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Abstract. Let (M,ω) be a translation surface such that every leaf of its horizontal foliation is
either closed, or joins two zeros of ω. Then, M decomposes as a union of horizontal Euclidean
cylinders. The twist torus of (M,ω), denoted T(ω), consists of all translation surfaces obtained
from (M,ω) by applying the horocycle flow independently to each of these cylinders. Let gt be
the Teichmüller geodesic flow. We study the distribution of the expanding tori gt · T(ω) on moduli
spaces of translation surfaces in cases where (M,ω) is a Veech surface. We provide sufficient criteria

for these tori to become dense within the conjectured limiting locus M := SL2(R) · T(ω) as t → ∞.
We also provide criteria guaranteeing a uniform lower bound on the mass a given open set U ⊂ M
must receive with respect to any weak-∗ limit of the uniform measures on gt · T(ω) as t → ∞. In
particular, all such limits must be fully supported in M in such cases. Finally, we exhibit infinite
families of well-known examples of Veech surfaces satisfying each of these results. A key feature of
our results in comparison to previous work is that they do not require passage to subsequences.
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1. Introduction

This article studies the distribution of translates of certain tori in moduli spaces of translation
surfaces under the action of the Teichmüller geodesic flow. The tori we study arise from horizontal
shearing deformations of a fixed horizontally periodic translation surface. Our main results provide
sufficient criteria under which these translated tori become dense (Theorem A), and, in other
cases, guaranteeing that all weak-∗ limits of their uniform measures are fully supported within the
conjectured locus (Theorem B). Among the ingredients in the proof are a strengthening of Forni’s
full density convergence for expanding horocycle arcs (Theorem 1.6), and a measure rigidity result
for horocycle flow-invariant measures on projective bundles arising from locally constant cocycles
over quotients of SL2(R) (Theorem 1.8).

These results are motivated by the problem of equidistribution of expanding horocycle arcs
conjectured by Forni, as well as by the analogous twist torus conjecture of Mirzakhani in the
context of hyperbolic surfaces as we discuss below.
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1.1. Twist tori in moduli spaces. A translation surface is a pair (M,ω) of a Riemann surface
M , equipped with a holomorphic 1-form ω. A stratum is a moduli space of translation surfaces,
where the number and orders of the zeros of the 1-form are fixed. Strata are equipped with an
action of SL2(R), induced from its linear action on polygonal presentations of translation surfaces.
Of interest in this article are actions of the subgroups

A =

{
gt =

(
et 0
0 e−t

)
: t ∈ R

}
, and U =

{
u(s) =

(
1 s
0 1

)
: s ∈ R

}
(1.1)

of SL2(R) generating the Teichmüller geodesic and horocycle flows respectively. We refer the reader
to the surveys [Zor06, Yoc10, FM14, AM24] for background on these objects.

Fix a translation surface (M,ω) , and let Σ ⊂ M denote the zeros of ω. The (singular) foliation
induced by the imaginary (resp. the real) part of ω is called the horizontal (resp. vertical) foliation.
Throughout this introduction, we assume (M,ω) to be horizontally periodic, i.e., every leaf of its
horizontal foliation is either closed, or a saddle connection (i.e., a leaf joining points in Σ).

A horizontal cylinder is a connected component of M \ {horizontal saddle connections}, i.e., a
maximal connected family of closed horizontal leaves on M . Let {Ci : 1 ≤ i ≤ n} denote the set
of such cylinders. We can realize each of the flat surfaces (Ci, ω|Ci) as the image of a Euclidean
parallelogram Pi ⊂ C, with two edges parallel to the real axis, under identification of the two other
edges by horizontal translation. In these coordinates, ω|Ci is given by pullback of the canonical
1-form dz restricted to Pi. The core curve of Ci is the homology class of one (and hence any) of
the closed horizontal leaves contained in Ci.

The twist torus of (M,ω), henceforth denoted T(ω), is the set of all translation surfaces obtained
from (M,ω) by first applying some horocycle flow matrix ui ∈ U to each parallelogram Pi, re-
gluing the non-horizontal edges of uiPi by translation to get a new set of horizontal cylinders
ui · (Ci, ω|Ci), then re-gluing the new cylinders along their horizontal boundaries using the same
pattern of identifications of the old cylinders; cf. §2.3 for precise definitions.

Let hi =
∫
Ci

Im(ω), wi =
∫
Ci

Re(ω), and mi = hi/wi denote the height, circumference, and

modulus of Ci respectively. Then, noting that u(mi) · (Ci, ω|Ci) is isometric to (Ci, ω|Ci), the above
parametrization of surfaces in T(ω) by elements of Un ∼= Rn naturally identifies it with the image of
an immersion of the torus Tn ∼= Rn/

∏n
i=1miZ into the stratum. This identification then naturally

endows T(ω) with a Lebesgue probability measure, denoted µT, inherited from the uniform measure
on Tn.

1.2. Motivating conjectures. The tori T(ω) give rise to submanifolds within the unstable horo-

spherical leaf W u(ω) of (M,ω) inside the locus M := SL2(R) · T(ω). Roughly, W u(ω) is a disk of
maximal dimension around ω in M with the property that the diameter of g−tW

u(ω) tends to 0 as
t → ∞; cf. §2.6 for definitions. The study of expanding translates of horospherical leaves under the
action of (non-uniformly) hyperbolic flows has a long history, in part due to its connection to count-
ing asymptotics of periodic orbits [Mar04], and is intimately tied to mixing properties of the flow;
cf. [SSWY24] and references therein for results in this direction in the context of Teichmüller dy-
namics. In particular, it is known that pushforwards of suitable Lebesgue class measures on W u(ω)
under gt equidistribute towards the unique SL2(R)-invariant and ergodic, probability measure µM
fully supported on1 M [SSWY24, Theorem 1.4], see also [LM08, For21, EMM22] for related results.

The problem of understanding the limiting distributions of the tori gt ·T(ω) is far more delicate.
Indeed, in general, the tori T(ω) have positive codimension within the unstable leaf W u(ω), and,
hence, the distribution of their pushforwards is not directly connected to mixing of gt. Nonetheless,
it was shown by Forni in [For21] that the work of Eskin, Mirzakhani, and Mohammadi [EM18,
EMM15] implies that the measures (gt)∗µT converge towards µM a along a sequence of times

1That M is the support of an ergodic SL2(R)-invariant measure is a consequence of the work of Eskin, Mirzakhani,
and Mohammadi [EMM15]; cf. Lemma 5.3.



DENSITY OF MIRZAKHANI’S TWIST TORI 3

t → ∞ of full density in R≥0. Indeed, the tori T(ω) are foliated by U -orbit segments to which the
aforementioned results apply. In light of these results, it is natural to raise the following problem.

Problem 1.1. In the above notation, do the measures (gt)∗µT converge in the weak-∗ topology
towards µM as t → ∞ ?

Problem 1.1 provides intermediate grounds towards the following well-known problem in Te-
ichmüller dynamics regarding equidistribution of expanding horocycle arcs under the geodesic flow,
which served as our primary motivation for studying Problem 1.1.

Problem 1.2 ([For21, Conjecture 1.4]). Let q = (M ′, ω′) be an arbitrary translation surface. Do

the measures
∫ 1
0 δgtu(s)q ds, supported on expanding horocycle arcs through q, converge to the

unique SL2(R)-invariant, ergodic, probability measure fully supported on SL2(R) · q as t → ∞?
Here, δx denotes the Dirac mass at x.

Beyond its intrinsic interest, Problem 1.2 has many applications to counting problems in flat ge-
ometry [EM01]. Nonetheless, it is currently wide open outside of certain special settings [EMWM06,
EMS03, BSW22]. We refer the reader to [LMW22, Conjecture 1.5] for a discussion of connections
between Problem 1.2 and recent developments on its effective analogues in homogeneous dynamics.

Another motivation for studying Problem 1.1 comes from Mirzakhani’s twist torus conjecture in
the related context of moduli spaces of hyperbolic surfaces; cf. [Wri20, Problem 13.2]. To formulate
this conjecture, fix a pants decomposition P of a genus g surface S. For each L > 0, there is a torus
in the moduli space of hyperbolic structures on S, consisting of surfaces obtained by taking each cuff
in P to be length L and performing all possible Dehn twists around those cuffs. The aforementioned
conjecture of Mirzakhani predicts the limiting distributions of those tori as L → ∞.

The connection between these two problems was made precise in the work of Calderon and
Farre [CF24b], who generalized Mirzakhani’s work on measurable conjugacies between horocycle
flows on the space of flat structures and earthquake flows on the space of hyperbolic structures;
cf. [Mir08, CF24a]. Roughly speaking, under this conjugacy, Mirzakhani’s twist tori give rise to
certain expanding flat twist tori of the form in Problem 1.1; cf. [CF24b, Section 4.1] for the precise
correspondence. Moreover, and crucially, they show that this, apriori measurable conjugacy, maps
weak-∗ limits of uniform measures on certain sequences of hyperbolic twist tori to limits of the
corresponding measures on flat tori. Combined with the above full density results of [EMM15,
For21], they identified the limit of the hyperbolic twist tori along the corresponding sequence of
L → ∞. In particular, it follows from their work that a complete answer to Mirzakhani’s twist
torus conjecture follows from an affirmative answer to Problem 1.1.

1.3. Main results. Our main results, Theorems A and B, provide partial progress on Problem 1.1
by addressing its topological forms in certain cases when the twist torus T contains a Veech surface.

Before stating the first result, we need some definitions. The Veech group of a translation surface
(M,ω), denoted SL(M,ω), is its stabilizer for the action of SL2(R) on the stratum containing
(M,ω). Recall that (M,ω) is said to be a Veech surface if SL(M,ω) is a lattice in SL2(R), i.e.,
SL(M,ω) is discrete with finite covolume. It is known by a result of Smillie that (M,ω) is a Veech
surface if and only if the orbit V := SL2(R)·(M,ω) is closed [Vee95, pg 226]. We refer to such closed
orbits as Veech curves based on the fact that Veech initiated their modern study in dynamics.

Given an SL2(R)-orbit closure M containing (M,ω), we say that (M,ω) is M-primitive if there
is no proper intermediate SL2(R)-orbit closure between V and M, i.e., if N is an SL2(R)-orbit
closure with V ⊆ N ⊆ M, then N = V, or N = M.

Theorem A. Let (M,ω) be a horizontally periodic Veech surface, and let M = SL2(R) · T(ω).
Assume that (M,ω) is M-primitive. Then, the expanding tori gt · T(ω) become dense in M as
t → ∞, i.e., for every ε > 0 and compact set K ⊂ M, there is t0 > 0 so that K∩gt ·T(ω) is ε-dense
in K for all t ≥ t0.
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Recall that (M,ω) is said to be square-tiled if its Veech group is commensurable with SL2(Z), or
equivalently, if M is a finite-sheeted translation cover of a flat torus branched over one point [Vee89,
GJ00]. We note that, if (M,ω) is square-tiled, then it can be shown that the torus T(ω) has a
dense subset of square-tiled Veech surfaces. Moreover, T(ω) meets the closed SL2(R)-orbit of each
of these surfaces in a periodic horocycle. In this case, Theorem A is an immediate consequence
of the work of Eskin, Mirzakhani, and Mohammadi, and the fact that these periodic horocycles
become dense within their respective closed SL2(R)-orbits.

On the other hand, it follows from the finiteness results of [EFW18] that, if the Veech group of
a Veech surface (M,ω) has trace field of degree ≥ 3, then T(ω) intersects at most finitely many
Veech curves; cf. Proposition 3.1. In Section 3.1, we use this criterion to provide an infinite family of
examples satisfying Theorem A, but where the above direct argument for square-tiled surfaces is not
available. These examples are obtained by gluing parallel sides of regular 2n-gons by translations,
for n > 5. That these examples are M-primitive is a consequence of strong results on orbit closures
in hyperelliptic components of strata [McM07, Cal04, Api18, Api19]; cf. Proposition 3.1.

Remark 1.3. We note some generalizations of Theorem A that follow from our arguments:

(1) The Decagon. The proof of Theorem A proceeds by analyzing small pieces of T(ω) locally
near the Veech curve V = SL2(R) · (M,ω), which are well-approximated by their lineariza-
tions. The M-primitivity hypothesis is used to rule out that such linearizations collapse
on tangent spaces of intermediate orbit closures under the action of gt; cf. Lemma 5.4. In
some cases, this collapse can be ruled out in absence of M-primitivity using information
on the position of these intermediate tangent spaces relative to the Lyapunov spaces of the
derivative of gt. To highlight this flexibility in our methods, we show in Appendix A that
the conclusion of Theorem A continues to hold for the decagon surface, even though it is
not M-primitive. Note that the decagon is the unique Veech surface within its twist torus,
up to the action of U ⊂ SL2(R); cf. Proposition 3.1(1).

(2) Proper sub-tori. The analogue of Theorem A holds if the full torus T(ω) is replaced with a
proper, U -invariant, sub-torus T′ ⩽ T(ω) containing the periodic horocycle through ω, and

M is replaced with M′ := SL2(R) · T′, under the hypothesis that (M,ω) is M′-primitive.

We now turn to our next result asserting that, under certain assumptions on the Veech surface
(M,ω), all possible limit measures of the expanding twist tori gt ·T(ω) as t → ∞ are fully supported

on the locus SL2(R) · T(ω), i.e., every open set must receive positive mass. Note that the property
of weak-∗ limits having full support is much stronger than density of gt · T(ω) as t → ∞, and is
new in all cases considered, even when T(ω) contains a dense set of Veech surfaces.

To formulate the result, let Σ(ω) ⊂ M denote the finite set of zeros of ω. Recall that (M,ω)
admits an atlas of charts to C where transition maps are given by translations, and in which ω is
the pullback of the canonical 1-form dz. Let Aff+(M,ω) denote the group of orientation preserving
homeomorphisms of M , preserving Σ(ω), and which are given by affine maps in translation charts.
In particular, the Veech group SL(M,ω) is the image of Aff+(M,ω) under the map that assigns to
each element its derivative in those charts.

Denote by Cyl(ω) ⊆ H1(M,Σ(ω);R) the smallest Aff+(M,ω)-invariant subspace containing all
the dual classes to the core curves of the horizontal cylinders of (M,ω). In particular, Cyl(ω)
contains the tautological plane of ω spanned by its real Re(ω) and imaginary Im(ω) parts. The
tautological plane is invariant by Aff+(M,ω), and admits an Aff+(M,ω)-invariant complement
inside Cyl(ω); cf. §2.4 for the precise construction. We denote this invariant complement by Cyl0(ω).

Theorem B. Let (M,ω) be a horizontally periodic Veech surface. Assume that

a pseudo-Anosov element of Aff+(M,ω) acts as the identity matrix on Cyl0(ω). (1.2)
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Then, every weak-∗ limit of the measures (gt)∗µT as t → ∞ has full support in M := SL2(R) · T(ω),
where µT is any fully supported Lebesgue probability measure on T(ω). More precisely, for every
non-empty open set U ⊆ M, there is ε > 0 and t0 > 0 so that (gt)∗µT(U) > ε for all t ≥ t0.

Remark 1.4. (1) Note that we do not require (M,ω) to be M-primitive in Theorem B.
(2) Hypothesis (1.2) holds whenever a pseudo-Anosov element acts as the identity matrix on the

entire complement of the tautological plane with respect to the intersection form; cf. §2.4.

