫
Mε(φ)(n)F (gtnx) dµux = e−δ

∑
i∈I(Λ)

∫
(ρiMε(φ)) ◦Ad(g−1)(n)F (gt−1ng1x) dµug1x

� e′k,`(f) ·
∑
i∈I(Λ)

‖(ρiMε(φ)) ◦Ad(g−t)‖Ck+`+1 · V (xi)µ
u
xi(N

+
1 ).

The point of replacing x with g1x is that since x belongs to N−1 Ω, g1x belongs to N−1/2Ω, which

satisfies the requirement on the basepoints in the definition of the weak norm.
Note that the bounded multiplicity property of the partition of unity, together with the doubing

property in Proposition 3.1, imply that∑
i∈I

µuxi(N
+
1 )� µux(N+

3 )� µux(N+
1 ).

Moreover, combining the Leibniz estimate (6.2) with (7.6), we see that the Ck+`+1 norm of
(ρiMε(φ)) ◦Ad(g−t) is Ok(1). Hence, by properties of the height function V in Proposition 4.3, it
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follows that ∫
Mε(φ)(n)F (gtnx) dµux �k e

′
k,`(f)V (x)µux(N+

1 ).

Using a completely analogous argument to handle the issues of the support of the test function,
we can estimate the first term in (7.7) as follows:

1

V (x)µux(N+
1 )

∫
N+

1

(φ−Mε(φ))(n)F (gtnx) dµux �k e
−ktek,`(f).

Since (vi) ∈ V`k+`, x ∈ Ω−1 and φ ∈ Ck+`(N+
1 ) were all arbitrary, this completes the proof. �

It remains to estimate the coefficients ek,k. First, the following estimate in the case all the
derivatives point in the stable direction follows immediately from Lemma 7.1.

Lemma 7.5. For all γ = (vi) ∈ (V−2k)
k, we have

ek,k,γ(R(z)nf)�β
1

(Re(z) + k)n
ek,k(f).

Proof. Indeed, Lemma 7.1 shows that

ek,k,γ(Ltf)� e−ktek,k(f).

Moreover, induction and integration by parts give |
∫∞

0 tn−1e−(z+k)t/(n− 1)!dt| ≤ 1/(Re(z) + k)n.
This completes the proof. �

To give improved estimates on the the coefficient ek,k,γ in the case some of the components
of γ point in the flow direction, the idea (cf. [AG13, Lem. 8.4] and [GLP13, Lem 4.5]) is to take
advantage of the fact that the resolvent is defined by integration in the flow direction, which provides
additional smoothing. This is leveraged through integration by parts to estimate the coefficient
ek,k by ek,k−1.

To see how such estimate can be turned into a gain on the norm of the resolvents, follow-
ing [AG13], we define the following equivalent norms to ‖·‖k. First, let us define the following
coefficients:

ek,`,s :=

{
ek,` 0 ≤ ` < k,

supγ∈(V−2k)k ek,k,γ ` = k,
, ek,k,ω := sup

γ∈Vk2k\(V
−
2k)k

ek,k,γ .

Given B ≥ 1, define

‖f‖k,B,s :=
k∑
`=0

ek,`,s(f)

B`
, ‖f‖k,B,ω :=

ek,k,ω(f)

Bk
.

Finally, we set
‖f‖k,B := ‖f‖k,B,s + ‖f‖k,B,ω . (7.8)

Lemma 7.6. Let n, k ∈ N and z ∈ C with Re(z) > 0 be given. Then, if B is large enough,
depending on n, k, β and z, we obtain for all f ∈ Ck+1

c (X)M that

‖R(z)nf‖k,B,ω ≤
1

(Re(z) + k + 1)n
‖f‖k,B .

Proof. Fix an integer n ≥ 0. We wish to estimate integrals of the form∫
N+

1

φ(u)Lv1 · · ·Lvk
(∫ ∞

0

tne−zt

n!
Lt+sf dt

)
(ux) dµux(u)

=

∫
N+

1

φ(u)

∫ ∞
0

tne−zt

n!
Lv1 · · ·Lvk(Lt+sf)(ux) dt dµux(u),
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with 0 ≤ s ≤ 1 and at least one of the vi pointing in the flow direction.
First, let us consider the case vk points in the flow direction. Then, vk(u) = ψk(u)ω, where ω

is the vector field generating the geodesic flow, for some function ψk in the unit ball of C2k(N+).
Hence, for a fixed u ∈ N+

1 , integration by parts in t, along with the fact that f is bounded, yields∫ ∞
0

tne−zt

n!
Lv1Lv2 · · ·Lvk(Lt+sf)(ux) dt

= ψk(u)z

∫ ∞
0

tne−zt

n!
Lv1 · · ·Lvk−1

(Lt+sf)(ux) dt− ψk(u)

∫ ∞
0

tn−1e−zt

(n− 1)!
Lv1 · · ·Lvk−1

(Lt+sf)(ux) dt

= ψk(u)zLv1 · · ·Lvk−1
(LsR(z)n+1f)(ux)− ψk(u)Lv1 · · ·Lvk−1

(LsRn(z)f)(ux).

Recall by Lemma 7.1 that ek,`(R(z)nf)�β ek,`(f)/Re(z)n for all n ∈ N; cf. Corollary 7.3. It follows
that

ek,k,γ(R(z)n+1f) ≤ ek,k−1(R(z)nf) + |z|ek,k−1(R(z)n+1f)�β

(
Re(z) + |z|
Re(z)n+1

)
ek,k−1(f).

In the case vk points in the stable direction instead, we note that LvLw = LwLv +L[v,w] for any
two vector fields v and w, where [v, w] is their Lie bracket. In particular, we can write Lv1 · · ·Lvk as
a sum of at most k terms involving k−1 derivatives in addition to one term of the form Lw1 · · ·Lwk ,
where wk points in the flow direction. Each of the terms with one fewer derivative can be bounded
by ek,k−1(R(z)n+1f) �β ek,k−1(f)/Re(z)n+1, while the term with k derivatives is controlled as in

the previous case. Hence, taking the supremum over γ ∈ Vk2k \ (V−2k)
k and choosing B to be large

enough, we obtain the conclusion. �

7.3. Decomposition of the transfer operator according to recurrence of orbits. In order
to make use of the compact embedding result in Proposition 6.6, we need to localize our functions
to a fixed compact set. This is done with the help of the Margulis function V . In this section, we
introduce some notation and prove certain preliminary estimates for that purpose.

Recall the notation in Theorem 4.1. Let T0 ≥ 1 be a constant large enough so that eβT0 > 1.
We will enlarge T0 over the course of the argument to absorb various auxiliary uniform constants.
Define V0 by

V0 = e3βT0 . (7.9)

Let ρV0 ∈ C∞c (X) be a non-negative M -invariant function satisfying ρV0 ≡ 1 on the unit neighbor-
hood of {x ∈ X : V (x) ≤ V0} and ρV0 ≡ 0 on {V > 2V0}. Moreover, we require that ρV0 ≤ 1. Note
that since T0 is at least 1, we can choose ρV0 so that its C2k norm is independent of T0.

Let ψ1 = ρV0 and ψ2 = 1− ψ1. Then, we can write

LT0f = L̃1f + L̃2f,

where L̃if = LT0(ψif), for i ∈ {1, 2}. It follows that for all j ∈ N, we have

LjT0f =
∑

$∈{1,2}j
L̃$1 · · · L̃$jf =

∑
$∈{1,2}j

LjT0(ψ$f), ψ$ =

j∏
i=1

ψ$i ◦ g−(j−i)T0
. (7.10)

Note that if $i = 1 for some 1 ≤ i ≤ j, then, by Proposition 4.3, we have

sup
x∈supp(ψ$)

V (x) ≤ eβI$T0V0, I$ = j −max {1 ≤ i ≤ j : $i = 1} . (7.11)

For simplicity, let us write

f$ := ψ$f.

The following lemma estimates the effect of multiplying by a fixed smooth function such as ψ$.
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Lemma 7.7. Let ψ ∈ C2k(X) be given. Then, if B ≥ 1 is large enough, depending on k and
‖ψ‖C2k , we have

‖ψf‖k,B,s ≤ ‖f‖k,B,s .

Proof. Given 0 ≤ ` ≤ k and 0 ≤ s ≤ 1, we wish to estimate integrals of the form∫
N+

1

φ(n)Lv1 · · ·Lv`(ψf)(gsnx) dµux(n).

The term Lv1 · · ·Lv`(ψf) can be written as a sum of ` terms, each consisting of a product of i
derivatives of ψ by `− i derivatives of f , for 0 ≤ i ≤ `. Viewing the product of φ by i derivatives
of ψ as a Ck+`−i test function, and using (6.2) to bound the Ck+`−i norm of such a product, we
obtain a bound of the form

ek,`,s(ψf) ≤ ‖ψ‖C2k

∑̀
i=0

ek,i,s(f).

Hence, given B ≥ 1, we obtain

‖f‖k,B,s =
k∑
`=0

1

B`
ek,`(ψf) ≤ ‖ψ‖C2k

k∑
`=0

1

B`

∑̀
i=0

ek,i,s(f) ≤ ‖ψ‖C2k

k∑
`=0

k − `
B

ek,`,s(f)

B`
.

Thus, the conclusion follows as soon as B is large enough, depending only on k and ‖ψ‖C2k . �

The above lemma allows us to estimate the norms of the operators L̃i, for i = 1, 2 as follows.

Lemma 7.8. If B ≥ 1 is large enough, depending on k and ‖ρV0‖C2k we obtain∥∥∥L̃1f
∥∥∥
k,B,s

�β ‖f‖k,B,s ,
∥∥∥L̃2f

∥∥∥
k,B,s

�β e
−βT0 ‖f‖k,B,s .

Proof. The first inequality follows by Lemmas 7.1 and 7.7, since ‖ψi‖Ck � 1 for i = 1, 2. The
second inequality follows similarly since

ψ2(gT0nx) 6= 0 =⇒ V (gT0nx) ≥ V0, ∀n ∈ N+
1 .

By Proposition 4.3, this in turn implies that, whenever ψ2(gT0nx) 6= 0 for some n ∈ N+
1 , we have

that V (x)� eβT0 , by choice of V0. �

7.4. Proof of Theorems 6.1 and 6.4. Theorem 6.1 follows at once from 6.4. Theorem 6.4
will follow upon verifying the hypotheses of Theorem 6.5. The boundedness assertion follows by
Corollary 7.3. It remains to estimate the essential spectral radius of the resolvent R(z).

Write z = a+ ib ∈ C. Fix some parameter 0 < θ < 1 and define

σ := min {k, βθ} .
Let 0 < ε < σ/5 be given. We show that for a suitable choice of r and B, the following Lasota-Yorke
inequality holds: ∥∥R(z)r+1f

∥∥
k,B
≤

‖f‖k,B
(a+ σ − 3ε)r+1

+ C ′k,r,z,β ‖Ψrf‖′k , (7.12)

where C ′k,r,z,β ≥ 1 is a constant depending on k, r and z, while Ψr is a compactly supported smooth
function on X, and whose support depends on r.

First, we show how (7.12) implies the result. Note that, since the norms ‖·‖k and ‖·‖k,B are

equivalent, the Lasota-Yorke inequality (7.12) holds with ‖·‖k in place of ‖·‖k,B (with a different

constant C ′k,r,z,β). Hennion’s Theorem, Theorem 6.5, applied with the strong norm ‖·‖k and the

weak semi-norm ‖Ψr•‖′k, implies that the essential spectral radius ρess of R(z) is at most 1/(a +
σ−3ε). Note that the compact embedding requirement follows by Proposition 6.6. Since ε > 0 was
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arbitrary, this shows that ρess(R(z)) ≤ 1/(a + σ). Finally, as 0 < θ < 1 was arbitrary, we obtain
that

ρess(R(z)) ≤ 1

Re(z) + σ0
,

completing the proof.
To show (7.12), let an integer r ≥ 0 be given and Jr ∈ N to be determined. Using (7.10) and a

change of variable, we obtain

R(z)r+1f =

∫ ∞
0

tre−zt

r!
Ltf dt

=

∫ T0

0

tre−zt

r!
Ltf dt+

∫ ∞
(Jr+1)T0

tre−zt

r!
Ltf dt+

Jr∑
j=1

∫ (j+1)T0

jT0

tre−zt

r!
Ltf dt.

First, by Lemma 7.6, if B is large enough, depending on r, k and z, we obtain∥∥R(z)r+1(z)f
∥∥
k,B,ω

≤ 1

(a+ k + 1)r+1
‖f‖k,B .