In Section 3.2, we recall results of Matheus and Yoccoz in [MY10] implying that the infinite family
of square-tiled surfaces constructed in loc. cit. satisfy the hypothesis of Theorem B; cf. [AW22, Sec-
tion 2] for a recent generalization of the Matheus-Yoccoz construction. These examples include the
well-known Eierlegende-Wollmilchsau surface first studied in [For06, HS08], and the Ornithorynque
studied in [FM08]. In the latter two examples, the subgroup acting trivially on the complement of
the tautological plane in fact has finite index in the affine group, while in all the other examples in
the Matheus-Yoccoz family, such subgroup has infinite index.

The proof of Theorem B suggests that Problem 1.1 admits an affirmative answer for Veech
surfaces satisfying (1.2); see §1.6 for a sketch of the proof of Theorem B. In particular, we suspect
the following conjecture may be approachable with further refinements of our methods.

Conjecture 1.5. Let (M,ω), µT, and M be as in Theorem B, and let µM be the unique SL2(R)-
ergodic probability measure fully supported on M. Then, (gt)∗µT converges to µM as t → ∞.

On the other hand, even strengthening the conclusion of Theorem A from density to full support
of limit measures seems to require significant new ideas.

1.4. Convergence along full Banach density of times. Among the ingredients in the proof of
Theorems A and B is Theorem 1.6 below, which is an equidistribution result for gt pushes of horo-
cycle arcs along a full Banach density set of times t. This result is deduced from the fundamental
results of [EMM15], and strengthens an analogous statement obtained by Forni in [For21], where
convergence along full density sequences of times was established by more abstract arguments.
We note that our proof of Theorem 1.6 uses the full strength of the results of [EMM15], and, in
particular, Theorem 1.6 does not hold in the generality of the results of [For21].

Theorem 1.6. Let M be an SL2(R)-orbit closure, ϵ > 0, and f ∈ Cc(M). Then, there exist L0 > 0
and proper SL2(R)-orbit closures N1, . . . ,Nk in M such that for any compact set F ⊂ M\∪k

i=1Ni,
we can find S0 ≥ 0, so that for all L ≥ L0, S ≥ S0 and x ∈ F , we have

#

{
ℓ ∈ [S, S + L] ∩ N :

∣∣∣∣∫ 1

0
f(gℓu(s)x) ds−

∫
f dµM

∣∣∣∣ < ϵ

}
> (1− ϵ)L. (1.3)

Here, µM is the unique SL2(R)-invariant Borel probability measure whose support is M.

Remark 1.7. The key feature of Theorem 1.6 is the uniformity of the parameter L0 over the entire
set generic set M\∪k

i=1Ni. Such uniformity is crucial for the application towards Theorem A.

1.5. A-invariance of the distribution of cocycle output directions. Another key ingredient
in our proof of Theorem A is the following general rigidity result regarding SL2(R)-actions on fiber
bundles over its finite volume quotients, induced from linear representations of its lattices, which
may be of independent interest. The result asserts that all limiting measures of expanding horocycle
arcs on such fiber bundles are necessarily invariant by the geodesic flow. We note that this result
is not needed in the proof of Theorem B; cf. Section 1.6 for further discussion.

To state the result, we need some notation. Let Γ be a lattice in G = SL2(R), V = G/Γ, and
µV be the G-invariant probability measure on V. Let ρ : Γ → GLd+1(R) be a representation of Γ,
d ≥ 1, and denote by RPd the d-dimensional projective space. Then, Γ acts diagonally on G×Rd+1

by γ · (g, v) = (gγ−1, ρ(γ)v), and G acts on the first factor by left multiplication. This induces
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similar actions of Γ and G on G×RPd. Denote by V̂ and RV̂ the quotient spaces of G×Rd+1 and

G× RPd by Γ respectively. In particular, V̂ and PV̂ are fiber-bundles over V. Since the actions of

G and Γ on G× RPd commute, G also acts on the quotient PV̂.
For x ∈ V, we denote its fiber in V̂ by Vx. We shall assume that the fibers Vx are equipped

with a family of continuously varying norms ∥·∥x. For g ∈ SL2(R) and x ∈ V, we use the notation
B(g, x) : Vx → Vgx to denote the linear map on the fibers induced from left multiplication by g on

V̂. We also use the same notation for the action on fibers of PV̂. Finally, we use ∥B(g, x)∥op to

denote the operator norm of the linear map B(g, x) : Vx → Vgx.

Theorem 1.8. Assume that for some C ≥ 1 and a fixed norm ∥−∥ on SL2(R), we have

| log ∥B(g, x)∥op | ≤ C log ∥g∥ , for all g ∈ SL2(R), x ∈ V. (1.4)

Then, every U -invariant probability measure, which projects to µV , is A-invariant, where U and A
are the subgroups of SL2(R) in (1.1).

In particular, for every z ∈ PV̂, we have that every weak-∗ limit measure as t → ∞ of the
collection of measures {∫ 1

0
δgtu(s)·z ds : t ≥ 0

}
(1.5)

is A-invariant.

Remark 1.9. (1) An important feature of Theorem 1.8 is that it holds without any restrictions
on irreducibility or the Lyapunov spectrum of the cocycle. Moreover, it is likely that the
boundedness hypothesis (1.4) can be weakened to allow slow growth in the cusps when Γ
is non-cocompact.

(2) It follows by Theorem 1.8 that every limit measure of the family in (1.5) as t → ∞ is
P := AU -invariant. Under the following additional hypotheses on the representation, we
show in Appendix B that the P -action is uniquely ergodic, i.e., it admits a unique invariant
measure. In particular, this implies that the measures in (1.5) have a unique accumulation
point. Note that such finer results are not needed for our proof of Theorem A.
(a) Representations with bounded image. In this case, we show that the unique

P -invariant measure is in fact SL2(R)-invariant, and is roughly given locally by the
product of µV with the image of the Haar measure on an orbit of the compact group
ρ(Γ); cf. Theorem B.1 for a precise statement.

(b) Proximal and irreducible representations. In this case, it follows from the re-
sults of [BEW20] that the unique P -invariant measure projects to µV with conditional
measures along each fiber given by a Dirac mass on a suitable top Lyapunov space.
We provide a short proof of this special case in our setting in Theorem B.3.

1.6. Organization of the article and proof ideas. In Section 2, we recall necessary background
and introduce notation to be used throughout the article. We also recall important recurrence and
non-uniform hyperbolicity results needed for the proof. Section 3 provides infinite families of
examples satisfying Theorems A and B. In Section 4, we prove Theorem 1.6 using the work of
Eskin, Mirzakhani, and Mohammadi [EMM15].

In Section 5, we state the key technical statement in the proof of Theorem A, which we refer
to as the key matching proposition, Proposition 5.1. Roughly, Proposition 5.1 asserts that a small
neighborhood of the expanded torus gt ·T(ω) contains a large piece of the P -orbit of points in T(ω)
that lie near our Veech curve V = SL2(R) · (M,ω). Here, P = AU ⊂ SL2(R) is the subgroup of
upper triangular matrices. Proposition 5.1 does not require the M-primitivity hypothesis. The
rest of Section 5 is dedicated to the deduction Theorem A from this matching proposition with the
aid of the uniform convergence result in Theorem 1.6, which precisely concerns equidistribution of
such large pieces of P -orbits.
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Proposition 5.1 is proved in Section 7, with the key ingredient being Theorem 1.8 in the case
of projective vector bundles over Veech curves with fiber action given by the Kontsevich-Zorich
cocycle on the invariant bundle Cyl0(−). Roughly, Theorem 1.8 is applied to gt-pushes of the
horocycle arc through our horizontally periodic Veech surface ω, together with a tangent vector β
to the twist torus T(ω), to show A-invariance of all possible weak limits as t → ∞. As noted in
Remark 1.3, since small pieces of gt · T(ω) near V are well-approximated by their linearizations,
this linear A-invariance implies that such pieces are close together at different times t. This quickly
implies Proposition 5.1.

Section 6 is dedicated to the proof of Theorem 1.8. As noted above, we in fact prove in Proposi-

tion 6.2 that all U -invariant measures on the suspension space PV̂ which project to Haar measure
on V must also be A-invariant. The key idea behind the latter result is to show that the horocycle
flow orbits of points that only differ in the fiber direction experience sub-polynomial divergence,
Lemma 6.3. This lemma implies that the dominant direction of divergence of two general points

in the suspension space PV̂ under the U -action is parallel to the base V. This “fiber-bunching”
property enables us to implement ideas from Ratner’s proof of measure rigidity in the classical
setup of homogeneous dynamics [Rat92].

Appendix B is dedicated to the proofs of consequences of Theorem 1.8 stated in Remark 1.9. In
particular, in the case the representation has bounded image, we show that the limiting measure is
in fact SL2(R)-invariant using the entropy ideas appearing in the proof of Ratner’s theorems given
in the work of Margulis and Tomanov; cf. Proposition B.2.

Finally, Section 8 is dedicated to the proof of Theorem B. The strategy is similar to the proof
of the density theorem, Theorem A, with the key matching proposition replaced with the much
stronger measure-theoretic matching statement in Proposition 8.4. Proposition 8.4 roughly shows
that the average gt-translates of shrinking pieces of the twist torus, over a moving long window of
time of the form [T, T+N ], remain close to the single gT -translate of a certain absolutely continuous
measure λ on T(ω) as T → ∞. This essentially amounts to saying that every weak-∗ limit of gTλ
are almost A-invariant.

The key step in the proof of Proposition 8.4 is Proposition 8.2, which plays the role of Theo-
rem 1.8, but produces a stronger conclusion more directly using our hypothesis on monodromy. In
particular, the latter hypothesis is used to ensure Proposition 8.2 (3) on equality of cocycle matrices
at matched points, rather than mere closeness of projective images of the tremor.

The key idea in the proof of Proposition 8.2 can be summarized as follows. Suppose we are given
two nearby points x, y ∈ V which differ only in the stable horocycle direction. Suppose further
that both points are horizontally periodic, and that they share a horizontal twist cohomology
class, i.e., after identifying the relative cohomology groups of the surfaces corresponding to x
and y by parallel transport, the linear span of the (classes dual to) the horizontal cylinders of
x intersects that of y non-trivially. Let β be one such class in that intersection. In our proof,
x and y will belong to the expanded horocycle arc through (M,ω) at two different times t1 and
t2 = t1 + period of pseudo-Anosov. The existence of such class β will be ensured using our
monodromy hypothesis.

Let τ 7→ x(τ) be the path defined by x0 = x and ẋ(τ) ≡ β, and define y(τ) similarly. Note that
x(τ) and y(τ) are contained in the twist tori of x and y respectively. The crucial observation is that
the property of x and y differing only in vertical periods survives for the surfaces x(τ) and y(τ)
for sufficiently small τ . This means that the respective pieces of the twist tori at x and y remain
close under the action of gt for all t ≥ 0. Our monodromy hypothesis in fact allows us to produce
many such classes β to account for open subsets of the corresponding twist tori. Passing to the
limit along any sequence tn → ∞, this produces almost A-invariance on positive measure sets in
the sense of Proposition 8.4. Theorem B then follows from the latter result by an application of
Theorem 1.6.
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1.7. Further open questions. We end the introduction with several open problems in the study
of horocycle flows on moduli spaces that overlap with the questions studied in this article.

Question 1.10. Find an explicit surface whose U -orbit is Birkhoff generic for the Masur-Veech
measure. Note that the topological version of this problem was considered in [HW18, Proposition
1.7], which identified explicit points whose U -orbit is dense within their SL2(R)-orbit closures.

Question 1.11. Generalizing a construction of Calta [Cal04], Smillie and Weiss constructed horo-
cycle ergodic measures that are not SL2(R)-invariant, and give measure 0 to the set of surfaces with
horizontal saddle connections 2. The constructions start with an SL2(R)-ergodic measure, and then
‘push’ it by an element of the horizontal subspace, such as real REL deformations. In a similar
vein to Problems 1.1 and 1.2, it is natural to ask whether these measures converge when pushed
by gt and, more generally, to ask for the possible weak-∗ limits as t → ∞.

Question 1.12. Is the horocycle flow topologically recurrent? That is, for every translation surface

(M,ω) and ϵ > 0, is it true that the set R(ω, ε)
def
= {s ∈ R : d(u(s)ω, ω) < ϵ} is unbounded? Note,

there exist translation surfaces (M,ω) so that, for a fixed ϵ > 0, R(ω, ε) has upper density 0
[CSW20, Theorem 1.2].

Acknowledgements. The authors thank Paul Apisa, Alex Eskin, Carlos Matheus, Barak Weiss,
and Alex Wright for helpful discussions regarding this project. J.C. is partially supported by NSF
grants DMS-2055354, 2350393 and a Warnock chair. O.K. acknowledges NSF support under grants
DMS-2337911 and DMS-2247713.

2. Preliminaries and Notation

In this section, we recall some basic definitions and refer the reader to the surveys [AM24, FM14,
Yoc10, Zor06] for more background on the subject. We also introduce notation and prove several
preliminary recurrence results to be used in the rest of the article.

2.1. Strata and the mapping class group. Let Hm denote a stratum of marked translation
surfaces. A marked translation surface is given by a map ϕ : (S,Σ) → (M,Σ′) where S is a model
surface, Σ is a finite subset of S and Σ′ is the set of cone points in M . Let Mod(S,Σ) denote the
mapping class group of (S,Σ), that is the group of isotopy classes of homeomorphisms of S that
fix Σ. The quotient of Hm by the right action of Mod(S,Σ), denoted by Hu, is the corresponding
stratum of unmarked translation surfaces.

2.2. Period coordinates and the SL2(R) action. Let q ∈ Hm be a point representing a marked
flat surface Mq. We denote the marking map by ϕ : (S,Σ) → (Mq,Σ(q)). Then, q determines a
holonomy homomorphism on relative integral homology, holq : H1(Mq,Σ(q);Z) → C. In particular,
holq can be viewed as an element of H1(Mq,Σ(q);C). We recall the following identifications

TqHm
∼= H1(Mq,Σ(q);C) ∼= H1(Mq,Σ(q);R)⊕H1(Mq,Σ(q); iR),

where i =
√
−1, TqHm is the tangent space at q, and the second identification is given by post-

composing a C-valued class with coordinate projections. We refer to elements of H1(−;R) and
H1(−; iR) as horizontal and vertical classes respectively.

Remark 2.1. In what follows, to simplify notation, we use the notation H1
C, H

1
R and H1

iR to denote
the groupsH1(Mq,Σ(q); k), k = C,R, iR respectively when the surface q is understood from context.

2The general construction did not appear in print but was described in this video lecture by Weiss.

https://icerm.brown.edu/video_archive/101


DENSITY OF MIRZAKHANI’S TWIST TORI 9

The map q 7→ holq is referred to as holonomy period coordinates. We denote the real and

imaginary components of holq by hol
(x)
q and hol

(y)
q respectively. The cohomology class hol

(x)
q is

represented by the 1-form dxq, viewed as the real part of the holomorphic 1-form determined by

q. As a map on homology, it is given by hol
(x)
q [γ] =

∫
γ dxq; cf. [CSW20, Section 2.1] for more

information. We define the tautological subspace of H1
R at q, denoted Tautq, by

Tautq
def
= Span

{
hol(x)q , hol(y)q

}
.