It remains to estimate
∥∥R(z)r+1f

∥∥
k,B,s

. Note that
∫ T0

0
tre−at

r! dt ≤ T r+1
0 /r!. Hence, taking r large

enough, depending on k, a, β and T0, and using Lemma 7.1, we obtain for any B ≥ 1,∥∥∥∥∫ T0

0

tre−zt

r!
Ltf dt

∥∥∥∥
k,B,s

�β ‖f‖k,B
∫ T0

0

tre−at

r!
dt ≤ 1

(a+ k + 1)r+1
‖f‖k,B .

Similarly, taking Jr to be large enough, depending on k, a, β, and r, we obtain for any B ≥ 1,∥∥∥∥∥
∫ ∞

(Jr+1)T0

tre−zt

r!
Ltf dt

∥∥∥∥∥
k,B,s

�β ‖f‖k,B
∫ ∞

(Jr+1)T0

tre−at

r!
dt ≤ 1

(a+ k + 1)r+1
‖f‖k,B .

To estimate the remaining term in R(z)r+1f , let 1 ≤ j ≤ Jr and $ = ($i)i ∈ {1, 2}j be given.
Let θ$ denote the number of indices i such that $i = 2. Then, taking B large enough, depending
on k and C2k(ψ$), it follows from Lemma 7.1 and induction on Lemma 7.8 that

‖Lt+jT0(ψ$f)‖k,B,s ≤ C0 ‖LjT0(ψ$f)‖k,B,s ≤ C
j+1
0 e−βθ$jT0 ‖f‖k,B,s ,

where we take C0 ≥ 1 to be larger than the implied uniform constant in Lemma 7.8 and the implied
constant in Lemma 7.1. Suppose θ$ ≥ θ. Then, by taking T0 to be large enough, we obtain

‖Lt+jT0(ψ$f)‖k,B,s ≤ e
−(βθ−ε)jT0 ‖f‖k,B,s .

On the other hand, if θ$ < θ, we apply Lemma 7.4 to obtain for all 0 ≤ ` < k,

ek,`(Lt+jT0(ψ$f))�k,β e
−(t+jT0)kek,`(ψ$f) + e′k,`(ψ$f),

where we may assume that T0 is at least 2 so that the same holds for t + jT0, thus verifying the
hypothesis of the lemma. Moreover, we note that (7.11), implies that ψ$ is supported inside a
sublevel set of V , depending only on θ and Jr. Let Ψr denote a smooth bump function on X which
is identically 1 on the union of the (finitely many) supports of ψ$ as $ ranges over tuples in {1, 2}j
with θ$ < θ and for 1 ≤ j ≤ Jr. Note that for any such $, arguing as in the proof of Lemma 7.7,
we obtain

e′k,`(ψ$f) = e′k,`(ψ$Ψrf)�k ‖Ψrf‖′k .

For the coefficient ek,k, Lemma 7.5 shows that for any γ ∈ (V−2k)
k, we have

ek,k,γ(Lt+jT0(ψ$f))�β e
−(t+jT0)kek,k(ψ$f).
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Combining these estimates, and using Lemma 7.7, we obtain

‖Lt+jT0(ψ$f)‖k,B,s ≤ C0e
−(σ−ε)jT0 ‖ψ$f‖k,B,s + Ck,r,z,β ‖Ψrf‖′k

≤ e−(σ−2ε)jT0 ‖ψ$f‖k,B,s + Ck,r,z,β ‖Ψrf‖′k ,

where we enlarge the constant C0 as necessary to subsume the implied constants and the constant
Ck,r,z,β ≥ 1 is large enough, depending on B, so the above inequality holds. The inequality on the
second line follows by taking T0 large enough depending on C0 and ε.

Putting the above estimates together, we obtain∥∥∥∥∥∥
Jr∑
j=1

∫ (j+1)T0

jT0

tre−zt

r!
Ltf dt

∥∥∥∥∥∥
k,B,s

≤
Jr∑
j=1

e−ajT0
∑

$∈{1,2}j

∫ T0

0

(t+ jT0)re−at

r!
‖Lt+jT0(ψ$f)‖k,B,s dt

≤ ‖f‖k,B,s
Jr∑
j=1

e−(a+σ−2ε)jT0

∫ T0

0

(t+ jT0)re−at

r!
dt

+ Ck,r,z,β ‖Ψrf‖′k
Jr∑
j=1

2je−ajT0

∫ T0

0

(t+ jT0)re−at

r!
dt

≤ e(σ−2ε)T0 ‖f‖k,B,s
∫ Jr

1

tre−(a+σ−2ε)t

r!
dt+ C ′k,r,z,β ‖Ψrf‖′k ,

where we take C ′k,r,z,β ≥ 1 to be a constant large enough so that the last inequality holds.
Next, we note that∫ Jr

1

tre−(a+σ−2ε)t

r!
dt ≤

∫ ∞
0

tre−(a+σ−2ε)t

r!
dt =

1

(a+ σ − 2ε)r+1
.

Thus, taking r to be large enough depending on a and T0, and combining the estimates on∥∥R(z)r+1f
∥∥
k,B,ω

and
∥∥R(z)r+1f

∥∥
k,B,s

, we obtain (7.12) as desired.

7.5. Proof of Theorem C. Recall the notation in the statement of the theorem. We note that
switching the order of integration in the definition of the Laplace transform shows that

ρ̂f,g(z) =

∫
R(z)(f)g dmBMS, Re(z) > 0.

In particular, the poles of ρ̂f,g are contained in those of the resolvent R(z).
On the other hand, Corollary 7.2 implies that the infinitesimal generator X of the semigroup Lt

is well-defined as a closed operator on Bk with dense domain. Moreover, R(z) coincides with the
resolvent operator (X−zId)−1 associated to X, whenever z belongs to the resolvent set (complement
of the spectrum) of X.

We further note that the spectra of X and R(z) are related by the formula σ(X) = z− 1/σ(R(z).
In particular, by Theorem 6.4, in the half plane Re(z) > −σ0, the poles of R(z) coincide with the
eigenvalues of X. In view of this relationship between the spectra, the fact that the imaginary axis
does not contain any poles for the resolvent, apart from 0, follows from the mixing property of the
geodesic flow with respect to mBMS. The latter property follows from [Bab02]. We refer the reader
to the proof of [BDL18, Corollary 5.4] for a deduction of this assertion8.

Finally, we note that in the case Γ has cusps, β was an arbitrary constant in (0,∆/2), so that
we may take σ0 in the conclusion of Theorem 6.4 to be the minimum of k and ∆/2 in this case.
This completes the proof of Theorem C.

8The analog of [BDL18, Lemma 2.11] needed in the proof of the quoted result is furnished in Lemma 8.3 below.
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8. Spectral gap for resolvents with large imaginary parts

In this Section, we complete the proof of Theorems A and B. The estimates in Sections 6 and 7
allow us to show that there is a half plane {Re(z) > −η}, for a suitable η > 0, containing at most
countably many isolated eigenvalues for the generator of the geodesic flow. To show exponential
mixing, it is important to rule out the accumulation of such eigenvalues on the imaginary axis as
their imaginary part tends to ∞.

Remark 8.1. Throughout the rest of this section, if X has cusps, we require the Margulis function
V = Vβ in the definition of all the norms we use to have

β = ∆/4 (8.1)

in the notation of Theorem 4.1. In particular, the contraction estimate in Theorem 4.1 holds with
V p in place of V for all 1 ≤ p ≤ 2. Recall that the constant ∆ is given in (3.1).

Similarly to (7.8), we define for B > 0 a similar norm to those defined in (6.6) as follows:

‖f‖1,B := ek,0(f) +
e1,1(f)

B
. (8.2)

The following result is one of the main technical contributions of this article.

Theorem 8.2. There exist constants b? ≥ 1, k ∈ N, % ≥ 0, and κ, a?, σ? > 0, depending only on
the critical exponent δΓ and the ranks of the cusps of Γ (if any), such that the following holds. For
all z = a? + ib ∈ C with |b| ≥ b? and for m = dlog |b|e, we have that

ek,0(R(z)mf) ≤ CΓ

(
ek,0(f)

(a? + |b|−%)m
+

‖f‖1,B
(a? + σ?)m

)
,

where CΓ ≥ 1 is a constant depending only on the fundamental group Γ and B = |b|1+κ.
If we assume in addition that {

δΓ > 2D/3, K = R,
δΓ > 5D/6, K = C,H, or O,

(8.3)

then have that

ek,0(R(z)mf) ≤ CΓ

‖f‖1,B
(a? + σ?)m

.

8.1. Proof of Theorems A and B. We show here the deduction of the exponential mixing
assertion from Theorem 8.2 in the case % = 0 using the results in [But16a]. The deduction of the
rapid mixing assertion is very similar and so it is omitted.

The link between the norms we introduced and decay of correlations is furnished in the following
lemma.

Lemma 8.3. For all f ∈ C2
c (X)M and ϕ ∈ Ckc (X)M , we have that∫

f · ϕ dmBMS � ‖ϕ‖Ck ek,0(f),

where the implied constant depends on the injectivity radius of the support of ϕ.

Proof. Using a partition of unity, we may assume ϕ is supported inside a flow box. The implied
constant then depends on the number of elements of the partition of unity needed to cover the
support of ϕ. Inside each such flow box, the measure mBMS admits a local product structure of the
conditional measures µux with a suitable measure on the transversal to the strong unstable foliation.
Thus, the lemma follows by definition of the norm by viewing the restriction of ϕ to each local
unstable leaf as a test function. �
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In particular, this lemma implies that decay of correlations (for mean 0 functions) would follow
at once if we verify that ek,0(Ltf) decays in t with a suitable rate. It is shown in [But16a]9 that
such decay follows from suitable spectral bounds on the resolvent. We list here the results that
verify the hypotheses of [But16a] and refer the reader to [BDL18, Section 9] where such application
of Butterley’s result is carried out in detail in a similar setting.

We take e′k,0 (defined above (6.5)) to be the weak norm ‖·‖A in the notation of [But16a], while
we take the following as the strong norm:

‖f‖B := ek,0(f) + e1,1(f).

The following corollary verifies [But16a, Assumption 3A].

Corollary 8.4. Let the notation be as in Theorem 8.2 and assume that (8.3) holds. Then, there
exist constants c?, λ? > 0, depending only on the critical exponent δΓ and the ranks of the cusps of
Γ (if any), such that the following holds. For all z = a? + ib ∈ C and for m = dc? log |b|e, we have
the following bound on the operator norm of R(z):

‖R(z)m‖B ≤
1

(a+ λ?)m
,

whenever |b| ≥ bΓ, where bΓ ≥ 1 is a constant depending on Γ.

Proof. First, we verify the corollary for the norm ‖·‖1,B in (8.2), with B = |b|1+κ. Let e1,1,b be

the scaled seminorm e1,1/|b|1+κ. Note that the arguments of Lemmas 7.5 and 7.6 imply that for
z = a? + ib with |b| ≥ a?, we have

e1,1,b(R(z)mf) ≤ CΓ

‖f‖1,B (a? + |z|)
am? b

1+κ ≤
3CΓ ‖f‖1,B
am? |b|κ

,

for some constant CΓ ≥ 1 depending only on Γ, where we used the fact that a? + |z| ≤ 3|b|.
Recall that m = dlog |b|e. Hence, in view of the inequality log(1 + x) ≤ x for x ≥ 0, we see that

am? |b|κ is at least (a? + σ0)m, for some σ0 > 0 depending on a? and κ. Hence, we obtain

e1,1,b(R(z)mf) ≤
3CΓ ‖f‖1,B
(a? + σ0)m

,

This estimate, combined with the estimate in Theorem 8.2 implies that whenever |b| ≥ b?,
‖R(z)m‖1,B �Γ (a? + σ1)−m,

where σ1 > 0 is the minimum of σ? and σ0. In particular, if |b| is large enough, depending on Γ,
we can absorb the implied constant in the estimate above to obtain

‖R(z)m‖1,B ≤ (a? + σ1/2)−m.

Set σ2 = σ1/2. Let p ∈ N be a large integer to be chosen. To obtain the claimed estimate for
the norm ‖·‖B, note that since ‖·‖1,B ≤ ‖·‖B ≤ |b|1+κ ‖·‖1,B, iterating the above estimate yields∥∥R(z)2pmf

∥∥
B ≤

B ‖R(z)pmf‖1,B
(a? + σ2)pm

≤
B ‖f‖B

(a? + σ2)2pm
.

Since m = dlog |b|e, choosing p large enough, depending only on a? and σ2, we can ensure that
B/(a?+σ2)pm ≤ 1/apm? . In particular, taking λ? to be the positive root of the quadratic polynomial
x 7→ x2 + 2a?x− a?σ2, we obtain the desired estimate with c? = 4p. �

Remark 8.5. In the rapid mixing case, to verify [But16a, Assumption 3B], one uses the identity
R(z + w) = R(z)(id − wR(z))−1 for any z ∈ C with Re(z) > 0 and w ∈ C with |w| > 1/a to
estimate the norm of the resolvents to the left of the imaginary axis.