Viewing elements of H1
C as linear maps on homology with values in C, we note that SL2(R)

acts on H1
C by post-composition through its linear action on C. In particular, for g ∈ SL2(R) and

q ∈ Hm, we have the relation

holgq = g ◦ holq. (2.1)

More explicitly, given τ ∈ R, we have

hol(x)gτ q = eτhol(x)q , hol(y)gτ q = e−τhol(y)q . (2.2)

For u−(σ) = ( 1 0
σ 1 ), we have

hol
(x)
u−(σ)q

= hol(x)q , hol
(y)
u−(σ)q

= σhol(x)q + hol(y)q . (2.3)

Finally, for q = (Mq, ωq) ∈ Hu, we refer to the stabilizer of q in SL2(R) as the Veech group of q,
and denote it by SL(Mq, ωq). By taking derivatives of maps in affine group Aff+(Mq, ωq) defined
above Theorem B, we obtain a surjective homomorphism onto the Veech group with kernel the
(finite) automorphism group of (Mq, ωq), giving the following exact sequence

1 Aut(Mq, ωq) Aff+(Mq, ωq) SL(Mq, ωq) 1.D (2.4)

2.3. Cylinder twists. Suppose q ∈ Hm is that such that Mq contains a horizontal cylinder C.
Then, C determines a cohomology class βC ∈ H1

R defined as follows: βC(γ) = 0 for all homology
classes γ in H1(Mq,Σ(q);Z) represented by either the core curve of C or a curve that is disjoint
from C, and βC(γ) equal to the height of C for any curve γ joining a zero in Σ(q) on the bottom
edge of C to a zero on its top edge. As such curves span H1(Mq,Σ(q);Z), this definition determines
β; cf. [Wri15, Section 2] for further properties of βC .

For τ ∈ R, let qτ
def
= Trem(q, τβC) ∈ Hm denote the translation surface obtained from Mq by

applying the horocycle flow u(τ) to C and the identity map to Mq \ C. The surfaces q and qτ are
related in period coordinates by the following formula (cf. [Wri15, Lemma 2.3]):

hol(x)qτ = hol(x)q + τβ, hol(y)qτ = hol(y)q . (2.5)

Note that equations(2.3)- (2.5) remain valid for q in the unmarked stratumHu and for all g ∈ SL2(R)
sufficiently close to identity so that q and gq both belong to a small ball on which period coordinates
are injective.

We denote by Twist(q) ⊂ H1
R the linear span of the cohomology classes defined above, i.e.,

Twist(q)
def
= Span {βC : C is a horizontal cylinder on q} .

Given τ1, τ2 ∈ R and two classes β1, β2 ∈ Twist(q) ⊂ H1
R, corresponding to two horizontal cylinders

C1, C2 ⊂ Mq, we can define Trem(q, τ1β1 + τ2β2) to be the surface obtained from Mq by first
applying uτ1 to C1, followed by applying uτ2 to C2. Since horizontal cylinder twists commute with
one another, the resulting surface is well-defined. Finally, we note that the horocycle flow itself is
a special example of cylinder twists. In particular, we have

β = hol(y)q =⇒ Trem(q, τβ) = uτq.
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The notation Trem refers to tremor deformations introduced and studied in [CSW20], of which
(horizontal) cylinder twists form the simplest examples. We refer the reader to [Wri15] for the role
of cylinder twists in the study of SL2(R)-orbit closures.

2.4. Balanced spaces. Let H1
R,abs denote the absolute cohomology group of Mq and let p : H1

R →
H1

R,abs denote the forgetful map. Let Lq denote the linear functional on H1
R given by Lq(β) =∫

Mq
dxq ∧ p(β). In other words, Lq(β) is given by evaluating the cup product of p(hol

(x)
q ) with p(β)

on the fundamental class of Mq. We set

Twist0(q)
def
= Twist(q) ∩Ker(Lq).

Note that Lq(hol
(y)
q ) is the nonzero (signed) area of Mq. It follows that

Twist(q) = Twist0(q)⊕ R · hol(y)q . (2.6)

Similarly, we extend the intersection product from H1
R,abs to relative cohomology H1

R by com-

posing it with the forgetful projection p. Moreover, since Lq(hol
(y)
q ) ̸= 0, its restriction to the

tautological plane Tautq is non-degenerate. We denote by Taut0q the orthogonal complement to
Tautq with respect to this intersection form. Following [CSW20], we say that a cohomology class
is balanced if it belongs to Taut0q .

The action of the affine group Aff+(q) on Mq induces an action on H1
R, which preserves the

tautological plane Tautq and its complement Taut0q . Moreover, since every element of Twist0(q)
has 0 intersection pairing with Tautq, we have

Twist0(q) ⊆ Taut0q .

We let Cyl0(q) denote the smallest Aff+(q)-invariant subspace of Taut0q containing Twist0(q). We
set

Cyl(q)
def
= Cyl0(q)⊕ Tautq.

In particular, the above splitting is Aff+(q)-invariant, and

Twist(q) ⊆ Cyl(q).

2.5. The AGY norm. Given q in the marked stratum Hm, the AGY norm on H1
C, denoted ∥·∥q

is defined for every v ∈ H1
C by

∥v∥q
def
= sup

γ∈Λq

|v(γ)|
|holq(γ)|

,

where Λq ⊆ H1(S,Σ;Z) denotes the set of saddle connections of q. This norm induces a (Finsler)
metric denoted distAGY on Hm given by the infimum of lengths of C1-paths joining points. Since
these norms, and hence the metric, are invariant by the mapping class group, they descend to Hu.
The following Lipschitz estimate on norms of parallel transported vectors will be useful for our
analysis.

Proposition 2.2 ([AG13, Proposition 5.5]). Let κ : [0, 1] → Hm be a C1-path and v ∈ H1
C. Then,

e−length(κ) ≤
∥v∥κ(1)
∥v∥κ(0)

≤ elength(κ),

where length(κ) =
∫ 1
0

∥∥∥(̇κ)(t)∥∥∥
κ(t)

dt. Moreover, for q = κ(0), and for all 0 ≤ t < 1/ ∥v∥q, we have∫ t

0
∥v∥κ(s) ds ≤ − log(1− t ∥v∥q).
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Remark 2.3. The second assertion of Proposition 2.2 follows from the proof given in the cited
reference.

We also need the following basic norm estimates of the derivative of the geodesic flow with respect
to AGY norms.

Lemma 2.4 ([AG13, Lemma 5.2]). For all q ∈ Hu, all v ∈ H1
iR, and all t ≥ 0, we have

∥Dgt(q)v∥gtq ≤ ∥v∥q ,

where Dgt(q) : TqHu → TgtqHu is the derivative of the geodesic flow. Moreover, for all v ∈ H1
C,

e−2|t| ∥v∥q ≤ ∥Dgt(q)v∥gtq ≤ e2|t| ∥v∥q
Proof. The first estimate was shown in [AG13, Lemma 5.2] for the action on the marked stratum
Hm, which implies the corresponding estimates in Hu by invariance of the AGY norms under
the mapping class group. As noted in the discussion following Lemma 5.2 in [AG13], the second
inequality follows by the same proof of the first bound. □

2.6. Local (un)stable manifolds. We recall the parametrization of local strong stable/unstable
manifolds. Define Es(q) (resp. Eu(q)) as the subspace of H1

iR (resp.H1
R) with 0 intersection product

with hol
(x)
q (resp. hol

(y)
q ), where the intersection product is extended to relative cohomology by

composing it with the projection to absolute cohomology as in Section 2.4. Let v ∈ Es(q) be such
that there is a path κ : [0, 1] → Hm with κ(0) = q and κ̇(t) = v for all t ∈ [0, 1]. Then, we define
Ψs

q(v) = κ(1). In coordinates, if Ψs
q(v) is defined, then

hol
(y)
Ψs

q(v)
= hol(y)q + v, hol

(x)
Ψs

q(v)
= hol(x)q . (2.7)

The map Ψu
q is defined analogously on R-valued cohomology classes. The maps Ψs

• and Ψu
• play the

role of exponential maps parametrizing strong stable/unstable leaves using their respective tangent
spaces. The following key properties for this map will be important for us.

Proposition 2.5 ([AG13, Proposition 5.3]). For all q ∈ Hu, the map v 7→ Ψs
q(v) is well-defined

for v ∈ Es(q) with ∥v∥q < 1/2. Moreover, we have the bi-Lipschitz estimates

distAGY(q,Ψ
s
q(v)) ≤ 2 ∥v∥q , and 1/2 ≤

∥v∥Ψs
q(v)

∥v∥q
≤ 2.

The analogous estimates also hold for Ψu
q .

Lemma 2.4 implies the following natural equivariance property of the Ψs
•.

Corollary 2.6. For all t ≥ 0, q ∈ Hu, v ∈ Es(q) with ∥v∥q < 1/2, we have

gtΨ
s
q(v) = Ψs

gtq(Dgt(q)v).

Proof. First, we note that it suffices to prove the corollary in the marked stratum Hm. By
Lemma 2.4, we have ∥Dgt(q)v∥gtq < 1/2, and hence ∥Dgt(q)v∥gtq is well-defined by Proposition 2.5.

Let κ : [0, 1] → Hm be a path such that κ(0) = 1, κ(1) = Ψs
q(v), and κ̇(r) = v for all r ∈ [0, 1].

Then, r 7→ gtκ(r) is a path joining gtq to gtΨ
s
q(v), with constant derivative equal Dgt(q)v. The

corollary follows by definition of Ψs
gtq. □

The following substantial strengthening of Lemma 2.4 follows from non-uniform hyperbolicity of
the Teichmüller geodesic flow proved by Forni in [For02, Lemma 2.1’].

Proposition 2.7 ([AG13, Proposition 4.3]). Given a compact subset L ⊂ Hu and δ > 0, there is
T = T (L, δ) > 0 such that for all q ∈ L, v ∈ Es(q), and t ≥ 0 such that gtq ∈ L and the set of
r ∈ [0, t] with grq ∈ L has measure ≥ T , we have ∥Dgt(q)v∥gtq ≤ δ ∥v∥q.
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Remark 2.8. Proposition 2.7 is stated in [AG13] for δ = 1/2, however the same argument works
for any δ > 0.

2.7. The Kontsevich-Zorich cocycle. The standard reference for the discussion in this section
is [FM14]. The Universal Coefficient Theorem provides a splitting

H1(Mq,Σ(q);C) ∼= H1(Mq,Σ(q);R)⊗ C.
Recalling that the left hand-side is identified with the tangent space to Hu at q, we also have that
this splitting is invariant by the derivative Dg(q) : TqHu → TgqHu of g ∈ SL2(R) ; cf. [CKS21,
Section 2.2]. Moreover, there is a linear cocycle, known as the Kontsevich-Zorich cocycle (KZ for
short), and denoted KZ(g, q) : H1(Mq,Σ(q);R) → H1(Mgq,Σ(gq);R), so that the derivative can be
written as

Dg(q) = KZ(g, q)⊗ g,

where g acts on C via its standard linear action on the plane. In particular, the chain rule implies
the cocycle property

KZ(gh, q) = KZ(g, hq)KZ(h, q). (2.8)

We record the following immediate corollary of Lemma 2.4 on norm bounds of the cocycle. Fix
a matrix norm on SL2(R), denoted ∥·∥.
Corollary 2.9. For all g ∈ SL2(R) and q ∈ Hu, we have

∥KZ(g, q)∥q→gq ≪ ∥g∥O(1) ,

where ∥KZ(g, q)∥q→gq denotes the operator norm of the cocycle with respect to the AGY norms at
q and gq respectively.

Proof. The corollary follows by the polar decomposition for SL2(R), the cocycle property, SO(2)-
invariance of AGY-norms, and Lemma 2.4. □

2.8. Standing notation. We introduce convenient notation to be used throughout the article.
Let ω be a horizontally periodic Veech surface. We use V to denote the closed SL2(R)-orbit of ω.
For convenience, we always assume that our Veech surface is 1-periodic for u(s), i.e. u(1)ω = ω.

Given β ∈ Twist(ω), and t, s, r > 0, we let

T(ω) = {u(s) · Trem(ω, β) : β ∈ Twist(ω), s ∈ R} , ω(t, s) = gtu(s)ω ∈ V,
T(ω, β) = {u(s) · Trem(ω, rβ) : r, s ∈ R} , β(t, s) = et ·KZ(gt, u(s)ω) · β,

Tremβ(t, s, r) = Trem(ω(t, s), r · β(t, s)) ∈ Hu, Nβ(t, s) = ∥β(t, s)∥ω(t,s) . (2.9)

Remark 2.10. When the vector β is fixed, we write Trem(t, s, r) and N(t, s) for Tremβ(t, s, r) and
Nβ(t, s) respectively to simplify notation.

With the above notation, we recall the following equivariance property of horizontal cylinder
twists under the action of gt.

Lemma 2.11 ([CKS21, Lemma 2.4] and [CSW20, Proposition 6.5]). Let q ∈ Hu and β ∈ Twist(q).
Then, for all t ∈ R,

gt · Trem(q, β) = Trem(gtq, e
t ·KZ(gt, q) · β).

We will also need the following simple lemma.

Lemma 2.12. For all t, ℓ, s, r ∈ R and β ∈ Twist(ω), we have

(1) Nβ(t+ ℓ, s) ≤ e2|ℓ|Nβ(t, s).
(2) gℓ · Tremβ(t, s, r) = Tremβ(t+ ℓ, s, r).

Proof. The first assertion follows by the cocycle property and Corollary 2.9. The second assertion
follows is the assertion of Lemma 2.11. □
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2.9. Exponential recurrence and contraction of vertical classes. We recall the following
result asserting that except for a set of exceptionally decaying measure, geodesic flow orbits of
points on the torus T(ω) spend a definite proportions of their time inside large compact sets.

Proposition 2.13. Let ω be a horizontally periodic surface and let µ be a U -invariant probability
measure on its twist torus T(ω). Then, there is a compact set L ⊂ Hu, and ε1, ε2 ∈ (0, 1) such that
for all large enough T > 0, the set of x ∈ T(ω) with∫ T

0
1L(gtx) dt ≤ (1− ε1)T

has µ-measure at most e−ε2T .

Proof. This result was shown in stronger form in [ASAE+21, Proposition 3.9] for the Lebesgue
probability measure on a horocycle arc of the form {u(s)q : s ∈ [−1, 1]}, q ∈ Hu, following ideas
of [EM01, Ath06, KKLM17], with uniform estimates as q varied in fixed compact sets in Hu. The
claimed estimate now follows for µ since T(ω) is compact and since µ disintegrates as a convex
combination of Lebesgue measures on horocycle arcs as above by U -invariance. □

Combined with Proposition 2.7, the above recurrence result yields the following contraction
estimate for the action of gt on the strong stable foliation.

Corollary 2.14. Let the notation be as in Proposition 2.13. Then, for µ-almost every q ∈ T(ω),
we have sup ∥Dgt(q) · v∥gtq

t→∞−−−→ 0, where the supremum is over all vertical cohomology classes

v ∈ Es(q) tangent to the strong stable leaf through q with ∥v∥q ≤ 1.

Proof. Fix an arbitrary δ > 0 and let L ⊂ Hu be the compact set provided by Proposition 2.13.
Let T = T (L, δ) > 0 be the parameter provided by non-uniform hyperbolicity in Proposition 2.7.
By Proposition 2.13 and the Borel-Cantelli lemma, for µ-almost every q ∈ T(ω), we can find t > T
such that gtq ∈ L and

Leb(r ∈ [0, t] : grq ∈ L) > T.

Hence, for each such q and t, Proposition 2.7 gives sup ∥Dgt(q) · v∥gtq ≤ δ for all unit norm classes

v ∈ Es(q). The non-expansion estimate of Lemma 2.4 then implies that

lim
t→∞

sup
{
∥Dgt(q) · v∥gtq : v ∈ Es(q), ∥v∥q ≤ 1

}
≤ δ.

The corollary now follows as δ was arbitrary. □

3. Examples

In this section, we provide infinite families of examples satisfying Theorems A and B. These
examples are meant to be illustrative rather than exhaustive.

3.1. Examples for Theorem A. In what follows, for n ≥ 5, we let (Mn, ωn) be the (horizontally
periodic) Veech surface obtained from gluing parallel sides of the regular 2n-gon with a horizontal
edge by translations. These surfaces were discovered by Veech [Vee92, Vee89] and have provided a
rich source of examples in flat geometry since. In Proposition 3.1 (2), we show that these surfaces
satisfy the M-primitivity hypothesis of Theorem A. Part (1) of that proposition 3.1 shows that
the conclusion of this theorem holds non-trivially for those examples since their twist tori meet at
most finitely many closed SL2(R)-orbits.

Proposition 3.1. (1) [McM03, Cal04, McM07, EFW18]. For all n ≥ 5, the twist torus T(ωn)
intersects at most finitely many closed SL2(R)-orbits. Moreover, this property holds for any
horizontally periodic Veech surface with trace field of degree ≥ 3 over Q.
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(2) [McM03, Cal04, McM07, Api18, Api19]. Let Mn = SL2(R) · T(ωn). Then, for n > 5,
(Mn, ωn) is Mn-primitive.

We begin with the following useful lemma which allows us to control the trace field of Veech
surfaces belonging to the same twist torus. This lemma in fact proves a stronger property than
what we need for the concrete examples (Mn, ωn) discussed in this section.

Lemma 3.2 ([KS00, Wri15, Wri14]). Let (M,ω) be a horizontally periodic Veech surface, and
suppose that (M ′, ω′) is another Veech surface in T(ω). Then, the trace fields of the Veech groups
of both surfaces coincide.

Proof. Let V = SL2(R) · (M,ω). Let {Ci : 1 ≤ i ≤ n} be the full set of horizontal cylinders of M ,
and without loss of generality assume that n > 1. Let ci denote the circumference of the cylinder Ci.
Then, these horizontal cylinders of (M,ω) are V-parallel in the language of [Wri15, Definition 4.6].
It follows by [Wri15, Theorem 7.1] that the affine field of definition of V is Q[c2/c1, . . . , cn/c1]. On
the other hand, by [Wri14, Theorem 1.1], the affine field of definition is the same as the holonomy
field of (M,ω) (cf. [KS00, Appendix] for a definition of the holonomy field). By [KS00, Theorem
28], since (M,ω) is a Veech surface, and hence its Veech group contains at least one pseudo-Anosov
element, its holonomy field coincides with the trace field of its Veech group.

Now, (M ′, ω′) admits a horizontal cylinder decomposition of the form M ′ = ∪n
i=1u(si)Ci, for

some si ∈ R. In particular, these cylinders have the same set of circumferences {ci : 1 ≤ i ≤ n}.
Thus, its trace field coincides with that of (M,ω). □

In what follows, we let Γn be the Veech group of (Mn,Γn), i.e.,

Γn = SL(Mn, ωn).

We let k(Γn) be its trace field. Given an integer g ≥ 2, we denote by Hhyp(2g − 2), respectively
Hhyp(g − 1, g − 1), the hyperelliptic components of strata of translation surfaces of genus g having
either one zero of order 2g−2, respectively two zeros of order g−1 each and which are interchanged
by a hyperelliptic involution of the underlying Riemann surface; cf. [KZ03, Def. 2] for the precise
definition. We will need the following elementary lemma.

Lemma 3.3. For all n > 5, the degree of the trace field satisfies [k(Γn) : Q] ≥ 3, and for n = 5, we
have [k(Γ5) : Q] = 2. Moreover, for all n ≥ 5, the surfaces (Mn, ωn) belongs to Hhyp(n − 2) when
n is even, and to Hhyp(n−3

2 , n−3
2 ) when n is odd.

The proof of this lemma is standard and is included for completeness.

Proof. Without loss of generality, we assume the 2n-gon generating (Mn, ωn) has unit length edges.
By considering the top horizontal edge and the closest parallel chord to it respectively, we obtain two
horizontal saddle connections with holonomy (1, 0) and (αn, 0), where αn = 1+2 cos(2π/2n). Thus,
by [KS00, Theorem 28], αn belongs to the trace field k(Γn) of Γn. Moreover, for ζn = exp(2πi/2n),
we have thatQ(αn) = Q(ζn+ζ−1

n ) is the fixed subfield under the complex conjugation automorphism
of Q(ζn). Hence, since Q(ζn) has degree ϕ(2n) over Q, where ϕ is Euler’s totient function, it follows
that [Q(αn) : Q] = ϕ(2n)/2. This implies the first part of the lemma.

For the last claim, observe that when n is even, all vertices of the regular 2n-gon get identified,
and hence Mn has one cone point of cone angle (2n− 2)π. which is access angle (2n− 2)π and the
genus of the surface is n

2 . Similarly, when n is odd there are two cone points of equal angle (n−1)π,

which is access angle 2π(n−1
2 − 1) and this is genus n−1

2 . We now see that these are hyperelliptic.
Observe that rotation by π is a symmetry of the surface that has order 2. When n is even it fixes
n+2 which is twice genus plus 2 points. These points are the cone point, the center of the polygon
and the midpoint of each side. By [FM12, Section 7.4], this is a hyperelliptic involution. Similarly,
when n is odd, rotation by π is a symmetry of the surface that fixes n + 1 points, which is twice
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genus +2. These points are the center of the polygon and the midpoint of each side. It exchanges
two cone points. Hence, these surfaces belong to the claimed strata. □

We are now ready for the proof of Proposition 3.1.

Proof of Proposition 3.1. For Part (1), fix a natural number n ≥ 5. Let Γn denote the Veech group
of (Mn, ωn), and let k(Γn) be its trace field. By Lemma 3.2, every Veech surface (M ′, ω′) ∈ T(ωn)
has the same trace field k(Γn). Hence, by Lemma 3.3, the common trace field of Veech surfaces
in T(ωn) has degree ≥ 3 over Q. Moreover, by [EFW18, Corollary 1.6], each stratum contains at
most finitely many Veech curves with trace field of degree ≥ 3. Thus, T(ωn) can only meet finitely
many Veech curves in this case. The same argument holds for any Veech surface (M,ω) with trace
field of degree ≥ 3.

By Lemma 3.3, for n = 5, k(Γ5) has degree 2. Moreover, every Veech surface with trace field
of degree ≥ 2 in the stratum H(1, 1) is contained in SL2(R) · (M5, ω5) [McM03, Cal04]. Thus, the
SL2(R) · (M5, ω5) is the unique Veech curve intersecting T(ω5) in this case as well.

For Part (2), by Lemma 3.3, for n > 5, (Mn, ωn) is contained in a hyperelliptic component of a
stratum of translation surfaces in genus > 2. By work of Apisa, [Api18, Api19], the only proper
SL2(R)-orbit closures in such components are either Veech curves, or loci of branched coverings.
Since the trace field of Γn is irrational by Lemma 3.3, Γn is non-arithmetic, i.e., Γn is not commen-
surable with any conjugate of any finite index subgroup of SL2(Z). Hence, by [Wri13, Corollary
1.5], this implies3 that (Mn, ωn) is geometrically primitive, i.e., it cannot arise as a branched cover
of a lower genus surface. It follows that (Mn, ωn) cannot be contained in a locus of covers, and in
particular, that (Mn, ωn) is Mn-primitive in this case. □

3.2. Examples for Theorem B. In [MY10, Section 3], Matheus and Yoccoz constructed an
infinite family of square-tiled surfaces parametrized by odd integers m ≥ 3. In this section, we
recall the computations in loc. cit. to show:

Proposition 3.4 ([MY10]). The Matheus-Yoccoz family of square-tiled surfaces, parametrized by
the odd integers, satisfy the hypothesis of Theorem B. More precisely, for each surface in this
family, the affine group admits a pseudo-Anosov element acting trivially on the entire symplectic
complement of the tautological plane. Moreover, for m ≥ 5, the (infinite) subgroup generated by
such elements has infinite index in the affine group of the corresponding surface.

This proposition follows directly from the computations in [MY10, Section 3]. We briefly recall
their results for the reader’s convenience. For m = 3, the resulting surface is the Ornithorynque
studied in [FM08], for which the hypothesis of Theorem B is known to hold for a finite index
subgroup of the affine group. We thus restrict our attention to the case m ≥ 5. In what follows,
we fix an odd integer m ≥ 5, and let (Mm, ωm) be the corresponding (horizontally periodic) Veech
surface defined in [MY10, Section 3.1]. Let Γm denote the affine group of (Mm, ωm).

In [MY10, Section 3.6], it is shown that the homology group of Mm admits the following Γm-
invariant decomposition:

H1(Mm,Σ(ωm);Q) = H1(Mm,Q)⊕Hrel

H1(Mm,Q) = Hst
1 ⊕Hτ ⊕ H̆,

for certain subspacesHrel, Hτ and H̆, and whereHst
1 is the two-dimensional space that is dual to the

tautological plane. More precisely, Hst
1 is the annihilator of the symplectic orthogonal complement

of the tautological plane in cohomology. In particular, since the space Cyl0(ωm) is symplectic
orthogonal to the tautological plane in H1

R, it suffices to exhibit non-trivial pseudo-Anosov elements

of Γm acting trivially on H
(0)
1

def
= Hτ ⊕ H̆ ⊕Hrel.

3The cited result concerns the so-called Bouw-Möller family of Veech surfaces, which includes the surfaces (Mn, ωn)
considered here; cf. [War98, BM10, Hoo13, Wri13] for more on this larger family of examples.
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It is shown in [MY10, Sections 3.4 and 3.5] that the action of Γm on Hτ ⊕Hrel factors through

a finite group. Moreover, in [MY10, Section 3.6], it is shown that the complexified space H̆ ⊗ C
splits as a Γm-invariant direct sum ⊕ρH̆(ρ) of two-dimensional spaces, parametrized by non-trivial
m-roots of unity. In [MY10, Section 3.1], it is shown that the elements

T 2 =

(
1 2
0 1

)
, S2 =

(
1 0
2 1

)
belong to the Veech group SL(Mm, ωm). Let S̃2 and T̃ 2 denote elements Γm with derivative given

by S2 and T 2 respectively. On H̆(ρ), these affine homeomorphisms act with the following matrices

T̃ 2 7→
(
ρ 1 + ρ
0 1

)
, S̃2 7→

(
1 0

1 + ρ−1 ρ−1

)
in a certain distinguished basis. A straightforward computation thus shows that Am := (T̃ 2)m and

Bm := (S̃2)m act trivially on all of H̆.
On the other hand, Am and Bm are themselves non-trivial (since they map to the non-trivial

unipotent matrices (T 2)m and (S2)m in SL2(R)). Moreover, by examining the trace of the image

of AmBm in the Veech group, one obtains a pseudo-Anosov element acting trivially on H̆ (in
fact, (T 2)m and (S2)m generate a Zariski-dense subgroup of SL2(R), and thus contains many such
pseudo-Anosovs). Since the action on Hτ ⊕ Hrel factors through a finite group, one obtains the
desired pseudo-Anosov element by taking a suitable power of AmBm.

Finally, as noted in [MY10, Remark 3.2], the element S̃2T̃ 2 acts on H̆(exp(2πi/m)) via a hyper-

bolic matrix infinite order for all odd m ≥ 5, and hence the full action of Γm on H̆ cannot factor
through a finite group m > 3. In particular, by a result of Möller [M1̈1], the complement of the
tautological plane admits at least one positive exponent in these cases.

4. Uniform Convergence along Full Banach Density of Times

The goal of this section is to prove Theorem 1.6 on uniform convergence of expanding horocycle
arcs along a full Banach density of times. It is the key tool in the deduction of Theorem A from the
key matching proposition in §5. We retain the notation of Theorem 1.6 throughout this section.

4.1. Results from Eskin-Mirzakhani-Mohammadi. In this section we recall some results of
Eskin-Mirzakhani-Mohammadi [EMM15]. The first result follows from [EMM15, Theorem 2.7] and
the fact that gt pushes of rθ arcs fellow travel with gt pushes of horocycle arcs.

Theorem 4.1 ([EMM15, Theorem 2.7]). Let ϕ ∈ Cc(M), and ϵ > 0. There exists a finite set of
invariant manifolds, N1, . . . ,Nn ⊂ M so that for any compact set C ⊂ M \ ∪n

i=1Ni, there exists
T1 > 0 so that for all ω ∈ C and for all T ≥ T1,

1

T

∫ T

0

∫ 1

0
ϕ(gtu(s)ω)dsdt >

∫
M

ϕdµM − ϵ.

Proposition 4.2 ([EMM15, Proposition 2.13]). Let N ⊂ Hu be an affine invariant submanifold.
(In this proposition N = ∅ is allowed.) Then there exists an SO(2)-invariant function fN : Hu →
[1,∞] with the following properties:

(1) fN (ω) = ∞ if and only if ω ∈ N , and fN is bounded on compact subsets of Hu \ N . For

any ρ > 0, the set {ω : fN (ω) ≤ ρ} is a compact subset of Hu \ N .
(2) There exists b > 0 (depending on N ) and for every 0 < c < 1 there exists t0 > 0 (depending

on N and c) such that for all ω ∈ Hu \ N and all t > t0,

1

2π

∫ 2π

0
fN (gtrθω)dθ ≤ cfN (ω) + b.
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(3) There exists σ > 1 and V ⊂ SL2(R) a neighborhood of the identity so that for all g ∈ V and
all ω ∈ Hu,

σ−1fN (ω) ≤ fN (gω) ≤ σfN (ω).

The next result is a straightforward modification of [ASAE+21, Lemma 3.5], where we average
from 0 to 1 instead of −1 to 1.

Lemma 4.3. [ASAE+21, Lemma 3.5] Let fN be as in Proposition 4.2. Then there exists a constant
b′ > 0 so that for all 0 < a < 1 there exists t̄0 = t̄0(a) such that for all t > t̄0 and for all ω ∈ Hu \N
we have ∫ 1

0
fN (gtu(s)ω)ds < afN (ω) + b′ .

Lemma 4.4 ([EMM15, Proposition 3.6]). Let fN be a function as in Proposition 4.2. If ϵ > 0
there exists N so that for all x /∈ N there exists S0 so that for all t > S0 we have

|{s ∈ [0, 1] : fN (gtu(s)ω) > N}| < ϵ.

Moreover, S0 can be chosen to depend only on fN (ω).

4.2. Consequences. In this section we develop some consequences of the previous results via
fairly straightforward arguments. Let d∗(µ, ν) be any metric giving the weak-∗ topology on Borel
measures so that µ(M) ≤ 1.

Proposition 4.5. For every ϵ > 0 there exists T ≥ 0, 0 ≤ ϕ ≤ 1 with ϕ ∈ Cc(M) so that∫
M ϕdµ > 1− ϵ and for any x ∈ M so that ϕ(x) > 0 we have d∗(T

−1
∫ T
0 δu(s)xds, µM) < ϵ.

Proof. Step 1: Finding a compact set K, an open set U ⊃ K and T > 0 so that µM(K) > 1− ϵ and

d∗(T
−1

∫ T

0
δu(s)xds, µM) <

ϵ

2

for all x ∈ U .
There exists a finite set of continuous compactly supported function F = {fi}ni=1 and δ > 0 so

that if ν is a Borel probability measure∣∣∣∣∫ fidµM −
∫

fidν

∣∣∣∣ < δ for all i

then d∗(µ, ν) <
ϵ
2 .