9See also the erratum [But16b].
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Assumption 2 of [But16a] is verified in Theorem 6.4. The strong continuity of the semigroup
Lt is given in Corollary 7.2. Finally, the following lemma verifies the weak Lipschitz property
in [But16a, Assumption 1], completing the proof of Theorems A and B.

Lemma 8.6. For all t ≥ 0,

ek,0(Ltf − f)� te1,1(f) ≤ t ‖f‖B .

Proof. Let x ∈ N−1 Ω, t ≥ 0 and s ∈ [0, 1]. Then, given any test function φ, we have that∫
N+

1

φ(n)(f(gt+snx)− f(gsnx)) dµux =

∫ t

0

∫
N+

1

φ(n)Lωf(gs+rnx) dµuxdr,

where Lω denotes the derivative with respect to the vector field generating the geodesic flow. Hence,
Lemma 7.1 implies that∣∣∣∣∣
∫
N+

1

φ(n)(f(gt+snx)− f(gsnx)) dµux

∣∣∣∣∣ ≤ V (x)µux(N+
1 )

∫ t

0
e1,1(Lrf) dr � tV (x)µux(N+

1 )e1,1(f).

This completes the proof since x and φ are abitrary. �

8.2. Proof of Theorem 8.2. The remainder of this section is dedicated to the proof of Theo-
rem 8.2. Let a ∈ (0, 2] to be determined (cf. (8.53)). We assume that z = a + ib with b > 0, the
other case being identical. For the convenience of the reader, an index of notation for this section
is provided at the end of the article.

Time partition. Let p : R → [0, 1] be a smooth bump function supported in (−1, 1) with the
property that ∑

j∈Z
p(t− j) = 1, ∀t ∈ R. (8.4)

Let m ∈ N and T0 > 0 be parameters to be specified later. Changing variables, we obtain

R(z)m =

∫ ∞
0

tm−1e−zt

(m− 1)!
Lt dt

=

∫ ∞
0

tm−1e−zt

(m− 1)!
p(t/T0)LtR(z)m dt+

∞∑
j=0

((j + 2)T0)m−1e−zjT0

(m− 1)!

∫
R
pj(t)e

−ztLt+jT0 dt, (8.5)

where we define pj as follows:

pj(t) :=

(
jT0 + t

(j + 2)T0

)m−1

p

(
t− T0

T0

)
. (8.6)

Note that pj is supported in the interval (0, 2T0) for all j ≥ 0.
We will estimate the contribution of each term in the sum over j in (8.5) individually. We will

restrict our attention to small values of j, compared to b. For this purpose, let η > 0 be a small
parameter to be determined. Then, similarly to (8.10), we have∑

j:jT0>ηm

((j + 2)T0)m−1e−ajT0

(m− 1)!

∫
R
pj(t)e

−atek,0(Lt+jT0f) dt� ek,0(f)

∫ ∞
ηm

tm−1e−at

(m− 1)!
dt (8.7)

The following lemma estimates the tail of the resolvent integral.

Lemma 8.7. Suppose that aη > 1. Then, there exists θ ∈ (0, 1), such that∫ ∞
ηm

tm−1e−at

(m− 1)!
dt�a,η

(
θ

a

)m
.
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Alternatively, if aη < 1, then there exists ξ ∈ (0, 1) such that if m is large enough, we have∫ ∞
ηm

tm−1e−at

(m− 1)!
dt� 1

(a+ ξm)m
.

Proof. Integration by parts and induction on m yield∫ ∞
ηm

tm−1e−at

(m− 1)!
dt =

e−aηm

am

m−1∑
k=0

(aηm)k

k!
=
e−aηm(aηm)m

amm!

m−1∑
k=0

(m) · · · (k + 1)

(aηm)m−k
.

Note that the kth term of the latter sum is at most (aη)−m+k. Moreover, from Stirling’s formula,

we have that m!� mm+1/2e−m. Hence, when aη > 1, we get∫ ∞
ηm

tm−1e−at

(m− 1)!
dt� e(1−aη)m(aη)m

am
.

Taking θ = aηe1−aη and noting that xe1−x is strictly less than 1 for all x ≥ 0 with x 6= 1, concludes
the proof of the first claim.

For the second estimate, let M = aηm. Estimating the tail of the power series of eM from below
by its first term, we get∫ ∞

ηm

tm−1e−at

(m− 1)!
dt =

1− e−M
∑∞

k=m
Mk

k!

am
≤ 1− (e−MMm/m!)

am
.

Using Stirling’s approximation, we see that (e−MMm/m!) � θmm−1/2, for θ = e(1−aη)aη. Thus,
Bernoulli’s inequality yields∫ ∞

ηm

tm−1e−at

(m− 1)!
dt� 1−m−1/2θm

am
≤

(
1−m−3/2θm

a

)m
,

Finally, we note that since θ < 1, when m is large enough, (1 − m−3/2θm)/a is at most 1/(a +
a(θ/2)m). Thus, the estimate follows with ξ = θ/4 for all m large enough. �

In view of this lemma and (8.7), in what follows, we restrict to the case

jT0 ≤ ηm. (8.8)

Let J0 ∈ N be a parameter to be specified later. By the triangle inequality for the seminorm ek,0
and Lemma 7.1, we have

ek,0

 J0∑
j=0

((j + 2)T0)m−1e−zjT0

(m− 1)!

∫
R
pj(t)e

−ztLt+jT0fdt


≤
∫ (J0+2)T0

0

tm−1e−at

(m− 1)!
ek,0(Ltf)dt�

((J0 + 2)T0)mek,0(f)

(m− 1)!
.

We will choose

m = dlog be. (8.9)

Hence, since a ≤ 2 by assumption, when b is large enough10, we get

ek,0

 J0∑
j=0

((j + 2)T0)m−1e−zjT0

(m− 1)!

∫
R
pj(t)e

−ztLt+jT0fdt

� ek,0(f)

(a+ 1)m
. (8.10)

10Over the course of the proof, b will be assumed large depending on all the parameters we choose in the argument.
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A similar argument also shows that

ek,0

(∫ ∞
0

tm−1e−zt

(m− 1)!
p(t/T0)Ltf dt

)
�

ek,0(f)

(a+ 1)m
,

where we used the fact that p(t/T0) is supported in (−T0, T0). Thus, we may assume for the
remainder of the section that

j > J0. (8.11)

Let 0 < ε� 1 be a small parameter to be chosen later. The advantage of taking J0 large is that
it allows us to give a reasonable estimate on the sum of the errors of each term in (8.5). Indeed,
taking J0 large enough so that 2/J0 ≤ ε, in view of (7.5), we have that

∞∑
j=J0+1

((j + 2)T0)m−1e−ajT0

(m− 1)!
≤ e2aT0

(
1 +

2

J0

)m ∫ ∞
0

tm−1e−at

(m− 1)!
dt = e2aT0

(
1 + ε

a

)m
. (8.12)

We will take J0 large enough (independently of b) so that the loss of a factor of 1 + ε does not
exceed the gains we make over the course of the proof.

Contribution of points in the cusp. Let x ∈ N−1 Ω be arbitrary. Then, Lemma 7.1 implies that

ek,0

(∫
R
pj(t)e

−ztLt+jT0f dt;x

)
≤
∫
R
pj(t)e

−atek,0 (Lt+jT0f ;x) dt� T0e
−(a+βα)jT0ek,0(f),

provided V (x) > eβαjT0 . In light of (8.12), summing the above errors over j, we obtain an error
term of the form

T0e
2aT0ek,0(f)

(
1 + ε

a+ βα

)m
≤ ek,0(f)

(
1 + 2ε

a+ βα

)m
≤

ek,0(f)

(a+ βα− ε)m
, (8.13)

where the first inequality can be ensured to hold by taking b large enough in view of (8.9) and the
second inequality holds whenever ε is small enough.

Thus, we may assume for the remainder of the section that

V (x) ≤ eβαjT0 . (8.14)

Fix some suitable test function φ for ek,0. In particular, φ has C1(N+) norm at most 1. The
integrals we wish to estimate take the form∫

N+
1

φ(n)

∫
R
pj(t)e

−ztLt+jT0(f)(gsnx) dtdµux(n),

for all s ∈ [0, 1]. We again only provide the estimate in the case s = 0 to simplify notation, the
general case being essentially identical.

Recall that pj is supported in the interval (0, 2T0). In particular, the extra t in Lt+jT0 could be
rather large, which will ruin certain trivial estimates later. To remedy this, recall the partition of
unity of R given in (8.4) and set

pj,w(t) := pj(t+ w)p(t), ∀w ∈ Z. (8.15)

Using a change of variable, we obtain∫
R
e−zt

∫
N+

1

pj(t)φ(n)f(gt+jT0nx) dµux(n)dt

=
∑
w∈Z

e−zw
∫
R
e−zt

∫
N+

1

pj,w(t)φ(n)f(gt+w+jT0nx) dµux(n)dt. (8.16)

Note the above sum is supported on

0 ≤ w � T0, (8.17)
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and the support of each integral in t is now (−1, 1). For the remainder of the section, we fix some
w ∈ Z in that support.

To simplify notation, we set

gwj := gw+jT0 . (8.18)

Partitions of unity and flow boxes. Let us define

Kj :=
{
y ∈ X : V (y) ≤ e(2βαj+3β)T0

}
, ιj := min {1, inj(Kj)} . (8.19)

We let Pj denote a partition of unity of the unit neighborhood of Kj so that each ρ ∈ Pj is
M -invariant and supported inside a flow box Bρ of radius ιj/10. With the aid of the Vitali covering
lemma, we can arrange for the collection {Bρ} to have a uniformly bounded multiplicity, depending
only on the dimension of G. We can choose such a partition of unity so that for all ρ ∈ Pj ,

‖ρ‖Ck �k ι
−k
j . (8.20)

We also need the following subcollection of Pj :

P0
j :=

{
ρ ∈ Pj : Bρ ∩N−1/2Ω 6= ∅

}
. (8.21)

We shall need an estimate on the cardinality of P0
j . To this end, note that the cardinality of

the collection P0
j is controlled in terms of the injectivity radius ιj in (8.19). Indeed, since Γ is

geometrically finite, the unit neighborhood of Ω has finite volume. Moreover, the flow boxes Bρ
with ρ ∈ P0 are all contained in such a unit neighborhood and have uniformly bounded multiplicity;
cf. (8.21). Finally, each Bρ has radius at least ιj for all ρ ∈ Pj . Thus, we have that

#P0
j �Γ ι

−(2D+1)
j , (8.22)

where D is the dimension of N+. Note that the dimension of X is 2D + 1 + dim(M), however the
bound above involves 2D + 1 only since each flow box is M -invariant.

Localizing away from the cusp. We begin by restricting the support of the integral away from
the cusp. Define the following smoothed cusp indicator function ζj : X → [0, 1]:

ζj(y) := 1−
∑
ρ∈Pj

ρ(y).

We also fix a parameter γ ∈ (0, 1) as follows:

γ =

{
1/3, K = R,
1/6, K = C,H, or O,

(8.23)

where we recall that our underlying manifold is a quotient of Hd
K. To simplify notation, we set

gγ := gγ(w+jT0). (8.24)

It will be convenient to take T0 large enough depending on γ so that

min {(1− γ)(w + jT0), γ(w + jT0)} ≥ 2. (8.25)

First, by taking

α ≤ 1− γ,
we note that the bounded multiplicity property of Pj and (8.20) imply that∥∥ζj ◦ gγ−1

∥∥
Ck(N+)

�k 1.
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Moreover, by definition, ζj is supported outside of the sublevel set Kj in (8.19). Hence, changing
variables and repeating the argument in the proof of Lemma 7.1 by picking a partition of unity of
N+

1 , with supports contained in N+
2 , and suitable points xi, we obtain∫

φ(n)ζj(g
γnx)Ltf(gwj nx) dµux = e−δ(w+jT0)

∑
i

∫
N+

1

φi(n)ζj(g
γ−1nxi)Ltf(nxi) dµ

u
xi

�k ek,0(f)e−δ(w+jT0)
∑

i:ζj(gγ−1xi) 6=0

V (xi)µ
u
xi(N

+
1 )

� ek,0(f)e−δ(w+jT0)
∑
i

∫
N+

1

1Kc
j
(gγ−1nxi)V (nxi) dµ

u
xi

� ek,0(f)

∫
N+

2

1Kc
j
(gγnx)V (gwj nx) dµux,

where we regarded φi(n)ξj(g
γ−1nxi) as test functions. Thus, the Cauchy-Schwarz inequality yields∣∣∣∣∣

∫
N+

2

1Kc
j
(gγnx)LtV (gwj nx) dµux

∣∣∣∣∣
2

≤ µux
(
n ∈ N+

2 : V (gγnx) > e2βαjT0

)
×
∫
N+

2

LtV 2(gwj nx) dµux.