Applying the Birkhoff (or Von Neumann) Ergodic Theorem n times we obtain T and a measurable
set G with µM(G) > 1− ϵ

4 and ∣∣∣∣∫ fi(u(s)z)−
∫

fidµM

∣∣∣∣ < δ

for all z ∈ G and fi ∈ F . By the uniform continuity of the fi and u(s), we may assume G is open.
By inner regularity of measures, there exists K ⊂ U with µM(K) > 1− ϵ

2 .
Step 2: Completion. Recall that in any locally compact Hausdorff space, for any K ⊂ U with K

compact and U open, there exists ϕ ∈ Cc so that ϕ|K = 1, ϕ|Uc = 0 and 0 ≤ ϕ(x) ≤ 1 for all x.
Our ϕ is such a ϕ for K and U as in the previous step. Indeed,

∫
ϕdµM ≥ µM(K) > 1− ϵ.

□

Corollary 4.6. Let ϵ > 0. There exist T0 > 0 and proper SL2(R)-orbit closures N1, . . . ,Nn in M
such that for any compact set F ⊂ M\∪k

i=1Ni, we can find S0 ≥ 0, so that for all T ≥ T0, S ≥ S0

and x ∈ F , we have∣∣∣∣ {ℓ ∈ [S, S + T ] : d∗
( ∫ 1

0
δgℓu(s)xds, µM

)
< ϵ

} ∣∣∣∣ > (1− ϵ)T. (4.1)



18 JON CHAIKA AND OSAMA KHALIL

Proof. Let δ > 0 so that whenever t 7→ νt is a measurable assignment of measures, with

| {t ∈ [0, 1] : d∗(νt, µM) > δ} | < δ,

we have

d∗(

∫
[0,1]

νt, µM) < ϵ.

Let ϕ be as in Proposition 4.5 applied with ϵδ/12 in place of ϵ. Applying Theorem 4.1 with ϵδ/12
in place of ϵ, we obtain a finite number of closed SL2(R)-invariant manifolds N1, ...,Nn satisfying

the conclusion of the theorem. For each of these, we obtain fi
def
= fNi as in Proposition 4.2. We

now apply Lemma 4.4 to the fi with ϵδ/12n in place of ϵ, a compact set F ⊂ M \
⋃n

i=1Ni, and
obtain Ni, Si for each fi. The conclusion of the lemma holds for all t > Si and x ∈ F by the last
assertion of the lemma.

Let N̂ = max {Ni : i} and S1 = max {Si : i}. Let K = ∩f−1
i ([0, N̂ ]). Now, let T1 be as in

Theorem 4.1 applied with ϕ, K and ϵδ/12. Then, if T ≥ T1, S ≥ S1 and x ∈ F ,∫ S+T

S

∫ 1

0
ϕ
(
gℓu(s)x

)
dsdℓ ≥

∫ 1

0

(∫ S+T

S

∫ 1

0
ϕ(gℓu(r)u(s)gSx)drdℓ

)
ds− 2e−2S .

Now if u(s)gSx ∈ K by Theorem 4.1 we have∫ S+T

S

∫ 1

0
ϕ
(
gℓu(r)u(s)gSx

)
drdℓ > T (

∫
ϕ− ϵδ

12
) > T − 2 · ϵδ

12
.

Also, by Lemma 4.4

|
{
s ∈ [0, e2S ] : u(s)gSx /∈ K

}
| < n

ϵδ

12n
.

So, if S0 ≥ S1 is big enough then for all S ≥ S0 and T ≥ T1,∫ S+T

S

∫ 1

0
ϕ
(
gℓu(s)x

)
dsdℓ > T − ϵδ

2
.

Since 0 ≤ ϕ ≤ 1 we have that∣∣∣∣ {ℓ ∈ [S, S + T ] :

∫ 1

0
ϕ
(
gℓu(s)x

)
ds > 1− δ

2

} ∣∣∣∣ > 1− ϵ.

For each ℓ so that | {s ∈ [0, 1] : ϕ(s) > 0} | > 1− δ
2 we have that if L is the T in Proposition 4.5∣∣∣∣ {s ∈ [0, e2ℓ] : d∗(L

−1

∫ L

0
δu(r)u(s)gℓxdr, µM) < δ

} ∣∣∣∣ < δ

2
e2ℓ.

Thus if ℓ is large enough,∣∣∣∣ {s ∈ [0, e2ℓ − L] : d∗(L
−1

∫ L

0
δu(r)u(s)gℓxdr, µM) < δ

} ∣∣∣∣ < δe2ℓ.

Thus by the choice of δ at the start of the proof,

d∗(

∫ 1

0
δgℓu(s)x, µM) < ϵ.

The proof is completed by observing that because ϕ(x) ≤ 1 for all x,∫ 1

0
ϕ(gℓu(s)xdx > 1− δ

2
=⇒

∣∣∣∣ {s ∈ [0, e2ℓ] : ϕ(s) > 0
} ∣∣∣∣ > (1− ϵ)e2ℓ.

□
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4.3. Proof of Theorem 1.6. In this section, we use the above results to complete the proof of
Theorem 1.6. First, given ϵ, by rescaling d∗, we may assume that

d∗(µ, ν) < ϵ =⇒
∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ < ϵ. (4.2)

Next, because µM is gt invariant and (gt)∗ acts continuously with respect to the weak-∗ topology,
which when restricted to measures of total variation at most 1 is compact, there exists δ > 0 so
that if d∗(ν, µM) < δ we have

max
s∈[−1,1]

d∗(gsν, µM) < ϵ. (4.3)

Now, applying Corollary 4.6 with ϵ = δ
4 we have T0 and closed SL2(R)-invariant sets N1, ...,Nn so

that for all compact F ⊂ M\∪n
i=1Ni, there exists S0 so that for all x ∈ F , S ≥ S0 and T ≥ T0 we

have ∣∣∣∣{ℓ ∈ [S, S + T ] : d∗(

∫ 1

0
δgℓu(s)xds, µM) < δ

}∣∣∣∣ > (1− ϵ)T.

In particular, the 1-neighborhood of this set contains at least (1− ϵ)T integers giving,

#

{
ℓ ∈ [S, S + T ] ∩ N : d∗(

∫ 1

0
δgℓu(s)xds, µM) < ϵ

}
> (1− ϵ)T.

Letting L0 = T0, this establishes Theorem 1.6.

5. The Key Matching Proposition and Proof of Theorem A

The goal of this section is to reduce Theorem A to Proposition 5.1 below. Roughly, this result
asserts that, when t is large, the pushed twist torus gt ·T(ω) will be close to a whole family of pushes
of pieces of the twist torus at all times between t− L0 and t, for any given L0 > 0. The reduction
relies on a refinement of the equidistribution theorems of Eskin, Mirzakhani, and Mohammadi,
Theorem 1.6, proved in §4. The proof of Proposition 5.1 is given in §7.

Recall the notation in §2.8.

Proposition 5.1 (Key Matching Proposition). Let (M,ω) be a horizontally periodic Veech surface,
and let V = SL2(R) · (M,ω) be its SL2(R)-orbit. Let 0 ̸= β ∈ Twist0(ω). For every ε > 0, there
exist a compact subset K ⊂ V and δ > 0, so that the following hold for every L0 ≥ 0, T ≥ 1, and
for all large enough t > 0. For every 0 ≤ ℓ ≤ L0, there is a set Sℓ ⊆ [0, 1] of measure at least 1− ε
such that for all s ∈ Sℓ, we have

(1) ω(t− T − L0 + ℓ, s) ∈ K, and
(2) for all 0 ≤ r < δ/Nβ(t− T − L0 + ℓ, s), we have

gT+ℓ · Tremβ(t− T − L0, s, r) ∈ B (gt · T(ω, β), ε) .

Here, for a subset E ⊆ Hu, B(E, ε) denotes its open ε-neighborhood in the AGY metric.

Remark 5.2. (1) Proposition 5.1 holds in general for all horizontally periodic Veech surfaces
(M,ω), and does not require the M-primitivity hypothesis.

(2) In our proof of Theorem A, we use the full strength of item (2), but we only apply item (1)
for ℓ = 0.

In the rest of this section, we deduce Theorem A from Proposition 5.1. Our goal is to build
a suitable compact set F of almost generic points in the sense of Theorem 1.6. We will apply
Proposition 5.1 to tremors that land in F to show, roughly speaking, that expanding horocycle
arcs starting from these points remain close to the expanded torus gt · T(ω) for a long interval of
time. This will imply that a neighborhood of gt · T(ω) contains a large piece of the P -orbit of an
almost generic point, where P = AU is the subgroup of upper triangular matrices. The set F will
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be defined in equations (5.6) and (5.7). Its construction requires preparation that occupies the next
two subsections.

5.1. The role of convergence along full Banach density set of times. Let

U ⊆ M def
= SL2(R) · T(ω)

be an arbitrary non-empty open ball of radius r. Assume that (M,ω) is M-primitive. We will
show that there is β ∈ Twist0(ω) so that for all t large enough,

gt · T(ω, β) ∩ 2U ̸= ∅, (5.1)

where 2U is the ball with the same center and twice the radius as U . Since U is arbitrary, this will
conclude the proof of Theorem A.

The following lemma enables us to apply Theorem 1.6 by showing that M is the orbit closure
of a single point.

Lemma 5.3. There exists x ∈ T(ω) such that M = SL2(R) · x. In particular, M is the support of
a unique SL2(R)-invariant and ergodic probability measure.

Proof. For each y ∈ T(ω), let Ny = SL2(R) · y denote the SL2(R)-orbit closure of y. Let C =
{Ny : y ∈ T(ω)}, and denote by C∧ the subset of maximal elements of C with respect to inclusion.
By [Wri14] and [EMM15, Proposition 2.16], C is a countable set, and hence so is C∧. In particular,
T(ω) = ⊔N∈C∧N ∩T(ω) is a decomposition of T(ω) as a countable disjoint union of closed sets. By
a result of Sierpinski [Sie18] (cf.[Eng89, Theorem 6.1.27]), since T(ω) is compact and connected, C∧

must consist of a single element, completing the proof of the first assertion. The second assertion
follows from the first by [EMM15]. □

Denote by µ the SL2(R)-invariant ergodic probability measure on M; the existence of which
follows by [EMM15] and Lemma 5.3. Let f be a compactly supported continuous function such

that 0 ≤ f ≤ 1U and η
def
=
∫
f dµ > 0.

We apply Proposition 5.1 with

ε = min
{
10−5η2, radius(U)/2

}
(5.2)

to get a compact set K ⊂ V and δ > 0 satisfying its conclusion. By Theorem 1.6, applied with f as
above, there are finitely many SL2(R)-orbit closures N1, . . . ,Nk inside M and L0 > 0, such that
given any compact set F ⊂ M\ ∪k

i=1Ni, we can find T0 > 0 so that

#

{
ℓ ∈ [T, T + L] ∩ N :

∫ 1

0
f(gℓu(s)x) ds > 9η/10

}
> (1− η/10)L, ∀x ∈ F, T ≥ T0, L ≥ L0.

(5.3)

Let x ∈ T(ω) be as in Lemma 5.3 and let β ∈ Twist(ω) be a unit norm cylinder twist such that

x = Trem(ω, rβ), for some r ∈ R. (5.4)

Since Twist(ω) is spanned by the direction tangent to the U -orbit of ω together with the subspace
Twist0(ω), cf. (2.6), after replacing x with u(s)x for a suitable s ∈ R, we shall assume that

β ∈ Twist0(ω). (5.5)

5.2. M-primitivity and avoidance of exceptional orbit closures: the set Rδ. This subsec-
tion is the only place in the proof of Theorem A where our M-primitivity hypothesis is used. In
Appendix A, we show how to carry out this part of the argument in the case of the decagon, where
this hypothesis fails to hold.

Given δ0 > 0, let

Rδ0
def
= {Tremβ(t, s, r) : t ≥ 0, s ∈ [0, 1], ω(t, s) ∈ K, δ0/2 < rN(t, s) < δ0} . (5.6)
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Lemma 5.4. For all sufficiently small δ0 > 0, we have that the infimum distance between Rδ0 and
the exceptional orbit closures is positive, i.e.,

inf {distAGY(y,Ni) : y ∈ Rδ0 , 1 ≤ i ≤ k} > 0.

Proof. Let C(δ0) = sup {distAGY(y,K) : y ∈ Rδ0} and define δ1 as follows:

δ1
def
= min {distAGY(K,Ni) : 1 ≤ i ≤ k,V ̸⊆ Ni} > 0.

Taking δ0 small enough, we can ensure that C(δ0) < δ1/2
4. This ensures positivity of the distance

to all Ni not containing V.
Now, let Ni be such that V ⊆ Ni. Since (M,ω) is M-primitive, this implies that Ni = V. Let

Γ = SL(M,ω) be the Veech group of ω. For every g ∈ SL2(R), let Cyl0(gω) be the image of Cyl0(ω)
in the tangent space of M at gω under the derivative Dωg : TωM → TgωM of left multiplication

by g. The spaces Cyl0(gω) are well-defined and depend only on the point gω in V, and not on the
choice of g in view of Aff+(M,ω)-invariance of Cyl0(ω). This defines a vector bundle over V with
fibers the spaces Cyl0(−). By definition, we have that β(t, s) belongs to Cyl0(ω(t, s)).

Recall that the tangent space TωV is the complexification Tautω ⊗ C of the tautological plane
at ω. Hence, since Cyl0(ω) is a subspace of the balanced space at ω (cf. §2.4 and 2.3), TωV has
trivial intersection with Cyl0(ω). Thus, SL2(R)-invariance of the bundles TV and Cyl0(−) implies
that their respective fibers have trivial intersection at every point in V. Since fibers of these two
bundles vary continuously and K is a compact subset of V, this provides positivity of the infimum
over q ∈ K of the AGY distance between the unit norm spheres in TqV and Cyl0(q). Hence, taking
δ0 sufficiently small, this implies that distAGY(q,V) is bounded away from 0 over all q ∈ Rδ0 . □

Recall the sets Sℓ and the parameter δ > 0 provided by Proposition 5.1. The following lemma
elaborates several useful consequences of that proposition.

Lemma 5.5. Assume that δ0 is chosen sufficiently smaller than δe−2L0 . Then, for all large t > 0
and all 1 ≤ T ≤ t− L0, there exist r > 0 and a subinterval I ⊆ [0, 1] of length 1/⌈e2(t−T−L0)⌉ such
that the following hold:

(1) For every α ∈ (0, 1), # {ℓ ∈ [0, L0] ∩ N : |I ∩ Sℓ| < (1− α)|I|} <
√
εL0/α.

(2) There exists s0 ∈ I such that Trem(t− T − L0, s0, r) ∈ Rδ0 .
(3) For every 0 ≤ ℓ ≤ L0 and s ∈ I ∩ Sℓ, we have that

gT+ℓ · Trem(t− T − L0, s, r) ∈ B(gt · T(ω, β), ε).

Proof. Decompose [0, 1] = ⊔I into a disjoint union of intervals, each of length 1/⌈e2(t−T−L0)⌉. Since
each Sℓ has measure at least 1 − ε, we find that

∑
I

∑
ℓ |I ∩ Sℓ| =

∫ 1
0

∑
ℓ 1Sℓ

(s) ds ≥ (1 − ε)L0.
Letting B denote the subset of intervals I with

∑
ℓ |I ∩ Sℓ| < (1−

√
ε)L0|I|, we see that

(1− ε)L0 ≤ (1−
√
ε)L0

∑
I∈B

|I|+ L0

∑
I /∈B

|I|.

Hence, we find that
∑

I∈B |I| <
√
ε. Since |S0| ≥ 1−ε, it follows that we can find an interval I such

that I ∩ S0 ̸= ∅ and
∑

ℓ |I ∩ Sℓ| ≥ (1−
√
ε)L0|I|. Let α ∈ (0, 1) and let m denote the cardinality of

the set of indices ℓ such that |I ∩Sℓ| < (1−α)|I|. It follows that (1−
√
ε)L0 < (1−α)m+L0−m,

from which we conclude that m <
√
εL0/α.

For the second assertion, fix some arbitrary s0 ∈ I ∩S0 and let r be such that rN(t−T −L0, s0)
belongs to the interval (δ0/2, δ0). Then, ω(t − T − L0, s0) ∈ K by definition of S0. In particular,
the second assertion follows by definition of Rδ0 .

4Indeed, using [CKS21, Lemma 3.3] which relates distances locally to norms on the tangent space, one can show
that distAGY(x,K) ≪ δ.
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For the last assertion, by Proposition 5.1, it suffices to check for each ℓ that r < δ/N(t − T −
L0 + ℓ, s) for all s ∈ I ∩ Sℓ. To this end, note that the orbits {ω(τ, s) : 0 ≤ τ ≤ t− T − L0} all
remain within distance O(1) in V from one another as s varies in I. Hence, using the bound

∥KZ(g, ·)∥ ≪ ∥g∥O(1) from Corollary 2.9, we get that N(t− T − L0, s1) ≍ N(t− T − L0, s2) for all
s1, s2 ∈ I. Moreover, by Lemma 2.12, we also have that N(t−T −L0+ ℓ, s) ≤ e2L0N(t−T −L0, s)
for all 0 ≤ ℓ ≤ L0.

It follows by our choice of r that for every ℓ, we have

rN(t− T − L0 + ℓ, s) ≪ e2L0δ0.

Taking δ0 sufficiently smaller than δe−2L0 , this ensures that r is < δ/N(t−T−L0+ℓ, s) for all s ∈ I
and all 0 ≤ ℓ ≤ L0. This implies the last assertion of the lemma in view of Proposition 5.1. □

5.3. Conclusion of the proof of Theorem A assuming Proposition 5.1. Recall we are fixing
an open ball U and a bump function f with supp(f) ⊂ U and

∫
f dµM = η. Moreover, we have a

parameter δ > 0 provided by Proposition 5.1 when applied with ε as in (5.2). Let 0 < δ0 < δe−2L0

be a parameter satisfying the conclusion of Lemmas 5.4 and 5.5. Set

F =
⋃

τ,s∈[−1,1]

gτu(s) · Rδ0 . (5.7)

Then, by Lemma 5.4 and SL2(R)-invariance of ∪iNi, we have that F ⊂ M\ ∪iNi.
Fix some T such that (5.3) holds for L = L0 and for this F . Let I, s0, and r be as provided by

Lemma 5.5 and let x0 = Trem(t− T − L0, s0, r) ∈ Rδ0 .
Roughly, we wish to apply (5.3) to the horocycle arc {gt−T−L0 · Trem(u(s)ω, rβ) : s ∈ I}. How-

ever, as stated, (5.3) technically holds for arcs of length one with left endpoint in F . This is
remedied by adjusting x0 by a suitably small upper triangular matrix. First, we replace s0 with
the left endpoint s1 of the interval I, so we let

x1 = Trem(t− T − L0, s1, r) = u(e2(t−T−L0)(s1 − s0))x.

We also need to find a slight adjustment to the geodesic flow time t − T − L0 so that a suitable
horocycle arc parametrized by I becomes length 1 after flowing. To this end, let τ ≥ 0 be such that

I1 = e2(t−T−L0+τ)(I − s1) = [0, 1].

Note that

τ → 0 as t → ∞ (5.8)

since |I| = 1/⌈e2(t−T−L0)⌉. Let x2 = gτx1. Then, since |I| ≤ e−2(t−T−L0) and x0 ∈ Rδ0 , we have
that x1 ∈ ∪σ∈[−1,1]u(σ) · Rδ0 . It follows by definition of F that x2 = gτx1 ∈ F .

Thus, we can finally apply (5.3) with x2 in place of x to get∫
I1

1U (gT+ℓu(s)x2) ds ≥
∫
I1

f(gT+ℓu(s)x2) ds > 9η/10 (5.9)

for a set of indices ℓ ∈ [0, L0] of cardinality > (1 − η/10)L0. Next, applying Lemma 5.5(1) with
α = η/20, we have that

|I ∩ Sℓ| ≥ (1− η/20)|I| (5.10)

for a set of indices ℓ ∈ [0, L0] of cardinality at ≥ 1 −
√
ε/α. Hence, our choices of ε and α ensure

that we can find ℓ so that (5.9) and (5.10) hold simultaneously. In particular, we can find s′ ∈ I∩Sℓ

such that for s = e2(t−T−L0+τ)(s′ − s1), we have

gT+ℓu(s)x2 ∈ U , and gT+ℓ · Trem(t− T − L0, s
′, r) ∈ B(gt · T(ω, β), ε).
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Moreover, it follows from the definitions that gT+ℓu(s)x2 = gτ+T+ℓ · Trem(t − T − L0, s
′, r). In

particular, we obtain

B(gt · T(ω, β), ε) ∩ g−τ · U ̸= ∅.

Thus, in view of (5.8) and our choice of ε in (5.2), it follows that gt · T(ω, β) intersects the ball
2U with twice the radius and same center as U . This verifies (5.1) and concludes the proof of
Theorem A.

6. A-invariance of Limiting Distributions of Output Directions

The goal of this section is prove Theorem 1.8. We keep the same notation of the theorem
throughout this section.

6.1. Proof of Theorem 1.8. First, we quickly reduce the second assertion of the theorem to the

first. Fix z ∈ PV̂ and let ν̂ be an arbitrary weak-∗ limit measure of the measures
∫ 1
0 δgtu(s)·z ds

along a sequence of tn → ∞. First, we note that, using the identity u(r)gt = gtu(e
−2tr), it is easy

to see that ν̂ is U -invariant, where U = {u(r) : r ∈ R}. Moreover, by equidistribution of expanding
horocycle arcs on V, we have that ν̂ projects to µV on V. In particular, ν̂ is a probability measure.

Lemma 6.1. Almost every U -ergodic component of ν̂ projects to µV on V.

Proof. Let ν̂ =
∫
ν̂x dλ(x) be an ergodic decomposition of ν̂ and let π : V̂ → V denote the

standard projection. Then, νx
def
= π∗ν̂x is a U -ergodic measure. Since π∗ν̂ = µV , it follows that

µV =
∫
νx dλ(x). By ergodicity of µV , we have νx = µV for almost every x. □

In light of this lemma, it suffices to prove A-invariance of ν̂ under the additional hypothesis that
it is U -ergodic. In particular, the second assertion of Theorem 1.8 is an immediate consequence of
the following measure classification statement, which proves its first assertion.

Proposition 6.2. Every U -ergodic probability measure ν̂ on PV̂, which projects to Haar measure
µV on V, is A-invariant.

The remainder of this section is dedicated to the proof of Proposition 6.2. Let ν̂ be as in the
statement. The proof of this proposition proceeds by adaptation of Ratner’s shearing arguments in
her work on measure classification of unipotent invariant measures on quotients of SL2(R) [Rat92,
Section 4]. The key observation that enables implementing these arguments in our skew-product
setup is that the action u(s) on the fiber has much slower expansion than the base; cf. Lemma 6.3
below.

Using the norm on the fibers of V̂, we define a metric on the fiber RPd
x of PV̂ over x ∈ V as

follows: given x ∈ V and v̄, w̄ ∈ RPd
x, let

5

dist(v̄, w̄) =
∥v ∧ w∥x
∥v∥x ∥w∥x

, (6.1)

where v and w are representatives in Vx of v̄ and w̄ respectively. The following is the key estimate
on subpolynomial divergence of distances in the fiber under the cocycle that underlies our proof of
Theorem 1.8. The proof of the lemma is postponed to the next subsection.

Lemma 6.3 (subpolynomial divergence in the fibers). For every ε > 0, there is a set F with
ν̂(F ) > 1− ε so that for all s ∈ R, if (x, v) and (x,w) belong to F , then

dist(u(s) · (x, v), u(s) · (x,w)) ≪ (1 + |s|)εdist(v, w).

5Here, we use the same notation for an induced norm on ∧2Vx from ∥·∥x; cf. [QTZ19, Appendix A4] for an explicit

construction of induced norms.
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Armed with Lemma 6.3, the rest of the argument is now very similar to Ratner’s original proof
as we now describe. Let Λ(ν̂) ⊆ SL2(R) denote the subgroup of elements of SL2(R) preserving
ν̂ and suppose that A ̸⊂ Λ(ν̂). Using the fact that A preserves the space of U -ergodic measures

(cf. [Rat92, Proofs of Lemma 4.1 and Theorem 4.1]), we can find a full measure set Ê of U -generic

points and θ > 0 so that for all 0 < |t| ≤ θ, gtÊ ∩ Ê = ∅. In particular, there is a compact set L̂ ⊆ Ê
with ν̂(L̂) arbitrarily close to 1 so that

ε
def
= inf

{
dist(gtL̂, L̂) : θ/2 ≤ |t| ≤ θ

}
> 0. (6.2)

Let δ > 0 be sufficiently small, to be chosen depending on θ, ε, and L̂. Since ν̂ projects to the
Haar measure on V, we can find two generic points (y, v1), p · (y, v2) ∈ L̂, i = 1, 2, where p ∈ SL2(R)
is a non-trivial lower triangular matrix which is δ-close to identity, and moreover v1 is δ-close to v2.

For r ∈ R, denote by u−(r) = ( 1 0
r 1 ). Let r, τ ∈ (−δ, δ) be such that p = u−(r)gτ . For s ∈ R with

|sr| < 1, let sp = τ−2s/(1 + sr), rp = r/(1 + sr), and tp = τ + log(1 + rs). Then, we have

u(s)p = u−(rp)gtpu(sp).

Let I ⊂ R be the interval of parameters s such that θ/2 ≤ |tp| ≤ θ. Since |sp| ≍ |s|, it follows
by Lemma 6.3 that for all s ∈ I, the distance between the points u(sp) · (y, vi), i = 1, 2, is O(δ).
Moreover, we have that |rp| = O(δ). In particular, the distance between gtpu(sp) · (y, v1) and the
generic point u(s)p · (y, v2) satisfies

dist(gtpu(sp) · (y, v1), u(s)p · (y, v2)) = O(δ). (6.3)

Following Ratner, with the aid of Birkhoff’s ergodic theorem, we can find s ∈ I so that the two
points u(sp) · (y, v1) and u(s)p · (y, v2) also belong to the compact set L̂. This contradicts (6.2) if δ
is sufficiently small depending on ε.

6.2. Proof of Lemma 6.3. Note that for all x and any two unit norm vectors v, w, we have

dist(B(u(s), x)v,B(u(s), x)w) ≤

∥∥∧2B(u(s), x)
∥∥
op

∥v ∧ w∥x
∥B(u(s), x)v)∥u(s)x ∥B(u(s), x)w∥u(s)x

, (6.4)

where B(u(s), x) : Vx → Vu(s)x is the cocycle defined in Section 1.5. Our goal is to show that the
rate of growth of B(u(s), x)v is close to that of the norm of B(u(s), x) for almost every (x, v). To
this end, we first relate these rates of growth to growth along suitable orbits of gt instead of u(s).
By a direct calculation of the singular values and vectors of u(s), we see that u(s) ∈ SO(2)gtsks,
where ets ≍ |s|, and ks is a matrix that is O(1/|s|)-close to

(
0 −1
1 0

)
and with top-right entry

−1+O(1/|s|2) as |s| → ∞. Hence, by the cocycle property and our boundedness hypothesis (1.4),
we have B(u(s), x) = MsB(g−ts , x), where Ms is a matrix of size O(1). Thus,

dist(B(u(s), x)v,B(u(s), x)w) ≪

∥∥∧2B(g−ts , x)
∥∥
op

∥v ∧ w∥x
∥B(g−ts , x)v∥g−tsx

∥B(g−ts , x)w∥g−tsx

(6.5)

The projection PV̂ → V provides a disintegration of ν̂ along the fibers. We denote by ν̂x the
corresponding conditional measure of ν̂ on the fiber over x. Let Nx denote the smallest projective
subspace of RPd

x containing the support of ν̂x. We also use Nx to denote the corresponding linear
subspace of Vx. Let X ⊆ V denote the µV -full measure set so that ν̂x is defined for every x ∈ X.

To proceed, we need the following definitions.

Definition 6.4. A measurable sub-bundle of V̂ (resp. PV̂) is a measurable assignment of a vector
subspace (resp. projective subspace) to each point in a full measure subset of V. Given a subgroup

H ⊂ SL2(R) and a sub-bundle Ŵ = {(x, q) : x ∈ X ′w ∈ Wx}, where X ′ ⊆ V is a subset of full

measure, we say that Ŵ is H-invariant if X ′ is H-invariant and for every x ∈ X ′ and h ∈ H, we
have Whx = B(h, x)Wx.
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Let P = AU ⊂ SL2(R). We introduce certain measurable invariant sub-bundles of full measure.
Since the measure ν̂ is apriori not P -invariant, it will be convenient to restrict our attention to a
countable subgroup.

Recall that ν̂ is U -ergodic. In particular, it is ergodic for the action of one element in U . Without
loss of generality, we shall assume in what follows for concreteness that ν̂ is ergodic for the action
of a matrix in U with rational entries.

In what follows, given a ring R ∈ {R,Q,Z} and a subgroup H ⊆ SL2(R), we let HR
def
= H ∩

SL2(R). Since the measure µV is SL2(R)-invariant, we have that the set

X ′ =
⋂

p∈PQ

pX

also has full measure. Moreover, X ′ is PQ-invariant by construction. For x ∈ X ′, define

Wx
def
= Span

{
B(p, p−1x)Np−1x : p ∈ PQ

}
.

Then, Ŵ def
= {(x,w) : x ∈ X ′, w ∈ Wx} is a measurable PQ-invariant sub-bundle satisfying ν̂(Ŵ) =

1. Moreover, Ŵ is minimal among PQ-invariant sub-bundles with this property in the sense of

having fibers with smallest dimension. More precisely, any measurable PQ-invariant sub-bundle Ŵ ′

of full ν̂-measure with fibers W ′
x, has the property that W ′

x ⊇ Wx for x in the common PQ-invariant
full µV -measure set on which both bundles are defined.

Since the cocycle is bounded in the sense of (1.4), it is in particular log-integrable so that
Oseledets’ theorem applies showing that the limit

λ−
1

def
= lim

n→∞
n∈N

log ∥B(g−n, x)|Wx∥
1/n
op (6.6)

exists and is constant for µV -almost every x. Moreover, there is an almost everywhere defined

measurable map x 7→ W
<λ−

1
x ⊂ Wx, where W

<λ−
1

x is the Oseledets subspace consisting of all w ∈ Wx

with lim supn→∞(1/n) log ∥B(g−n, x)w∥g−nx
< λ−

1 .

Let X ′′ ⊆ X ′ be a full measure set of x where (6.6) exists and W
λ−
1

x is defined. Up to replacing

X ′′ with ∩p∈PQpX
′′, we may and will assume that X ′′ is a PQ-invariant subset of V. Let Ŵ<λ−

1

denote the measurable sub-bundle

{
(x,w) : x ∈ X ′′, w ∈ W

<λ−
1

x

}
. We claim that

ν̂
(
Ŵ<λ−

1

)
= 0. (6.7)

Indeed, we first show that Ŵ<λ−
1 is PQ-invariant. To see this, note that Ŵ<λ−

1 is AZ-invariant
by definition. From the cocycle property B(gh, x) = B(g, hx)B(h, x) and our boundedness hypoth-
esis (1.4), it follows that it is AQ-invariant. Similarly, since g−nugn tends to identity as n → +∞,

it follows that Ŵ<λ−
1 is UQ-invariant.