Recall that we are assuming that V 2 satisfies the Margulis inequality in Theorem 4.1; cf. Remark 8.1.
Hence, by Theorem 4.1 and Chebychev’s inequality, we obtain∣∣∣∣∣

∫
N+

1

φ(n)ζj(g
γnx)Ltf(gwj nx) dµux

∣∣∣∣∣�k ek,0(f)µux(N+
2 )V 3/2(x)e−βαjT0 .

Using the bound on V (x) in (8.14) and the doubling estimate in Proposition 3.1, we thus obtain∫
N+

1

φ(n)Ltf(gwj nx) dµux(n)

=
∑
ρ∈Pj

∫
N+

1

φ(n)ρ(gγnx)Ltf(gwj nx) dµux +O
(
ek,0(f)µux(N+

1 )V (x)e−βαjT0/2
)
.

Recall the sub-partition of unity P0
j in (8.21). Since x ∈ N−1 Ω, it follows that gγnx belongs to

N−1/2Ω for all n ∈ N+
1 in the support of µux (i.e. for all n ∈ N+

1 with (nx)+ in the limit set ΛΓ);

cf. Remark 2.1. Hence, the only non-zero terms in the above sum correspond to those ρ in P0
j .

Hence, we see that∫
N+

1

φ(n)Ltf(gwj nx) dµux(n)

=
∑
ρ∈P0

j

∫
N+

1

φ(n)ρ(gγnx)Ltf(gwj nx) dµux +O
(
ek,0(f)µux(N+

1 )V (x)e−βαjT0/2
)
. (8.26)

Finally, using (8.12) and taking b large enough and ε small enough, we see that the sum of the
above error terms over j gives an error term of the form

O

(
ek,0(f)µux(N+

1 )V (x)

(a+ βα/2− ε)m

)
. (8.27)

Pre-localization. It will be convenient to replace the function f with one supported near Ω and
away from the cusp. To simplify notation, we set

s := (1− γ)(w + jT0). (8.28)
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We also define

F :=
∑
ρ0∈P0

j

ρ0f. (8.29)

By a very similar argument to the proof of (8.26), we obtain∫
N+

1

φ(n)Ltf(gwj nx) dµux(n)

=
∑
ρ∈P0

j

∫
N+

1

φ(n)ρ(gγnx)LtF (gwj nx) dµux +O
(
ek,0(f)µux(N+

1 )V (x)e−βαjT0/2
)
. (8.30)

The remainder of the section is dedicated to estimating the right side (8.30).

Saturation and post-localization. Our next step is to partition the integral over N+
1 into pieces

according to the flow box they land in under flowing by gγ . To simplify notation, we write

xj := gγx.

We denote by N+
1 (j) a neighborhood of N+

1 defined by the property that the intersection

Bρ ∩ (Ad(gγ)(N+
1 (j)) · xj)

consists entirely of full local strong unstable leaves in Bρ. We note that since Ad(gγ) expands N+

and Bρ has radius < 1, N+
1 (j) is contained inside the N+

2 . Since φ is supported inside N+
1 , we have

χN+
1

(n)φ(n) = χN+
1 (j)(n)φ(n), ∀n ∈ N+. (8.31)

For simplicity, we set

ϕj(n) := φ(Ad(gγ)−1n), Aj := Ad(gγ)(N+
1 (j)).

For ρ ∈ P, we let Wρ,j denote the collection of connected components of the set

{n ∈ Aj : nxj ∈ Bρ} .

In view of (8.31), changing variables using (2.3) yields∑
ρ∈∈P0

j

∫
N+

1

φ(n)ρ(gγnx)Ls+t(F )(gγ(w+jT0)nx) dµux(n)

= e−δγ(w+jT0)
∑

ρ∈P0
j ,W∈Wρ,j

∫
n∈W

ϕj(n)ρ(nxj)Ls+t(F )(nxj) dµ
u
xj (n).

(8.32)

Transversals. We fix a system of transversals {Tρ} to the strong unstable foliation inside the
boxes Bρ. Since Bρ meets N−1/2Ω for all ρ ∈ P0

j , we take yρ in the intersection Bρ ∩N−1/2Ω. In this

notation, we can find neighborhoods of identity P−ρ ⊂ P− = MAN− and N+
ρ ⊂ N+ such that

Bρ = N+
ρ P
−
ρ · yρ, Tρ = P−ρ · yρ. (8.33)

We also let Mρ, Aρ, and N−ρ be neighborhoods of identity in M,A and N− respectively so that

P−ρ = MρAρN
−
ρ .
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Centering the integrals. It will be convenient to center all the integrals in (8.32) so that their
basepoints belong to the transversals Tρ of the respective flow box Bρ; cf. (8.33).

Let Iρ,j denote an index set forWρ,j . For W ∈ Wρ,j with index ` ∈ Iρ,j , let nρ,` ∈W , mρ,` ∈Mρ,

n−ρ,` ∈ N
−
ρ , and tρ,` ∈ (−ιj , ιj) be such that

xρ,` := mρ,`g−tρ,`nρ,` · xj = n−ρ,` · yρ ∈ Tρ. (8.34)

Note that since x belongs to N−1 Ω, we have that

xρ,` ∈ N−1 Ω, (8.35)

cf. (8.25) and Remark 2.1.
For each such ` and W , let us denote W` = Ad(mρ,`gtρ,`)(Wn−1

ρ,`) and

φ̃ρ,`(t, n) := pj,w(t− tρ,`) · eztρ,` · φ(Ad(mρ,`g
γg−tρ,`)

−1(nnρ,`)) · ρ(gtρ,`nxρ,`). (8.36)

Note that φ̃ρ,` has bounded support in the t direction and (8.20) implies∥∥∥φ̃ρ,`∥∥∥
C0(R×N+)

≤ 1,
∥∥∥φ̃ρ,`(t, ·)∥∥∥

Ck(N+)
� ι−kj , (8.37)

for all t ∈ R. Moreover, recalling (8.6), we see that∥∥∥φ̃ρ,`∥∥∥
C1(R×N+)

� ι−kj mk. (8.38)

Changing variables using (2.3) and (2.4), we can rewrite the integral in t of the right side of (8.32)
as follows:

e−δγ(w+jT0)

∫
R
e−ztpj,w(t)

∑
ρ∈P0

j ,W∈Wρ,j

∫
n∈W

ϕj(n)ρ(nxj)Ls(F )(gtnxj) dµ
u
xj (n)dt

= e−δγ(w+jT0)
∑
ρ∈P0

j

∑
`∈Iρ,j

∫
R
e−zt

∫
n∈W`

φ̃ρ,`(t, n)Ls(F )(gt+tρ,`nxρ,`) dµ
u
xρ,`

(n)dt,

(8.39)

where we also used M -invariance of F .

Mass estimates. We record here certain counting estimates which will allow us to sum error
terms in later estimates over P0

j . Note that by definition of N+
1 (j), we have

⋃
ρ∈Pj ,W∈Wρ,j

W ⊆ Aj .
Thus, using the log-Lipschitz and contraction properties of V , it follows that∑
ρ∈P0

j ,`∈Iρ,j

µuxρ,`(W`)V (xρ,`)�
∫
Aj
V (nxj) dµ

u
xj (n)

= eδγ(w+jT0)

∫
N+

1 (j)
V (gγ(w+jT0)nx) dµux(n)� eδγ(w+jT0)µux(N+

1 )V (x),

(8.40)

where we used the fact that |tρ,`| < 1 and the last inequality follows by Proposition 3.1 since

N+
1 (j) ⊆ N+

2 . We also used the fact that the partition of unity P0
j has uniformly bounded multi-

plicity.

Remark 8.8. We note the exact same argument as above gives∑
ρ∈P0

j ,`∈Iρ,j

µuxρ,`(W`)V
2(xρ,`)� eδγ(w+jT0)µux(N+

1 )V 2(x), (8.41)

in view of our choice of V at the beginning of the section; cf. Remark 8.1.
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Transverse intersections and Lebesgue conditionals. We will view the integrals in the def-
inition of the resolvent as an oscillatory integrals to take advantage of the large phase ib. For
this purpose, it is essential for our method to replace the integrals against µux with ones against a
smooth measure so we may use integration by parts.

Denote by dn the Haar measure on N+ and by |S| the Haar measure of S for any measurable
subset S ⊂ N+. Recall the subcollection P0

j of the partition of unity Pj defined in (8.21). For each
ρ ∈ Pj , we define functions Fρ on Bρ ⊂ X as follows:

Fρ(u
+p−yρ) := |N+

ρ |−1

∫
N+
ρ

(ρf)(n+p−yρ) dµ
u
p−yρ

(n+), ∀u+ ∈ N+
ρ , p

− ∈ P−ρ . (8.42)

In particular, Fρ depends only on the “transversal coordinate” p−.
The following simple, but crucial, result allows us to replace µux with the Haar measure. In fact,

the proof allows for exchanging any two conformal densities, once Fρ is defined appropriately. The
lemma is a simple quantitative refinement of ideas appearing in [Rob03,Sch05].

Proposition 8.9. Let 0 < r ≤ 1 and ψ ∈ C1
c (N+

r ) be given. For all y ∈ N−1 Ω, s ≥ 0, ρ0 ∈ P0
j ,

and m ≥ 1, we have∫
N+
r

ψ(n)(ρ0f)(gsny) dµuy

= e(D−δ)s
∫
N+
r

ψ(n)Fρ0(gsny) dn+O

(
‖ψ‖C1 e−sek,0(f)V (y)µuy(N+

r )

r∆+ι
∆+

j

)
,

where ιj is the radius of the flow box Bρ0 supporting ρ0 and ∆+ is given in (3.1).

The proof of Proposition 8.9 is given in Section 9.1. Setting

F? := e(D−δ)s
∑
ρ0∈P0

j

Ls(Fρ0), (8.43)

we apply Proposition 8.9 to switch to integrating against the Lebesgue measure in (8.39) to obtain:∫
W`

φ̃ρ,`(t, n)Ls(Fγ)(gt+tρ,`nxρ,`) dµ
u
xρ,`

= e(D−δ)(t+tρ,`)
∫
W`

φ̃ρ,`(t, n)F?(gt+tρ,`nxρ,`)dn+O

(
ek,0(f)V (xρ,`)µ

u
xρ,`

(W`)

e(1−γ)(w+jT0)ι
2∆++2D+2
j

)
.

Here, we applied the proposition with ψ = φ̃ρ,` while noting that the C1 norm of ψ is estimated

in (8.37). The factor of ι
−(2D+1)
j comes from the cardinality of the partition of unity P0

j ; cf. (8.22).
We also recall that the radius of W` is ιj .

Estimating the sum of the error terms using (8.40), and recalling that the support of the integrals
in t is uniformly bounded, we obtain

e−δγ(w+jT0)
∑
ρ∈P0

j

∑
`∈Iρ,j

∫
R
e−zt

∫
n∈W`

φ̃ρ,`(t, n)Ls(Fγ)(gt+tρ,`nxρ,`) dµ
u
xρ,`

(n)dt

=e−δγ(w+jT0)
∑

ρ∈P0
j ,`∈Iρ,j

∫
R
e−zt

∫
n∈W`

φ̃ρ,`(t, n)F?(gt+tρ,`nxρ,`) dndt

+ ek,0(f)V (x)µux(N+
1 )×O

(
e−(1−γ)(w+jT0)ι

−(2∆+2D+2)
j

)
. (8.44)

To sum the above errors over j and w, we first note that (8.19) and Proposition 4.3 imply that

ι−1
j � e(4αj+6)T0 , (8.45)
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where we used the fact that χK ≤ 2; cf. (4.2). Thus, as before, using (8.12), taking α and ε small
enough, the sum of the above error terms over j and w is bounded by

ek,0(f)V (x)µux(N+
1 )×OT0

(
(1 + ε)m

(a+ (1− γ)− 4α(2∆+ + 2D + 2)− ε)m

)
.

Taking α and ε small enough, while taking b large enough to absorb the factors depending on T0

and remembering (8.23), we obtain an error of the form

ek,0(f)V (x)µux(N+
1 )×O

(
1

(a+ 0.6)m

)
. (8.46)

Stable holonomy. Fix some ρ ∈ P0
j . Recall the points yρ ∈ Tρ and n−ρ,` ∈ N

−
ρ satisfying (8.34).