Hence, recalling that ν̂ is UQ-ergodic, Ŵ<λ−
1 has measure 0 or 1. The claim (6.7) now follows

since Ŵ is the minimal PQ-invariant sub-bundle of full measure and Ŵ<λ−
1 is a proper sub-bundle.

The last ingredient in the proof is another application of Oseledets’ theorem to the second exterior
power bundle yielding almost sure existence of the limit

λ−
1 + λ−

2 = lim
n→∞,n∈N

log
∥∥∧2B(g−n, x)

∥∥1/n
op

,
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with value independent of x. Here, λ−
2 ≤ λ−

1 is the second Lyapunov exponent for the cocycle
B(g−t,−). Now, given ε > 0, we can find nε > 0 so that the sets F1 and F2 defined by

F1 =
{
(x, v) :

∥∥∧2B(g−n, x)
∥∥
op

≤ e(λ
−
1 +λ−

2 +ε/2)n for all n > nε, n ∈ N
}
,

F2 =
{
(x, v) : ∥B(g−n, x)v∥g−nx

≥ e(λ
−
1 −ε/2)n ∥v∥x for all n > nε, n ∈ N

}
,

each has measure ≥ 1 − ε/2. As above, note that up to replacing the bounds in the definition of
F1 and F2 by a suitable uniform constant multiple, these bounds continue to hold for all t ∈ R
with t > nε. The conclusion of the lemma now follows for F = F1 ∩ F2 in light of (6.4) and (6.5).
Indeed, using that λ−

2 ≤ λ−
1 , we have

dist(B(u(s), x)v,B(u(s), x)w) ≪ e(2λ
−
1 +ε/2)ts

e(2
−
1 −ε/2)ts

≤ eεts ≪ |s|ε,

for all large enough s, where the last inequality follows by definition of ts above (6.5).

7. Proof of the Key Matching Proposition

The goal of this section is to prove Proposition 5.1. The key ingredient is Theorem 1.8, asserting
that any weak-∗ limit of the distributions of output vectors of the cocycle on projective space along
expanding hororcycle arcs on V is invariant by the geodesic flow.

7.1. The bundle with fibers the balanced cylinder space. We begin by setting up notation
for applying Theorem 1.8. Fix a horizontally periodic Veech surface (M,ω). Recall that the action
of the affine group

Γ
def
= Aff+(M,ω)

by affine maps on M induces a linear action of Γ on H1
C, preserving the subspace Cyl0(ω); cf. §2.4.

Moreover, taking derivatives in translation charts gives a surjective homomorphism D : Γ →
SL(M,ω) onto the Veech group with a finite kernel; cf. §2.2. In particular, we view Γ as acting
on SL2(R) by right multiplication through this homomorphism, with quotient the Veech curve
V = SL2(R)/SL(M,ω).

Hence, following the discussion preceding Theorem 1.8, we can form the vector bundle V̂ =

SL2(R) × Cyl0(ω)/Γ, and the associated projective fiber bundle PV̂ = SL2(R) × P(Cyl0(ω))/Γ,
where P(Cyl0(ω)) denotes the space of lines in Cyl0(ω). In particular, the fiber V̂x of V̂ over
x = gω ∈ V is given by KZ(g, ω) · Cyl0(ω), which depends only on x, and not the choice of g by
invariance of Cyl0(ω) under Γ.

We let the norm on the fibers be the restriction of the AGY norm. The boundedness hypothe-

sis (1.4) follows by Corollary 2.9. We let π : PV̂ → V denote the canonical projection map associated
with this fiber bundle.

7.2. Matching of initial points and directions on the Veech curve. The key step in the
proof of Proposition 5.1 involves matching points on the expanded horocycle in V at different times
along with matching the images of β at the corresponding points under the cocycle, so that the
matched pairs are close in distance. This is done in Proposition 7.1 below. To state this result, we
need some setup.

Fix some ε ∈ (0, 1) and let K ⊂ V be a compact set with boundary having µV measure 0 and
such that ∫ 1

0
1K(ω(t, s)) ds ≥ 1− ε/2, for all t ≥ 0. (7.1)

For instance, we may take K to consist of all points x ∈ V with injectivity radius suitably bounded

below in terms of ε; cf. [CKS21, Proposition 5.3]. Let K̂ def
= π−1(K) ⊂ PV̂.
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For each t ≥ 0, let Et = {(ω(t, s), β(t, s)/N(t, s)) : s ∈ [0, 1], ω(t, s) ∈ K}, where we recall that

N(t, s) := Nβ(t, s) was defined in (2.9). We can view Et as a subset of K̂. Elements of Et are
parametrized by a subset of s ∈ [0, 1] for which ω(t, s) lands in K. We let λt be the pushforward
to Et of the Lebesgue measure under this parametrization map, normalized to be a probability
measure.

We now define a metric on K̂ built from the AGY-norms. This will be convenient to relate an
estimate on Tremor distance using the conventional AGY metric and norms (Lemma 7.2) and PV̂-
distance. Let r0 > 0 be chosen so that the r0-neighborhood of every point in K is simply connected.

We extend the AGY metric distAGY to K̂ ⊂ PV̂ as follows. Let x̄i = (xi, vi) ∈ K̂, i = 1, 2, and set

distAGY(x̄1, x̄2)
def
= min

{
distAGY(x1, x2) +

1

2

2∑
i=1

distxi(v1, v2), r0

}
where distx is a distance on the projective space fiber over derived from the AGY norm ∥−∥x;
cf. (6.1) for a definition. Here, if distAGY(x1, x2) < r0, then we view vi, i = 1, 2 as elements of the
same fiber using parallel transport so that distxi(v1, v2) is well-defined for i = 1, 2 by our choice of
r0. Otherwise, the distance distAGY(x̄1, x̄2) is set to be equal to r0.

Proposition 7.1. Let θ > 0 and L0 > 0 be given. Then, the following holds for all sufficiently
large t > 0, depending on θ,K, and L0. Let t1 = t and t2 ≥ t1 be such that t2 − t1 ≤ L0. Then,
there is a subset Ft1 ⊆ Et1 with λt1(Ft1) ≥ 1− θ and a measurable map ϕ : Ft1 → Et2 such that for
all x̄ = (x, v) ∈ Ft1, we have distAGY(x̄, ϕ(x̄)) < θ.

7.3. Deduction of Proposition 5.1 from Proposition 7.1. We begin with the following Lips-
chitz estimate on the distance between tremored surfaces.

Lemma 7.2. There exists δ > 0, depending only on K, so that the following holds for all |r| < δ.
Let t1, t2 ≥ 0 and s1, s2 ∈ [0, 1]. Let vi = β(ti, si)/N(ti, si), xi = ω(ti, si), and yi = Trem(xi, rvi).
If distAGY(x1, x2) < δ, then distAGY(y1, y2) ≤ 8(distAGY(x1, x2) + |r| ∥v1 − v2∥x1

).

Proof. For i = 1, 2, let x̃i ∈ Hm be a lift of xi to the marked stratum. Then, ỹi = Trem(x̃i, rvi) is
a lift of yi. Recall the map Ψu

• parametrizing local unstable manifolds; cf. §2.6. Note that since β
belongs to the balanced space at ω, we get that β(t, s) ∈ Eu(ω(t, s)) for all t, s ∈ R. In particular,

for δ < 1/2, ỹi
def
= Ψu

x̃i
(vi) is well-defined for i = 1, 2. Moreover, by Proposition 2.5, we obtain

distAGY(xi, yi) ≤ distAGY(x̃i, ỹi) ≤ 2δ.

Hence, if distAGY(x1, x2) < δ, we get that all 4 points xi, yi, i = 1, 2 belong to a ball of radius
10δ centered in K. In what follows, we choose δ small enough, depending on K, so that holonomy
period coordinates (cf. §2.2) are injective on any such ball. In particular, it will enough to prove
the lemma in the marked stratum Hm.

By [CKS21, Lemma 3.3], there exists ε0 > 0 so that for all q1, q2 in the unit neighborhood of K,
if distAGY(q1, q2) < ε0, then

2−1 ∥holq1 − holq2∥q1 ≤ distAGY(q1, q2) ≤ 2 ∥holq1 − holq2∥q1 . (7.2)

Moreover, by the previous paragraph, choosing δ < ε0/20 ensures that distAGY(y1, y2) < ε0 so
that (7.2) applies and yields for w = holy1 − holy2 the bound

distAGY(y1, y2) ≤ 2 ∥w∥y1 .

Next, we apply Proposition 2.2 with κ being the (balanced) tremor path joining x1 to y1, with
tangent vector κ̇(t) ≡ v1, to get

∥w∥y1 ≤
∥w∥x1

1− |r| ∥v1∥x1

≤ 2 ∥w∥x1
,
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where we used the bound |r| < δ < 1/2 and that ∥v1∥x1
= 1. Recall the relation between periods

of tremored surfaces x1 and y1 in (2.5). Thus, by the triangle inequality and (7.2) applied with
qi = xi, we obtain

distAGY(y1, y2) ≤ 4(∥holx1 − holx2∥x1
+ |r| ∥v1 − v2∥x1

)

≤ 4(2distAGY(x1, x2) + |r| ∥v1 − v2∥x1
).

This concludes the proof. □

7.3.1. Conclusion of the proof of Proposition 5.1. Let ε > 0 be given. We show that the proposition
holds with our choice of K and with δ the parameter provided by Lemma 7.2. Let T > 1 and L0

be given and let θ = min
{
εe−2T , δ

}
/C, where C ≥ 1 will be chosen to be a suitably large constant

depending onK. In what follows, t ≥ T will be large enough so that the conclusion of Proposition 7.1
holds for these choices of θ and L0.

Fix ℓ ∈ [0, L0] and let t1 = t − T − (L0 − ℓ) and t2 = t − T . Let Ft1 ⊆ [0, 1] be the set
provided by Proposition 7.1. Set Sℓ = {s ∈ [0, 1] : (ω(t1, s), β(t1, s)) ∈ Ft1}. Then, Proposition 7.1
and equation (7.1) imply that |Sℓ| ≥ (1 − θ)(1 − ε/2) ≥ 1 − ε. Moreover, by definition of Ft1 , we
have that ω(t1, s) ∈ K. This verifies item (1).

To verify item (2), let s ∈ Sℓ and r ∈ [0, δ/N(t1, s)]. We wish to show that

gT · Trem(t1, s, r) ∈ B (gT · gt2 · T(ω, β), ε) .
Let x1 = ω(t1, s), v1 = β1(t1, s)/N(t1, s), and y1 = Trem(x1, rv1). Let (x2, v2) ∈ ϕ(x1, v1), where

ϕ is the map in Proposition 7.1, and (x2, v2) ∈ V̂ is a closest point to (x1, v1) in the equivalence
class of the line ϕ(x1, v1). Set y2 = Trem(x2, rv2). Then, y2 ∈ gt2 · T(ω, β). Moreover, we get by
Proposition 7.1 that distAGY(x1, x2) < θ and ∥v1 − v2∥x1

≪ θ. Hence, since θ ≤ δ, we get that
distAGY(y1, y2) ≪ θ by Lemma 7.2. By choosing C in the definition of θ to be large enough to
overcome the implicit constant in this inequality, we obtain distAGY(y1, y2) ≤ εe−2T . By Lemma 2.4,
it follows that distAGY(gT y1, gT y2) ≤ ε.

7.4. Proof of Proposition 7.1. Let θ and L0 be given. Recall the measures λt defined above
Proposition 7.1. Note that the family {λt : t ≫K 1} consists of probability measures supported on

the compact set K̂. We have the following immediate consequence of Theorem 1.8.

Lemma 7.3. The weak-∗ distance between λt and λt+ℓ converges to 0 as t → ∞, uniformly over
ℓ ∈ [0, L0].

Proof. Indeed, suppose not. Then, there is a continuous function f on K̂, and sequences ℓn ∈ [0, L0]
and tn → ∞ so that |

∫
f dλtn −

∫
f dλtn+ℓn | ̸→ 0. After passing to a subsequence if necessary, we

may assume the measures µtn =
∫ 1
0 δgtnu(s)·(ω,β)ds converge to a measure ν̂ and ℓn → ℓ∗ ∈ [0, L0].

It follows that λtn(f) →
∫
f1K dν̂/µV(K) and λtn+ℓn(f) →

∫
f ◦ gℓ∗1K ◦ gℓ∗ dν̂/µV(K), and those

limits do not agree. We obtain a contradiction in light of Theorem 1.8 which provides that ν̂ is
gℓ∗-invariant. □

Fix ℓ ∈ [0, L0] and let t1 = t and t2 = t+ ℓ. Lemma 7.3 and the Kantarovich-Rubenstein duality
theorem (cf. [Vil09, Remark 6.5]) imply that, if t is large enough, the Wasserstein W1-distance
between λt1 and λt2 is at most θ2. In other words, there exists a probability measure γt1,t2 on the

product space PV̂2, which projects to λt1 and λt2 respectively under the two standard projections,
and such that ∫

PV̂2

dist(x, y) dγt1,t2(x, y) < θ2,

where dist denotes the metric on the product space given by the sum of distances of projections

to individual factors. Let ∆θ denote the θ-neighborhood of the diagonal in the product space PV̂2.
Then, the above estimate and Markov’s inequality imply that γt1,t2(∆θ) ≥ 1− θ.
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Note that γt1,t2 is supported on Et1 × Et2 . Let Ft1 denote the intersection of the projection of
∆θ with the support Et1 of λt1 . Then, since γt1,t2 projects to λt1 , we see that λt1(Ft1) ≥ 1− θ.

Given x ∈ Ft1 , let d(x) = inf {distAGY(x, y) : y ∈ Et2} and note that d(x) < θ by definition.
We let I(x) denote the set of points y ∈ Et2 so that d(x) = dist(x, y). Then, I(x) is non-empty
and closed by compactness of Et2 . Recalling that the sets Et are parametrized by the subset of
points s ∈ [0, 1] for which ω(t, s) lands in K, we set ϕ(x) to be the point y ∈ I(x) with the smallest
corresponding parameter s ∈ [0, 1]. In particular, ϕ is a measurable map satisfying the conclusion
of the lemma.

8. Transverse Monodromy, Full Support, and Proof of Theorem B

This section is dedicated to the proof of Theorem B. The strategy is summarized in Section 1.6.

8.1. Weak-stable matching on the Veech curve. Let γ ∈ Γ = Aff+(M,ω) denote the pseudo-

Anosov element acting trivially on Cyl0(ω) ⊂ H1
R. As in Section 7, we let V̂ = SL2(R)×Cyl0(ω)/Γ

denote the vector bundle over V with fiber V̂x over x = gω given by KZ(g, ω) · Cyl0(ω).

Convention 8.1. In what follows, we identify the pseudo-Anosov element γ with its image in the
Veech group SL(M,ω) ⊂ SL2(R). To simplify notation, we use the notation KZ(−) to denote the

restriction of the cocycle to the SL2(R)-invariant sub-bundle V̂. Moreover, whenever x, y ∈ V belong

to a simply connected open set in V, we shall identify the fibers V̂x and V̂y via parallel transport. In
particular, given g1, g2 ∈ SL2(R) and x1, x2 ∈ V such that each of the pairs of points {gixi : i = 1, 2}
and {xi : i = 1, 2} belong to simply connected subsets of V, we write KZ(g1, x1) = KZ(g2, x2) to
indicate equality of these linear maps after suitably pre- and post-composing with parallel transport
maps that identify their (co-)domains.

Recall the notation introduced in (2.9).