The product map M×N−×A×N+ → G is a diffeomorphism on a ball of radius 1 around identity;
cf. Section 2.6. Hence, given ` ∈ Iρ,j , we can define maps ũ`, τ̃`, m` and ũ−` from W` to N+, R, M
and N− respectively by the following formula

gt+tρ,`nn
−
ρ,` = gt+tρ,`m`(n)ũ−` (n)gτ̃`(n)ũ`(n) = m`(n)ũ−` (t, n)gt+tρ,`+τ̃`(n)ũ`(n), (8.47)

where we set ũ−` (t, n) = Ad(gt+tρ,`)(ũ
−
` (n)). We define the following change of variable map:

Φ` : R×W` → R×N+, Φ`(t, n) = (t+ τ̃`(n), ũ`(n)). (8.48)

We suppress the dependence on ρ and j to ease notation. Then, Φ` induces a map between the
weak unstable manifolds of xρ,` and yρ, also denoted Φ`, and defined by

Φ`(gtnxρ,`) = gt+τ̃`(n)ũ`(n)yρ.

In particular, this induced map coincides with the local strong stable holonomy map inside Bρ.
Note that we can find a neighborhood Wρ ⊂ N+ of identity of radius � ιj such that

Φ`(R×W`) ⊆ R×Wρ, (8.49)

for all ` ∈ Iρ,j . Moreover, by shrinking the radius ιj of the flow boxes by an absolute amount
(depending only on the metric on G) if necessary, we may assume that all the maps Φ` in (8.48)
are invertible on R×Wρ. Hence, we can define the following:

τ`(n) = τ̃`(ũ
−1
` (n)) + tρ,` ∈ R, u−` (t, n) = ũ−` (t− τ`(n), ũ−1

` (n)) ∈ N−,

φρ,`(t, n) = e−a(t−τ`(n)) × JΦ`(n)× φ̃ρ,`(t− τ`(n), ũ−1
` (n)),

and JΦ` denotes the Jacobian of the change of variable Φ` with respect to the measure dndt.
Changing variables and using M -invariance of F?, we obtain∑
`∈Iρ,j

∫
R
e−zt

∫
n∈W`

φ̃ρ,`(t, n)F?(gt+tρ,`nxρ,`) dndt

=
∑
`∈Iρ,j

∫
R

∫
Wρ

e−ib(t−τ`(n))φρ,`(t, n)F?(u
−
` (t, n)gtnyρ) dndt. (8.50)

Stable derivatives. Our next step is to remove F? from the sum over ` in (8.50). Due to non-joint
integrability of the stable and unstable foliations, our estimate involves a derivative of f in the flow
direction. In particular, in view of the way we obtain contraction in the norm of flow derivatives
in Lemma 7.6, this step is the most “expensive” estimate in our argument.

Recalling the definition of F? in (8.43) and of s in (8.28), we have that

|F?(u
−
` (t, n)gtnyρ)−F?(gtnyρ)| ≤ e(D−δ)s

∑
ρ0∈P0

j

|Fρ0(gsu
−
` (t, n)gtnyρ)−Fρ0(gt+snyρ)|.

The following lemma provides an estimate on the above integral. Its proof is given in Section 9.2.
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Lemma 8.10. For all s ≥ 0, u− ∈ N−1/10, ρ0 ∈ P0
j , and y ∈ N−1/2Ω, we have that

e(D−δ)s
∫
N+

1

|Fρ0(u−gsny)−Fρ0(gsny)| dn�k dist(u−, Id)ι−kj ‖f‖1 µ
u
y(N+

1 )V (y),

where k ∈ N is the order of regularity of the test functions for the seminorm ek,0.

Since yρ belongs to N−1/2Ω and u−` (t, n) belongs to a neighborhood of identity in N− of radius

O(ιj) (cf. (8.19)), uniformly over (t, n) in the support of our integrals, Lemma 8.10, combined
with (8.22), yield∫

Wρ

|F?(u
−
` (t, n)gtnyρ)−F?(gtnyρ)| dn�k e

−(1−γ)(w+jT0) ‖f‖1 µ
u
yρ(N

+
1 )V (yρ)ι

−(2D+1+k)
j , (8.51)

where we implicitly used the fact that Wρ ⊂ N+
1 and |t| ≤ 1. Indeed, the additional gain is due to

the fact that gs contracts N− by at least e−s.
To sum the above errors over ` and ρ, we wish to use (8.40). We first note that Proposition 3.1

and the fact Wρ has diameter � ιj imply that

µuyρ(N
+
1 )� ι

−∆+

j µuyρ(Wρ),

where ∆+ is the constant in (3.1). Moreover, Propositions 3.1 and 4.3 allow us to use closeness of
yρ and xρ,` along with regularity of holonomy to deduce that

V (yρ)µ
u
yρ(Wρ) � V (xρ,`)µ

u
xρ,`

(W`). (8.52)

Here, we also use the fact that both xρ,` and yρ belong to N−1 Ω; cf. (8.35).
Hence, we can use (8.40) to estimate the sum of the errors in (8.51) yielding the following estimate

on the main term in (8.44):

e−δγ(w+jT0)
∑
ρ∈P0

j

∑
`∈Iρ,j

∫
R

∫
Wρ

∑
`∈Iρ,j

e−ib(t−τ`(n))φρ,`(t, n)

F?(gtnyρ) dndt

+O
(
e−(1−γ)(w+jT0) ‖f‖1 µ

u
x(N+

1 )V (x)ι
−(2D+1+k+∆+)
j

)
,

where we used that the above integrands have uniformly bounded support in R×N+, independently
of ` (and ρ). Indeed, the boundedness in the R direction follows from that of the partition of unity
pj ; cf. (8.6). We also used (8.37) to bound the C0 norm of φρ,`. Summing the above error term
over j and w using (8.12) and (8.45), taking α and ε small enough, and remembering (8.23), we
obtain

O

(
‖f‖1 µux(N+

1 )V (x)

(a+ 0.65)m

)
.

Recall the norm ‖·‖1,B defined in (8.2) and note that ‖·‖1 ≤ B ‖·‖1,B. Choosing κ > 0 small
enough and

a = 0.378, (8.53)

one checks that e1+κ/(a+ 0.65) is at most 1/(a+ σ0), for some σ0 > 0. With these choices, taking
B = b1+κ yields an error term of the form:

O

(
‖f‖1,B µux(N+

1 )V (x)

(a+ σ0)m

)
. (8.54)
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8.3. The role of oscillatory integrals. We are left with estimating integrals of the form:∫
R×Wρ

Ψρ(t, n)F?(gtnyρ) dndt, Ψρ(t, n) :=
∑
`∈Iρ,j

e−z(t−τ`(n))φρ,`(t, n). (8.55)

We begin by collecting apriori bounds on Ψρ and F?. Denote by Jρ ⊂ R the bounded support
of the integrand in t coordinate of the above integrals. Note that (8.37) and the fact that |t| � 1
imply

‖φρ,`‖L∞(Jρ×Wρ) � 1, ‖Ψρ‖L∞(Jρ×Wρ) � #Iρ,j . (8.56)

The following lemma estimates the L2 norm of Fρ0 . Its proof is given in Section 9.2.

Lemma 8.11. For all y ∈ N−1 Ω, and s ≥ 0, we have

e(D−δ)s
∫
Wρ

|Fρ0(gsny)|2 dn�k ι
−2k
j ek,0(f)2V 2(y)µuy(N+

1 )× V (yρ0)δ/β,

where N+
ρ0

parametrizes local strong unstable leaves in the flow box Bρ0 centered at yρ0; cf. (8.33).

Recall that (8.17), (8.8) and (8.9) imply

es = e(1−γ)(w+jT0) �T0 b
η. (8.57)

We also have that yρ ∈ N−1 Ω, |Jρ| � 1, s ≥ 1 and V (yρ0)δ/β � eδ(2αj+3)T0 ; cf. (8.19). Hence,
Lemma 8.11, the Cauchy-Schwarz inequality, the definition of F? in (8.43), and (8.22) yield∣∣∣∣∣

∫
R×Wρ

Ψρ(t, n)F?(gtnyρ) dndt

∣∣∣∣∣
2

�T0,k e
(D−δ)s (ek,0(f)V (yρ))

2 µuyρ(N
+
1 )× ι−(2D+1+2k)

j e2δαjT0 ×
∫
R×Wρ

|Ψρ(t, n)|2 dndt. (8.58)

We note that by (8.33) and our choice of Wρ, we have

|Nρ0 | � |Wρ|. (8.59)

To proceed, we wish to make use of the oscillations due to the large phase ib to obtain can-
cellations. To that end, we need to make sure that τ`1(n) − τ`2(n) has significant size compared
to that of the size of the phase b, for most pairs `1, `2 ∈ Iρ,j . On the set of pairs `1, `2 which
fail this separation requirement, we use a trivial estimate combined with a counting argument for
such pairs. Dolgopyat’s insight, though in a completely different set up, was the realization that
non-joint integrability of the strong stable and unstable foliations implies that the functions τ` are
non-constant so that such a strategy may have a hope of succeeding; cf. [Dol98].

Recall the notation pertaining to the intersection points (8.34) with the transversals Tρ of our
flow boxes. Let κ ∈ (0, 1) be a parameter to be specified in Section 8.4. Recall from Section 2.5
the parametrization of N− by its Lie algebra n− = n−α ⊕ n−2α via the exponential map. Denote by
Cρ,j(κ) the following subset of I2

ρ,j :

Cρ,j(κ) =
{

(`1, `2) ∈ I2
ρ,j : n−ρ,`1(n−ρ,`2)−1 = exp(u, s), ‖u‖ , ‖s‖ ≤ b−κ

}
.

We also set

Sρ,j(κ) = I2
ρ,j \ Cρ,j(κ).

Then, Cρ,j(κ) parametrizes pairs of unstable manifolds which are too close to one another along
the weak stable foliation.
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Expanding the square and using (8.56), we obtain∫
Jρ×Wρ

∣∣∣∣∣ ∑
`∈Iρ,j

e−ib(t−τ`(n))φρ,`(t, n)

∣∣∣∣∣
2

dndt

�a #Cρ,j(κ)|Wρ|+
∑

(`1,`2)∈Sρ,j(κ)

∣∣∣∣∫
R×N+

e−ib(τ`1 (n)−τ`2 (n))φρ,`1(t, n)φρ,`2(t, n) dndt

∣∣∣∣ , (8.60)

where for z ∈ C, z̄ denotes its complex conjugate.
We first estimate the first term in (8.60). The following proposition provides the key counting

estimate on #Cρ,j(κ). Its proof is given in Section 10.1. In what follows, we use the following
notation to distinguish the real hyperbolic case:

κ0 :=

{
κ, K = R,
κ/2, K = C,H, or O,

where we recall that our underlying manifold is a geometrically finite quotient of Hd
K, for K ∈

{R,C,H,O}.

Proposition 8.12. For all κ > 0 and ` ∈ Iρ,j,

#
{
`′ ∈ Iρ,j : (`, `′) ∈ Cρ,j(κ)

}
� 1 + e∆+γ(w+jT0)b−κ0∆+ι

−∆+

j .

In what follows, we will select η, γ and κ such that

γη ≤ κ0. (8.61)

In light of (8.8) and (8.9), this choice combined with Proposition 8.12 imply that for all ` ∈ Iρ,j ,

#
{
`′ ∈ Iρ,j : (`, `′) ∈ Cρ,j(κ)

}
� 1. (8.62)

For all ρ ∈ P0
j , since Wρ has radius � ιj , cf. (8.19), we have by Proposition 3.1 and (8.52) that

for all ` ∈ Iρ,j ,

µuyρ(N
+
1 )� ι

−∆+

j µuyρ(Wρ) � ι−∆+

j µuxρ,`(W`).

Hence, 8.62 and the Cauchy-Schwarz inequality yield the following estimate on the sum of the first
term in (8.60):∑

ρ∈P0
j

V (yρ)
√
µuyρ(N

+
1 )#Cρ,j(κ)� ι

−∆+

j

√
#P0

j ×
√√√√ ∑

ρ∈P0
j ,`∈Iρ,j

V 2(xρ,`)µuxρ,`(W`).

The terms V (yρ)
√
µuyρ(N

+
1 ) come from (8.58) and we used the estimate (8.59). We estimate #P0

j

using (8.22) and bound the sum using (8.41) to get, for A = 2D + 1 + 2∆+,∑
ρ∈Pj

V (yρ)
√
µuyρ(N

+
1 )#Cρ,j(κ)� V (x)µux(N+

1 )× ι−A/2j × eδγ(w+jT0)/2. (8.63)

We now turn our attention to the second term in (8.60). The following proposition gives the
oscillation estimate on separated pairs appearing in that sum. Its proof is given in Section 10.3.

Proposition 8.13. For all `1, `2 ∈ Sρ,j(κ), we have∣∣∣∣∫
R

∫
N+

e−ib(τ`1 (n)−τ`2 (n))φρ,`1(t, n)φρ,`2(t, n) dndt

∣∣∣∣�k b
−k(1−κ)ι−2k

j m2k|Wρ|.
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Remark 8.14. The proof of Proposition 8.13 is based on integration by parts k-times, where k ∈ N
is the order of regularity of test functions used for our seminorm ek,0; cf. (6.3). In particular, the

proof requires that the “temporal distance functions” τ` to be at least of class Ck. In our setting,
this allows us to choose the parameter κ close to 1, which broadens the applicability of the second
assertion in Theorem 8.2. We note however that only Hölder regularity of τ` is needed to obtain an
estimate in Proposition 8.13 with a weaker power of b−1. Such weaker estimate suffices to establish
the first assertion of Theorem 8.2.

From the formula of the measures µuyρ in (2.2) and Lemma 4.8, we see that

µuyρ(Wρ)� e−δdist(yρ,o) � V −δ/β(yρ)�T0 e
−2δαjT0 ,

where we also used the fact that yρ belongs to the unit neighborhood of Kj to bound its height;
cf. (8.19). Thus, arguing as in the proof of (8.63), using Proposition 8.13, along with (8.40),
and (8.52), we obtain for k ∈ N to be chosen in Section 8.4 the following estimate:

∑
ρ∈P0

j

V (yρ)

µuyρ(N+
1 )

∑
(`1,`2)∈Sρ,j(κ)

∣∣∣∣∫
R×N+

e−zτ`1 (n)−z̄τ`2 (n)φρ,`1(t, n)φρ,`2(t, n) dndt

∣∣∣∣
1/2

�T0,k b
−k(1−κ)/2ι

−(k+∆+/2)
j mkeδαjT0 ×

∑
ρ∈P0

j

V (yρ)µ
u
yρ(Wρ)#Iρ,j

� b−k(1−κ)/2ι
−(k+∆+/2)
j mk × eδ(γ+α)(w+jT0) × µux(N+

1 )V (x).

Combining this estimate with (8.58), (8.60), (8.57), and (8.63), we obtain the following estimate
on the integrals in (8.55):

e−δγ(w+jT0)
∑
ρ∈P0

j

∫
Jρ×Wρ

Ψρ(t, n)F?(gtnyρ) dndt

�k ek,0(f)V (x)µux(N+
1 )× ι−(A+3k)

j eδα(w+jT0)
(
e((D−δ)(1−γ)−δγ)(w+jT0)/2 + b(η(D−δ)−k(1−κ))/2mk

)
,

where we used the elementary inequality
√
x+ y ≤

√
x +
√
y for any x, y ≥ 0 along with the fact

that |Jρ ×Wρ| � 1. Let L = 2A+ 6k + 2δ. Summing the above error terms over j and w, taking
α and γ small enough, and recalling (8.22), we obtain an error term of the form

OT0,k

(
ek,0(f)V (x)µux(N+

1 )(1 + ε)m × bη(D−δ)/2 ×

[
1

(a+ δγ/2− 4αL)m
+
b−k(1−κ)/2mk

(a− 4αL)m

])
.

(8.64)

In the large critical exponent regime, i.e. when hypothesis (8.3) is satisfied, we use do not use
the bound (8.57) and instead obtain the following estimate:

OT0,k

(
ek,0(f)V (x)µux(N+

1 )(1 + ε)m

×

[
1

(a+ (δγ − (D − δ)(1− γ))/2− 4αL)m
+
b(η(D−δ)−k(1−κ))/2mk

(a− 4αL)m

])
. (8.65)

8.4. Parameter selection and conclusion of the proof. In this subsection, we finish the proof
of Theorem 8.2. First, we handle the case of small critical exponent, i.e.

δ ≤

{
2D/3, K = R,
5D/6, K = C,H, or O.

(8.66)
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We begin by simplifying the error expression in (8.64). As before, we will absorb the dependence
on T0 in (8.64) by taking b large enough at the cost of replacing ε with 2ε in the denominators of
the above expression. In this case, we take κ to be any fixed constant in (0, 1)11. Taking k large
enough and α and ε small enough, we can ensure that

b(η(D−δ)−k(1−κ))/2mk(1 + ε)m

(a− 4αL)m
≤ 1

(a+ σ1)m
, (8.67)

for some fixed constant σ1 > 0 and for all large enough b. Note that, once σ1 is fixed, the above
inequality remains valid after further decreasing α and ε. Then, we can take η, α and ε small enough
so that

(1 + ε)mbη(D−δ)/2

(a+ δγ/2− 4αL)m
≤ 1

(a+ σ2)m
, (8.68)

for some constant σ2 > 0. Hence, the error term in (8.64) becomes

ek,0(f)V (x)µux(N+
1 )×O

(
1

(a+ σ2)m
+

1

(a+ σ1)m

)
. (8.69)

Note that the parameter α (and ε) remain unconstrained. We let σ3 > 0 be such that the error
terms in (8.13) and (8.27) satisfy

1

(a+ βα− ε)m
+

1

(a+ βα/2− 2ε)m
≤ 2

(a+ σ3)m
. (8.70)

Let σ? = min {σi : 0 ≤ i ≤ 3}. Making η smaller if necessary, we may assume that aη < 1. Recall
the parameter ξ ∈ (0, 1) provided by Lemma 8.7 in the case aη < 1. Collecting the error terms
in (8.10), (8.13), (8.27), (8.46), (8.54), (8.69), and Lemma 8.7 and taking ε small enough, we obtain

ek,0(R(z)mf)�
ek,0(f)

(a+ ξm)m
+
‖f‖1,B

(a+ σ?)m
.

Letting CΓ denote the implied constant and choosing % > 0 so that ξm ≥ |b|−%, this estimate
concludes the proof of the first assertion in Theorem 8.2.

In the large critical exponent case, i.e. when (8.66) does not hold, we use the bound in (8.65)
instead. First, we take

η = 2.6. (8.71)

In this case, one checks that by taking κ < 1 to be close enough to 1, this choice of η satisfies (8.61).
Then, the estimate (8.67) will hold for all large b by taking k large enough and α and ε small enough.
Moreover, for our choice of γ in (8.23), we have

δγ − (D − δ)(1− γ) > 0

in this case. Hence, further decreasing α and ε as necessary, we obtain

(1 + ε)m

(a+ (δγ − (D − δ)(1− γ))/2− 4αL)m
≤ 1

(a+ σ2)m

for a possibly smaller constant σ2 > 0. The estimate (8.70) can also be arranged to hold for a
possibly smaller constant σ3 > 0 depending on α.

Finally, in light of (8.53), we see that aη > 1 in this case. Thus, Lemma 8.7 implies that we
instead get a resolvent bound of the form

ek,0(R(z)mf)�
ek,0(f)

(a+ σ4)m
+
‖f‖1,B

(a+ σ?)m
,

11In low regularity settings, κ will have to be taken small since one cannot do integration by parts many times as in
Proposition 8.13 to compensate for a choice of κ close to 1.
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for some constant σ4 > 0. Since ek,0(f) ≤ ‖f‖1,B, making σ? smaller if necessary proves the second
assertion of the theorem, which is a stronger bound than the bound in the first assertion.

We note that our choice of σ? depends only on the critical exponent δ and the ranks of the cusps
of Γ (if any) through its dependence on ∆+ and ∆.

Remark 8.15. It is worth noting that the above arguments allowed us to avoid issues related to
the mismatch in the doubling exponents ∆+ and ∆ in Proposition 3.1 in the case the manifold has
cusps.

9. Transverse intersections and smooth conditionals

In this section, we provide the proofs of the auxiliary results stated in Section 8 pertaining
the conversion from the Patterson-Sullivan conditionals to integrals against the Lebesgue measure;
namely Proposition 8.9 and Lemmas 8.10 and 8.11.

9.1. Transverse intersections and Lebesgue Conditionals. Proposition 8.9 follows at once
from the following lemma.

Lemma 9.1. Let 0 < r ≤ 1 and φ in the unit ball of C1
c (N+

r ) be given. For all y ∈ N−1 Ω, t ≥ 0
and ρ ∈ P0

j , we have∫
N+
r

φ(n)(ρf)(gtny) dµuy = e(D−δ)t
∫
N+
r

φ(n)Fρ(gtny)dn+O(e−t(rιj)
−∆+)ek,0(f)V (y)µuy(N+

r ),

where D = dimN+ and ∆+ is given in (3.1).

Proof of Lemma 9.1. We begin by proving an analog of (8.32), rewriting the integral as a sum of
integrals over strong unstable leaves. We let N+

r (t) denote a neighborhood of N+
r defined by the

property that the intersection

Bρ ∩
(
Ad(gt)(N

+
r (t)) · gty

)
consists entirely of full local strong unstable leaves in Bρ. We set ϕt(n) := φ(g−tngt), At :=
Ad(gt)(N

+
r (t)), and denote by Wρ,t the collection of connected components of the set

{n ∈ At : ngty ∈ Bρ} .

Let Iρ,t be an index set for Wρ,t. For each W ∈ Wρ,t with index ` ∈ Iρ,t, let n` ∈W ⊂ N+ be such

that x` := n`gty belongs to the transversal Tρ = P−ρ · yρ. Define W` := Wn−1
` and note that

W` = N+
ρ (9.1)

in view of our choice of N+
r (t). Moreover, since the support of ρ is properly contained in Bρ, setting

ρ`(n) := χW`
(n)ρ(nx`), ∀n ∈ N+, (9.2)

we see that ρ` is in fact a smooth function on N+. Finally, since yρ ∈ N−1/2Ω and x` ∈ Tρ, cf. (8.33),

we see that

x` ∈ N−1 Ω, (9.3)

where we used the fact that ρ ∈ P0
j .

Changing variables using (2.3) and (2.4), since ρF is supported inside Bρ, it follows that∫
N+
r

φ(n)(ρf)(gtny)dµuy =

∫
N+

1 (t)
φ(n)(ρf)(gtny)dµuy = e−δt

∑
W∈Wρ,t

∫
n∈W

ϕt(n)(ρf)(ngty)dµugty

= e−δt
∑
`∈Iρ,t

∫
ϕt(nn`)ρ`(n)F (nx`) dµ

u
x`
.
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Since φ has C1 norm at most 1 and each W` has diameter ιj , where ιj denotes the radius of Bρ,
we obtain

|ϕt(nn`)− ϕt(n`)| � e−tιj , ∀n ∈W`, (9.4)

where we used the fact that Ad(gt) expands N+ by at least et. Hence, since ρ has C1 norm O(ι−1
j ),

we see that the function

n 7→ ρ`(n)(ϕt(nn`)− ϕt(n`))
has C1 norm � e−t. Hence, by definition of the coefficient ek,0, we obtain∣∣∣∣∫ ϕt(nn`)ρ`(n)F (nx`) dµ

u
x`
− ϕt(n`)

∫
ρ`(n)F (nx`) dµ

u
x`

∣∣∣∣� e−tek,0(f)V (x`)µ
u
x`

(N+
1 ), (9.5)

where we used (9.3). To estimate the sum of the above errors, we note that Propositions 3.1 and 4.3
yield

V (x`)µ
u
x`

(N+
1 )� ι

−∆+

j V (x`)µ
u
x`

(W`)� ι
−∆+

j

∫
W`

V (nx`) dµ
u
x`
.

Reversing our changes of variables, and using Theorem 4.1, along with positivity of V , we obtain

e−δt
∑
`∈Iρ,t

∫
W`

V (nx`) dµ
u
x`
≤
∫
N+

3

V (gtny) dµuy � (e−βtV (y) + 1)µuy(N+
1 )� V (y)µuy(N+

1 ), (9.6)

where we used the fact that V (·) � 1 on bounded neighborhoods of Ω, N+
r (t) ⊆ N+

3 , and the
doubling estimates of Proposition 3.1.

These estimates, together with the definition of Fρ in (8.42), yield∫
N+
r

φ(n)(ρf)(gtny)dµuy = e−δt
∑
`∈Iρ,t

ϕt(n`)

∫
n∈W`

Fρ(nx`)dn+O(e−tι
−∆+

j )ek,0(f)V (y)µuy(N+
1 ).

Note that Fρ(nx`) is constant as n varies in W`. Using (9.4) and the same argument as above, we
can put ϕ` back inside the integral to get∑
`∈Iρ,t

ϕt(n`)

∫
n∈W`

Fρ(nx`)dn =
∑
`∈Iρ,t

∫
n∈W`

ϕt(nn`)Fρ(nx`)dn+O(e−tι
−∆+

j )ek,0(f)V (y)µuy(N+
1 ).

Finally, we note that the Jacobian of the change of variables n 7→ Ad(gt)(n) with respect to
the Haar measure is e−Dt. Thus, reversing our change of variables to integrate over N+

1 , but
with respect to the Haar measure in place of µux, and using the estimate µuy(N+

1 ) � r−∆+µuy(N+
r )

supplied by Proposition 3.1, we obtain the lemma.
�

9.2. Transverse regularity. In this section, we give estimates on the regularity of Fρ which
imply Lemmas 8.10 and 8.11. The main step in the proof is the following lemma.

Lemma 9.2. For all ρ ∈ P0
j , u− ∈ N−1/10 and y ∈ X, we have

|Fρ(y)| �k ι
−k
j |Nρ|−1ek,0(f)V (yρ)µ

u
yρ(N

+
ρ ),

|Fρ(u
−y)−Fρ(y)| �k dist(u−, Id)|N+

ρ |−1ι−kj µuyρ(N
+
ρ )V (yρ) ‖f‖1 .

Proof. Since Fρ is supported in Bρ, we may assume that y ∈ Bρ. Since Fρ depends only on the
transversal coordinate in Bρ, we may further assume y ∈ Tρ.

Since ρ has Ck norm O(ι−kj ), cf. (8.20), we obtain by definition of the seminorm ek,0 that

|Fρ(y)| �k |Nρ|−1ι−kj ek,0(f)V (y)µuy(N+
ρ ). (9.7)
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Similarly to (8.52), using the doubling results of Proposition 3.1, we further obtain

µuy(N+
ρ ) � µuyρ(N

+
ρ ), ∀y ∈ Tρ. (9.8)

Here, we use the fact that Tρ ⊂ N−2 ·Ω since ρ ∈ P0
j so that yρ ∈ N−1 Ω. Moreover, since y and yρ are

at a uniformly bounded distance apart, Proposition 4.3 gives that V (yρ) � V (y), thus concluding
the proof of the first estimate.

For the second estimate, we note that since the support of ρ is properly contained inside Bρ, we
may replace u− with an element closer to identity if necessary so as to ensure that both y and u−y
belong to Bρ. We may further assume that y (and hence u−y) belongs to Tρ so that

|Fρ(u
−y)−Fρ(y)| = |N+

ρ |−1

∣∣∣∣∣
∫
N+
ρ

(ρf)(nu−y) dµuu−y(n)−
∫
N+
ρ

(ρf)(ny) dµuy(n)

∣∣∣∣∣ .
Recall that ρ∗(n) := ρ(nx)χN+

ρ
(n) is in fact a smooth function on N+ with C1 norm � ι−1

j ;

cf. (9.2) and the discussion preceding it. Arguing similarly to the proof of Proposition 6.6, there is
a map p− : N+

1 −→ P− = MAN− such that changing variables via weak stable holonomy, denoted
Φ, yields∫

N+
ρ

(ρf)(nu−y) dµuu−y(n) =

∫
ρ∗(n)F (nu−y) dµuu−y(n) =

∫
ρ∗(Φ

−1(n))F (p−(n)ny)JΦ(n) dµuy ,

where JΦ is the Jacobian of Φ; cf. (2.9). In particular, we have for all n ∈ N+
1 .

dist(p−(n), Id)� dist(u−, Id).

Recalling (2.9) and (8.20), we have that

‖ρ∗‖C0 , ‖JΦ‖C0 � 1, ‖JΦ− 1‖C0 � dist(u−, Id).

Hence, in view of (9.7) and following a similar argument to the proof of Proposition 6.6, we obtain

|Fρ(u
−y)−Fρ(y)| � dist(u−, Id)|N+

ρ |−1ι−1
j µuy(N+

ρ )V (y) ‖f‖1 .

Here, we are using the fact y belongs to N−3/4Ω. Indeed, this follows since yρ belongs to N−1/2Ω and

y belongs to Tρ. The desired estimate now follows since µuy(N+
ρ )V (y) � µuyρ(N

+
ρ )V (yρ); cf. (9.8).

�

This lemma yields the following immediate corollary by reversing the argument in Lemma 9.1.
The corollary is a slightly stronger version of Lemmas 8.10 and 8.11.

Corollary 9.3. For all 0 < r � 1, ρ ∈ P0
j , u− ∈ N−1/10, y ∈ N−1/2Ω and t ≥ 0, we have

e(D−δ)t
∫
N+
r

|Fρ(gtny)|2 dn�k ι
−2k
j ek,0(f)2V 2(y)µuy(N+

1 )× V (yρ)
δ/β,

e(D−δ)t
∫
N+

1

|Fρ(u
−gtny)−Fρ(gtny)| dn�k dist(u−, Id)ι−kj ‖f‖1 µ

u
y(N+

1 )V (y).

Proof. Recall the notation in the proof of Lemma 9.1. Then, changing variables and arguing as in
the proof of the lemma, we obtain

e(D−δ)t
∫
N+
r

|Fρ(gtny)|2 dn ≤ e−δt
∫
At
|Fρ(gtny)|2 dn = e−δt

∑
`∈Iρ,t

∫
W`

|Fρ(nx`)|2 dn.

Note that the first inequality follows by non-negativity since Ad(gt)(N
+
r ) ⊆ At.
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Recall that N+
ρ = W` for all `; cf. (9.1). Hence, by Lemma 9.2, we obtain∫

W`

|Fρ(nx`)|2 dn� (ι−kj ek,0(f)V (yρ)µ
u
x`

(W`))
2

� ι−2k
j ek,0(f)2µux`(W`)

∫
W`

V 2(nx`) dµ
u
x`

(n),

where we also used the fact that V (yρ) � V (z) for all z ∈ Bρ; cf. Proposition 4.3. Using the formula
for the measures µu• in (2.2) and Lemma 4.8, we see that

µux`(W`)� eδdist(x`,o) � V (yρ)
δ/β ,

where o is our fixed basepoint. Here, we also used the estimate V (x`)� V (yρ).
To estimate the sum of this estimate over `, we argue as in the proof of (9.6), using the integra-

bility of V 2 provided by Theorem 4.1 and Remark 8.1, to obtain

e−δt
∑
`∈Iρ,t

∫
W`

V 2(nx`) dµ
u
x`
� V 2(y)µuy(N+

1 ).

For the second estimate, arguing as above, we obtain via Lemma 9.2

e(D−δ)t
∫
N+

1

|Fρ(u
−gtny)−Fρ(gtny)| dn = e−δt

∑
`∈Iρ,t

∫
W`

|Fρ(u
−nx`)−Fρ(nx`)| dn

� dist(u−, Id)ι−kj ‖f‖1 × e
−δt

∑
`∈Iρ,t

µux`(W`)V (x`).

The second estimate then follows by (9.6). �

10. Counting and Uniform Non-integrability

In this section, we provide the proofs of Propositions 8.12 and 8.13, thus completing the proof of
Theorem 8.2. The key property that we use for the proof of the latter result relies on the uniform
joint non-integrability of these foliations.

10.1. Counting close pairs and proof of Proposition 8.12. The idea of the proof is the same
as that of [Liv04, Lemma 6.2].

Recall our definition of the points xρ,` in (8.34) and of N+
1 (j) in the paragraph above (8.31). For

each ` ∈ Iρ,j , fix some u` ∈ N+
1 (j) ⊆ N+

3 such that

xρ,` = gγp+
` · x, p+

` := mρ,`gtρ,`u`. (10.1)

Here, we are using that the groups A = {gt} and M commute. Denote by P+ the parabolic
subgroup N+AM of G. Since M is compact, |tρ,`| < 1, and N+

1 (j) is contained in N+
3 , there is a

uniform constant C > 0 such that {
p+
` : ` ∈ Iρ,j

}
⊂ P+

C , (10.2)

where P+
C denotes the ball of radius C around identity in P+.

Let C(`0) denote the set of ` ∈ Iρ,j such that (`0, `) ∈ Cρ,j(κ). Recalling the definition of the
Carnot metric in (2.7), the definition of Cρ,j(κ) implies that

dN−(n−ρ,`, n
−
ρ,`0

)�

{
b−κ, K = R,
b−κ/2, K = C,H,O,
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since n−2α = 0 in the real hyperbolic case. Set ε = b−κ in the real case and ε = b−κ/2 in the other
cases. Then, we can find ũ−` ∈ N

−
ε , such that gγp+

` ·x = ũ−` ·g
γp+
`0
·x for all ` ∈ C(`0). In particular,

for t? := γ(w + jT0) and u−` = Ad(gγ)−1(ũ−` ), since gγ = gt? by (8.24), we have that

p+
` x = u−` · p

+
`0
x ∈ N−et?ε · p

+
`0
x, ∀` ∈ C(`0). (10.3)

Our counting estimate will follow by estimating from below the separation between the points p+
` x,

combined with a measure estimate on the ball N−et?ε · p
+
`0
x.

To this end, recall the sublevel set Kj and the injectivity radius ιj in (8.19). Recall also by (8.14)
that x belongs to Kj . It follows that the injectivity radius of the weak unstable ball P+

C ·x is � ιj .
This implies that there is a radius rj with ιj � rj ≤ ιj such that for every ` ∈ C(`0), the map
n− 7→ n− · p+

` x is an embedding of N−rj into X and the disks{
N−rj · p

+
` x : ` ∈ C(`0)

}
are disjoint. Recalling (10.3), it follows that the disks N−rj · u

−
` form a disjoint collection of disks

inside N−et?ε+ιj . In particular,

#C(`0) ≤
µs
p+
`0
x
(N−et?ε+ιj )

min`∈C(`0) µ
s
p+
`0
x
(N−rj · u−` )

,

where µs• denote the Patterson-Sullivan conditional measures on N−, defined analogously to the
unstable conditionals in (2.2).

Fix some arbitrary ` ∈ C(`0) and recall (10.1) and (10.3). Then, changing variables using (2.4)
and (2.3), the doubling results in Proposition 3.1 imply that for ς = 2(et?ε+ ιj), we have

µs
p+
`0
x
(N−ς · u−` )

µs
p+
`0
x
(N−rj · u−` )

=
µs
p+
` x

(N−ς )

µs
p+
` x

(N−rj )
=

µsxρ,`(N
−
e−t? ς)

µsxρ,`(N
−
e−t?rj

)
�
(
ε+ e−t?ιj
e−t?rj

)∆+

�
(
et?ει−1

j + 1
)∆+

.

To conclude the proof, note that u−` is at distance at most et?ε from identity so that

N−et?ε+ιj ⊆ N
−
2(et?ε+ιj)

· u−` .

The result now immediately follows if ∆+ ≤ 1 and by Hölder’s inequality otherwise.

10.2. Explicit formula for the temporal function. In this section, we give explicit formulas
for the commutation relations between stable and unstable subgroups of G. These formulas will be
used in obtaining estimates on oscillatory integrals involving the temporal functions τ` in the proof
of Proposition 8.13.

Let K = R,C or H. Consider the following quadratic form on Kd+1: for x = (xi) ∈ V ,

Q(x) = 2Re(x̄0xn)− |x1|2 − · · · − |xd−1|2.

Then, we can realize G as the orthogonal group OK(Q); i.e. the subgroup of SL(Kd+1) preserving
Q. We take

A =
{
gt = diag(et, Id−1, e

−t) : t ∈ R
}
,

where Id−1 denotes the identity matrix in dimension d−1. Denote by M the centralizer of A inside
the standard maximal compact subgroup K ∼= O(n;K) of G.

For u ∈ Km, viewed as a row vector, we write ut for its transpose and ū for the component-wise
conjugate. We let ‖u‖2 := u · ūt, and u · ūt denotes the standard Euclidean dot product. Hence,
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N+ takes the form

N+ =

n+(u, s) :=

1 u s+ ‖u‖2
2

0 Id−1 ūt

0 0 1

 : u ∈ Kd−1, s ∈ ImK

 . (10.4)

The group N− is parametrized by the transpose of the elements of N+ follows

N− =
{
n−(u, s) := (n+(u, s))t : u ∈ Kd−1, s ∈ ImK

}
.

Note that the product map M × A ×N+ ×N− → G is a diffeomorphism near identity. In the
above parametrizations, given t ∈ R and small enough u, v ∈ Kd−1 and r, s ∈ ImK, we would like
to find the A component of the matrix n−(u, s)gtn

+(v, r), in its unique decomposition as mau+u−,
for some u+ ∈ N+, u− ∈ N−, a ∈ A,m ∈M . Explicit computation shows that the top left entry of
n−(u, s)n+(v, r) is given by

1 + u · v̄ +

(
s+
‖u‖2

2

)(
r +
‖v‖2

2

)
.

Thus, letting

τ(t, (v, r)) := t+ log Re

(
1 + e−tu · v̄ + e−2t

(
s+
‖u‖2

2

)(
r +
‖v‖2

2

))
, (10.5)

we see that the A component of n−(u, s)gtn
+(v, r) is given by gτ(t,(v,r)). The function τ(t, (v, r))

in (10.5) is known as the temporal function.
The above constructions do not work for the Octonions O due to non-associativity. In this case,

we will reduce the computations to the case G ∼= SU(2, 1) or SL2(R).

10.3. Oscillatory integrals and proof of Proposition 8.13. Fix (`1, `2) ∈ Sρ,j(κ) and let

ψ1,2(t, n) := φρ,`1(t, n)φρ,`2(t, n).

We wish to estimate ∫
R

∫
N+

e−ib(τ`1 (n)−τ`2 (n))ψ1,2(t, n) dndt.

We can interpret this integral as taking place over the (local) weak unstable manifold of yρ.
Moreover, by definition of the identity neighborhood Wρ ⊂ N+, the integrand is supported inside
Wρ; cf. (8.49). Recall the change of variables map Φ` in (8.48), which we viewed as a strong stable
holonomy map from the weak unstable manifold of xρ,` to that of yρ. It is convenient to reverse the
change of variables Φ`1 to integrate over W`1 instead of Wρ. We do so by composing the integrand

with Φ−1
`1

(which is well-defined on R×Wρ) to obtain∫
R

∫
Wρ

e−ib(τ`1 (n)−τ`2 (n))ψ1,2(t, n) dndt =

∫
R

∫
N+

e−ib(t−τ̂2(n))ψ̂1,2(t, n)JΦ−1
`1

(n) dndt,

where JΦ`1 is the Jacobian of the change of variables with respect to the Haar measure and

ψ̂1,2 := ψ1,2 ◦ Φ`1 , τ̂2(n) = τ`2 ◦ Φ`1 .

Fix some t ∈ R in the support of ψ1,2. It will also be convenient to use the Lebesgue measure
on the Lie algebra n+ := Lie(N+) instead of the Haar measure dn. Let dx denote the Lebesgue
measure on n+, which is induced from some fixed volume form on G. Denote by J0 the Radon-
Nikodym derivative of the pushforward of dn under the inverse of the exponential map with respect
to dx. Hence, we can rewrite the above integral as
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∫
N+

eibτ̂2(n)ψ̂1,2(t, n)JΦ−1
`1

(n) dn =

∫
n+

eibτ̂2(x)ψ̂1,2(t, x)JΦ−1
`1

(x)J0(x)dx, (10.6)

where we suppress the implicit composition with the exponential map.
The next step is to select a convenient line in n+ to compute the integral over, and estimate triv-

ially in the other directions. Recall that n+ and n− := Lie(N−) are parametrized by Kd−1⊕ Im(K);
cf. Section 10.2. We also recall the elements n−ρ,` ∈ N

− which were defined by the displacement of

the points xρ,` from yρ along N− inside the flow box Bρ; cf. (8.34).

Let u ∈ Kd−1 and s ∈ Im(K) be such that

(n−ρ,`1)−1 · n−ρ,`2 = n−(u, s). (10.7)

First, we suppose that K = R,C, or H so that we may use the formula for the temporal function
in (10.5). For x = (v, r) ∈ n+ which is close enough to the origin, we have by (10.5) that

τ̂2(x) = t+ log Re

(
1 + e−tu · v̄ + e−2t

(
s+
‖u‖2

2

)(
r +
‖v‖2

2

))
.

Moreover, by definition of Sρ,j(κ), we have that either ‖u‖ � b−κ or ‖s‖ � b−κ. In the first case,
set û = u/ ‖u‖ and y := (û, 0). In the case where ‖s‖ � b−κ, we let ŝ = s̄/ ‖s‖ and y := (0, ŝ). On
the support of our integrals, we have12 the following elementary estimate in both cases:

|∂y τ̂2(w)| � b−κ. (10.8)

Fix some t and note that the function

a(x) := ψ̂1,2(t, x)JΦ−1
`1

(x)J0(x)

is Ck with norm satisfying

‖a‖Ck(n+) =
∥∥∥ψ̂1,2(t, ·)JΦ−1

`1
J0

∥∥∥
Ck(n+)

�k

∥∥∥ψ̂1,2(t, ·)
∥∥∥
Ck(n+)

,

where the second inequality follows since the support of ψ̂1,2(t, ·) is uniformly bounded in all param-

eters, and the Jacobians JΦ−1
`1

and J0 have Ck norms�k 1 near the origin. Hence, recalling (8.38),
we get

‖a‖Ck(n+) �k ι
−2k
j m2k. (10.9)

We wish to perform integration by parts k times. Denote by M the operator on C0(n+) given
by multiplication by 1/∂y τ̂2 and let T denote the operator ∂y ◦M . Then, we observe that∫

n+

eibτ̂2(x)a(x) dx = −
∫
n+

eibτ̂2(x)∂y

(
a(x)

ib∂y τ̂2(x)

)
dx

= · · ·

= (−ib)−k
∫
n+

eibτ̂2(x)T k(a)(x) dx� b−k|Wρ|
∥∥∥T k(a)

∥∥∥
C0
.

The following elementary lemma provides the desired estimate on
∥∥T k(a)

∥∥
C0 and concludes the

proof in the case K ∈ {R,C,H}. Its proof is given at the end of the section .

Lemma 10.1. We have the following bound on T k(a):∥∥∥T k(a)
∥∥∥
C0
�k ι

−2k
j m2kbkκ.

12Up to scaling down the radius of our flow boxes by an absolute amount if necessary so that τ̂2(w) is well-defined
on such supports.
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Now, suppose K is the Octonion algebra O. Denote by θ a Cartan involution of the Lie algebra
g sending ω to −ω, where gt = exp(tω). In particular, θ sends n+ onto n−. Let (u, s) ∈ n− be as
in (10.7). If either u or s is 0, then setting f equal to the non-zero component, one verifies that
(f, ω, θ(f)) span a Lie subalgebra h ⊂ g which is isomorphic to sl2(R). Indeed, note that f and θ(f)
are both eigenvectors for ad(ω) with the same eigenvalue. Moreover, Y := [f, θ(f)] has eigenvalue
0 with respect to ad(ω) (i.e. Y commutes with ω), while θ(Y ) = −Y . This implies that Y is a
(non-zero) multiple of ω and completes the verification of the isomorphism h ∼= sl2(R).

If both u and s are non-zero, then the subalgebra h generated by u, s, θ(u), and θ(s) is isomorphic
to su(2, 1) by [Hel78, Theorem IX.3.1]. Moreover, h contains ω by the argument in the previous
case. In either case, the formula (10.5) holds along h ∩ n+, so that we may pick the direction y
inside h ∩ n+ and carry out the estimates as above.

Proof of Lemma 10.1. To estimate
∥∥T k(a)

∥∥
C0 , for each r ∈ N, let Cry(n−) denote the space of C0

functions h on n− so that ∂ryh is continuous. We endow this space with the usual Cr norm but
where we only measure derivatives using powers of the operator ∂y. Then, we note that the Leibniz
rule (cf. (6.2)) gives∥∥∥T k(a)

∥∥∥
C0
≤
∥∥∥M(T k−1(a))

∥∥∥
C1
y

≤
∥∥(∂y τ̂2)−1

∥∥
C1
y

∥∥∥T k−1(a)
∥∥∥
C1
y

.

Thus, estimating
∥∥T k−1(a)

∥∥
C1
y
≤
∥∥M(T k−2(a))

∥∥
C2
y

and continuing by induction, we obtain∥∥∥T k(a)
∥∥∥
C0
≤
∥∥(∂y τ̂2)−1

∥∥k
Cky
‖a‖Ck �k

∥∥(∂y τ̂2)−1
∥∥k
Cky
× ι−2k

j m2k,

where the last inequality follows by (10.9).
It remains to show that

∥∥(∂y τ̂2)−1
∥∥
Cky
�k bκ. Indeed, the bound on the C0 norm follows

from (10.8). Fix a line L = v + R · y ⊆ n+. Let g(t) := ∂y τ̂2(v + ty) and f(t) := 1/t. Then, it
suffices to show that f ◦ g satisfies the desired bound (on the subset of t ∈ R where v + ty belongs
to the support of the integrals in question). The latter estimate then follows readily from Faá
di Bruno’s formula for derivatives of composite functions. In fact, the formula shows that all the
higher derivatives are Ok(1), using the explicit shape of τ̂2.

�
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finie, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 4, 939–987. MR 2111017
[Sch05] , Equidistribution of the horocycles of a geometrically finite surface, Int. Math. Res. Not. (2005),

no. 40, 2447–2471. MR 2180113
[Sma67] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014
[Sto11] Luchezar Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity 24 (2011), no. 4,

1089–1120. MR 2776112
[Sul79] Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci.

Publ. Math. (1979), no. 50, 171–202. MR 556586
[SV95] B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic ele-

ments, new and old, Proc. London Math. Soc. (3) 71 (1995), no. 1, 197–220. MR 1327939
[SW20] Pratyush Sarkar and Dale Winter, Exponential mixing of frame flows for convex cocompact hyperbolic

manifolds, arXiv e-prints (2020), arXiv:2004.14551.
[Yan20] Pengyu Yang, Equidistribution of expanding translates of curves and Diophantine approximation on ma-

trices, Invent. Math. 220 (2020), no. 3, 909–948. MR 4094972

Index of Notation for Section 8

∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
∆+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
T0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
pj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
J0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
pj,w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
gwj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Kj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ιj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
P0
j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
gγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

N+
1 (j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

yρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Tρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Iρ,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
xρ,` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
W` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

φ̃ρ,` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Fρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
F? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Wρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
τ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
φρ,` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
JΦ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Jρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Cρ,j(κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Sρ,j(κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
κ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Department of Mathematics, University of Utah, SLC, UT
Email address: khalil@math.utah.edu


	1. Introduction
	1.1. Prior results
	1.2. Organization of the article

	2. Preliminaries
	2.1. Geometrically Finite Manifolds
	Notation
	2.2. Standard horoballs
	2.3. Conformal Densities and the BMS Measure
	2.4. Stable and unstable foliations and leafwise measures
	2.5. Carnot-Caratheodory metrics
	2.6. Local stable holonomy
	2.7. Notational convention

	3. Doubling Properties of Leafwise Measures
	3.1. Global Measure Formula
	3.2. Proof of Proposition 3.1

	4. Margulis Functions In Infinite Volume
	4.1. Construction of Margulis functions
	4.2. Linear expansion
	4.3. Proof of Theorem 4.1
	4.4. Geometric properties of Margulis functions and proof of Proposition 4.3

	5. Shadow Lemmas, Convexity, and Linear Expansion
	5.1. Proof of Proposition 4.2
	5.2. Prelimiary facts
	5.3. Convexity and Proof of Claim 5.1

	6. Anisotropic Banach Spaces and Transfer Operators
	6.1. Anisotropic Banach Spaces
	6.2. Hennion's Theorem and Compact Embedding
	6.3. Proof of Proposition 6.6

	7. The Essential Spectral Radius of Resolvents
	7.1. Strong continuity of transfer operators
	7.2. Towards a Lasota-Yorke inequality for the resolvent
	7.3. Decomposition of the transfer operator according to recurrence of orbits
	7.4. Proof of Theorems 6.1 and 6.4
	7.5. Proof of Theorem C

	8. Spectral gap for resolvents with large imaginary parts
	8.1. Proof of Theorems A and B
	8.2. Proof of Theorem 8.2
	Time partition
	Contribution of points in the cusp
	Partitions of unity and flow boxes
	Localizing away from the cusp
	Pre-localization
	Saturation and post-localization
	Transversals
	Centering the integrals
	Mass estimates
	Transverse intersections and Lebesgue conditionals
	Stable holonomy
	Stable derivatives
	8.3. The role of oscillatory integrals
	8.4. Parameter selection and conclusion of the proof

	9. Transverse intersections and smooth conditionals
	9.1. Transverse intersections and Lebesgue Conditionals
	9.2. Transverse regularity

	10. Counting and Uniform Non-integrability
	10.1. Counting close pairs and proof of Proposition 8.12
	10.2. Explicit formula for the temporal function
	10.3. Oscillatory integrals and proof of Proposition 8.13

	References
	Index of Notation for Section 8