Proposition 8.2. Let ℓ > 0 be any multiple of the primitive period of the periodic geodesic cor-
responding to γ. For every ε > 0, there exists a compact set K = K(ε) ⊂ V, so that the following
holds for all sufficiently small δ = δ(ε, ℓ) > 0, and all large enough t = t(δ) > 0. There is a subset

Gt ⊆ [0, 1] of measure at least 1 − ε and a measurable, locally smooth, map φt→t−ℓ : G
t−ℓ
t → [0, 1]

such that for all s ∈ Gt−ℓ
t ,

(1) ω(t, s) ∈ K,
(2) there is a lower triangular matrix p− at distance at most δ from identity in SL2(R) so that

ω(t, s) = p−ω(t− ℓ, φt→tℓ(s)),
(3) KZ(gt, u(s)ω) = KZ(gt−ℓ, u(φt→t−ℓ(s))ω),
(4) The Jacobian of φt→t−ℓ is of size ≍ℓ 1 on its domain, where the implicit constant is uniform

over all large t.

Proof. Let x ∈ V be a point on the periodic geodesic corresponding to the pseudo-Anosov element
γ, i.e., γ ∈ StabSL2(R)(x) and gℓx = x. Fix ε > 0, and let K ⊂ V be a compact set so that for all
t ≥ 0, the set of s ∈ [0, 1] with ω(t, s) ∈ K has measure ≥ 1− ε/2. By enlarging K, we may further
assume that it contains the entire periodic orbit of x, as well as the periodic horocycle through ω.

Fix δ ∈ (0, 1) smaller than half the injectivity radius of the 1-neighborhood of K. Let B be a
flow box of radius δe−2ℓ around x. By equidistribution of gt-pushes of horocycle arcs on V, we can
find t0 > ℓ so that

G̃∗
def
= {s ∈ [0, 1] : gρu(s)ω ∈ B for some ℓ ≤ ρ ≤ t0} (8.1)

has measure at least 1 − ε/2. For t ≥ t0, let G
t−ℓ
t ⊆ G̃∗ be the set of points s so that ω(t, s) ∈ K.

Then, Gt−ℓ
t has measure ≥ 1− ε, and satisfies Part (1) of the proposition.
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Fix t ≥ t0. Define a first hitting time function σ : Gt → [ℓ, t0] as follows:

σ(s) = inf {ℓ ≤ ρ ≤ t0 : gρu(s)ω ∈ B} .

Given s ∈ Gt−ℓ
t , we note that the distance between gσ(s)−ρu(s)ω and g−ρx is at most δ for all

0 ≤ ρ ≤ ℓ. Since δ is smaller than the injectivity radius of the periodic orbit of x, and taking into
account Convention 8.1 and the cocycle property, we obtain

KZ(gσ(s), u(s)ω) = KZ(gℓ, ω(σ(s)− ℓ, s)) ·KZ(gσ(s)−ℓ, u(s)ω) = KZ(gℓ, x) ·KZ(gσ(s)−ℓ, u(s)ω).

Now, since KZ(gℓ, x) is the image of the pseudo-Anosov γ in the monodromy representation, it
follows by our assumption that KZ(gℓ, x) is the identity matrix. Hence, we conclude that

KZ(gσ(s), u(s)ω) = KZ(gσ(s)−ℓ, u(s)ω). (8.2)

We define a matching function φt→t−ℓ : G
t−ℓ
t → [0, 1] as follows. Since the two points gσ(s)u(s)ω

and gσ(s)−ℓu(s)ω belong to the flow box of radius δ around x, there exists a unique point φt→t−ℓ(s) ∈
[0, 1] so that the point y(s)

def
= ω(σ(s)− ℓ, φt→t−ℓ(s)) satisfies the following two properties:

(a) y(s) belongs to the same local strong unstable horocycle leaf of gσ(s)−ℓu(s)ω.
(b) y(s) belongs to the same local weak stable leaf of gσ(s)u(s)ω.

In particular, each s ∈ Gt−ℓ
t is contained in an interval of radius ≍ δe−2(t0+ℓ) on which φt→t−ℓ is

an injective smooth map onto an interval of length ≍ e−2t0 , and has Jacobian of size O(e2ℓ). This
verifies Part (4). We also note that Property (b) of y(s) is preserved under the forward geodesic
flow, thus verifying Part (2).

Towards Part (3), note that for each s ∈ Gt−ℓ
t , we have

KZ(gt, u(s)ω)
(2.8)
= KZ(gt−σ(s), gσ(s)u(s)ω) ·KZ(gσ(s), u(s)ω)

(8.2)
= KZ(gt−σ(s), gσ(s)u(s)ω) ·KZ(gσ(s)−ℓ, u(s)ω). (8.3)

Part (3) will follow at once from the following Claim, which is a straightforward consequence of
the relative position of points in Properties (a) and (b), as well as triviality of the cocycle on small
neighborhoods. Recall Convention 8.1.

Claim 8.3. The following holds for each s ∈ Gt−ℓ
t . Let t1 = σ(σ)− ℓ, t2 = t−σ(s), θ = φt→t−ℓ(s).

Then,

(1) KZ(gt1 , u(s)ω) = KZ(gt1 , u(θ)ω).
(2) KZ(gt2 , gσ(s)u(s)ω) = KZ(gt2 , y(s)).

Proof. From Property (a), there is r = O(δ) such that ω(t1, s) = u(r)y(s). In particular, we have
s = θ + re−2t1 . Hence, we compute using the cocycle property (2.8):

KZ(gt1u(re
−2t1), u(θ)ω) = KZ(gt1 , u(s)ω) ·KZ(u(re−2t1), u(θ)ω)) = KZ(gt1 , u(s)ω),

where in the second equality, we used the fact that u(θ)ω ∈ K and that re−2t1 is smaller than the
injectivity radius of K. On the other hand, recalling that y(s) = gt1u(θ)ω, we obtain

KZ(gt1u(re
−2t1), u(θ)ω) = KZ(u(r)gt1 , u(θ)ω) = KZ(u(r), y(s)) ·KZ(gt1 , u(θ)ω) = KZ(gt1 , u(θ)ω),

where in the last equality, we used that r = O(δ) is smaller than the injectivity radius at y(s).
The above two equations imply item (1). Item (2) follows from Property (b) by a very similar
computation. □

In view of (8.3) and Claim (8.3), we have

KZ(gt, u(s)ω) = KZ(gt−σ(s), y(s)) ·KZ(gσ(s)−ℓ, u(φt→t−ℓ(s))ω)
(2.8)
= KZ(gt−ℓ, u(φt→t−ℓ(s))ω),

thus verifying Part (3), and concluding the proof.
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□

8.2. Weak-stable matching is preserved by tremors near the Veech curve. Recall that γ
is the pseudo-Anosov element acting trivially on Cyl0(ω), and let ℓ0 > 0 be its primitive period.
Given κ > 0, let

Tκ
def
=
{
Tremβ(0, s, r) : β ∈ Twist0(ω), ∥β∥ω = 1, s ∈ [0, 1], |r| < κ

}
. (8.4)

Recall that µT is a fully supported Lebesgue probability measure on T(ω). Up to replacing µT
with an equivalent measure in its class, we shall assume without loss of generality that µT is U -
invariant. We let µTκ be the restriction of µT to Tκ, normalized to be a probability measure. As
in Section 4, we denote by d∗(·, ·) any metric inducing the weak-∗ topology on Borel measures of
total mass ≤ 1.

Proposition 8.4. For all ε > 0 and N ∈ N, there exist δ = δ(ε,N) > 0, t0 = t0(ε,N, δ) > 0, and

a Borel measure λ = λ(ε, δ,N) on T(ω) so that the following hold. Let κ = δe−2(t0+Nℓ0).

(1) λ is absolutely continuous to µT with Radon-Nikodym derivative satisfying dλ
dµT

≫N,δ,t0 1,

and the total mass of λ is ≍ 1.
(2) For all t ≥ t0, we have

d∗

(
(gt)∗λ,

1

N

N∑
k=1

(gt+kℓ0)∗µTκ

)
< ε.

The remainder of this subsection is dedicated to the proof of this proposition. Let ε > 0 and
N ∈ N be given parameters. Let δ = δ(ε,N) > 0 be a sufficiently small parameter to be specified
over the course of the argument. We apply Proposition 8.2 with ℓ = kℓ0 for each 1 ≤ k ≤ N to get
t0 = t0(ε,N, δ) > 0 and a compact set K = K(ε,N) ⊂ V, so that the conclusion holds for all t ≥ t0
and all k ∈ {1, . . . , N}.

In particular, for each k, we get the following sets and maps

tk
def
= t0 + kℓ0, Gk

def
= Gt0

tk
⊆ [0, 1], φk

def
= φtk→t0 : Gk → [0, 1],

such that each Gk has measure ≥ 1−ε. From Conclusion (2), we also obtain maps τk : Gk → [−δ, δ]
and σk : Gk → [−δ, δ] such that

gτk(s) · ω(t0, φk(s)) = u−(σk(s)) · ω(tk, s), (8.5)

where we recall that u−(∗) = ( 1 0
∗ 1 ). Let

κ = δe−2(t0+Nℓ0).

Definition 8.5 (The matching maps Φk). For each 1 ≤ k ≤ N , let Φk : Tκ 99K T(ω) denote a
partially defined map from Tκ to T(ω), defined for each s ∈ Gk, β ∈ Twist0(ω), and |r| < δe−2Nℓ0 ,
by

Φk(Tremβ(0, s, r)) = Tremβ(0, φk(s), e
kℓ0−τk(s)r).

We refer to the domain of Φk as tremors arising from Gk.

In what follows, we extend the definition of τk from Gk to a partially defined map on Tκ by
setting

τk(q)
def
= τk(s), for q = Tremβ(0, s, r) ∈ Tκ, s ∈ Gk. (8.6)

Lemma 8.6. For all 1 ≤ k ≤ N , the Jacobian d(Φk)∗µT
dµT

of the map Φk is ≫N 1 on its domain.

Proof. Indeed, since µT is equivalent to the pushforward of the product Lebesgue measures under
the parametrization (β, s, r) 7→ Tremβ(0, s, r), the lemma follows from Proposition 8.2(4) and the
definition of Φk in those coordinates. □
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Recall that K ⊂ V is the compact set provided by Proposition 8.2. Let ρ > 0 be sufficiently small
so that ρ is smaller than the injectivity radius of K, and for every x in the unit neighborhood of K,
the holonomy period coordinates map hol : B(x, ρ) → H1 is injective on the open ρ-ball around x.
We shall assume that δ > 0 is chosen sufficiently small so that for every p = Tremβ(0, s, r) ∈ Tκ,
with s ∈ Gk, and q = Φk(p) ∈ ·T, we have that

distAGY(gtk · p, ω(tk, s)) < ρ/10,

distAGY(gt0 · q, ω(t0, φk(s))) < ρ/10,

distAGY(ω(tk, s), ω(t0, φk(s)) < ρ/10. (8.7)

In particular, for all p and q as above, we have

distAGY(gtkp, gt0Φk(p)) < ρ/2. (8.8)

Recall the maps Ψs
q parametrizing the local strong stable leaf of q defined in §2.6. The following

lemma is the key to our proof, and is the crucial reason we are able to obtain a stronger conclusion
in Theorem B compared to Theorem A. It roughly says that the weak-stable relation (8.5) between
matched points in V persists after tremoring by small amounts. The essential input is Proposi-
tion 8.2(3) which says that the image of twist classes under the cocycle at the matched points agree,
allowing us to apply small amounts of cylinder twists without picking up any divergence along the
unstable manifold. This is a very useful lemma, since the property of being connected along the
weak-stable manifold survives for all future geodesic flow times. The proof of the lemma is a simple
consequence of definitions along with an application of the following formula for tremor paths in
period coordinates, cf. (2.5),

hol
(x)
Tremβ(t0,s,r)

= hol
(x)
ω(t0,s)

+ rβ(t0, s), hol
(y)
Tremβ(t0,s,r)

= hol
(y)
ω(t0,s)

.

Lemma 8.7. Assume δ is chosen sufficiently small, depending on the compact set K. Then, for
every 1 ≤ k ≤ N , there is a partially defined map v− : gtk · Tκ 99K Es(−) on tremors arising from
Gk and satisfying the following where defined:

(1) ∥v−(gtkq)∥gtkq = OK(δ), and

(2) Ψs
gtkq

(v−(gtkq)) = gt0+τk(q) · Φk(q).

Proof. Fix some s ∈ Gk, and let q1 = Tremβ(tk, s, r) ∈ gtk · Tκ, for some β ∈ Twist0(ω) of unit
norm and |r| < δe−2tN . Let

q2 = gt0 · Φk(g−tkq1).

In what follows, in view of (8.7) and (8.8), we use the fact that the points q1, q2, ω(tk, s), and
ω(t0, φk(s)) all belong to a ball on which period coordinates q 7→ holq are injective.

By Proposition 8.2(3), we have the crucial identity:

β(t0, φk(s)) = e−kℓ0β(tk, s).

Here, we are identifying the cohomology groups of the two points ω(t0, φk(s)) and ω(tk, s), which
are O(δ)-apart, so that we may regard the two cohomology classes on the two sides of the above
equation as belonging to the same cohomology group. It follows that

hol(x)q2 = hol
(x)
ω(t0,φk(s))

+ rekℓ0−τk(s)β(t0, φk(s)), hol(y)q2 = hol
(y)
ω(t0,φk(s))

.

In view of (8.5), and the equivariance of hol under the action on of SL2(R), cf. (2.2) and (2.3),
we obtain the following relations between the periods of q1 and q2:

hol(x)q2 = e−τk(s)hol
(x)
ω(tk,s)

+ re−τk(s)β(tk, s) = e−τk(s)hol(x)q1 ,

hol(y)q2 = eτk(s)
(
hol

(y)
ω(tk,s)

+ σk(s)hol
(x)
ω(tk,s)

)
= eτk(s)

(
hol(y)q1 + σk(s)hol

(x)
ω(tk,s)

)
.
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Put together, we get

hol(x)gτk(s)q2
= hol(x)q1 , hol(y)gτk(s)q2

= hol(y)q1 + σk(s)hol
(x)
ω(tk,s)

. (8.9)

Denote by v−(q1) the image by parallel transport of the class σk(s)hol
(x)
ω(tk,s)

∈ H1
iR from ω(tk, s)

to q1 along the path r′ 7→ Tremβ(tk, s, r
′). Then, since β(tk, s) belongs to the balanced space at

ω(tk, s), we get vanishing of the intersection product of v−(q1) with hol
(x)
q1 , i.e.,∫

Mq1

v−(q1) ∧ hol(x)q1 = 0.

In particular, v−(q1) is tangent to the strong stable leaf through q1. Moreover, since |σk(−)| = O(δ)

and
∥∥∥hol(x)ω

∥∥∥
ω
= OK(1) for all ω in the compact set K, we have∥∥v−(q1)∥∥ω(tk,s) ≪K δ, (8.10)

which verifies the first assertion of the lemma.
Next, we wish to estimate ∥v−(q1)∥q1 using Proposition 2.2. To that end, we need to check that

the hypothesis of its last assertion is satisfied. Recall that |r| < δe−2tN , and hence, since Nβ(tk, s) ≤
e2tkNβ(0, s) ≪ e2tN by Lemma 2.12, we get that |r| ≪ δ/Nβ(tk, s). Thus, by Proposition 2.2 applied

to the tremor path κ joining ω(tk, s) to q1 with κ̇ ≡ β(tk, s), we obtain6∥∥v−(q1)∥∥q1 ≤
∥v−(q1)∥ω(tk,s)

1− |r| ∥v−(q1)∥ω(tk,s)
≪K δ, (8.11)

where the second inequality follows by (8.10). In particular, we may assume that δ is sufficiently
small so that ∥v−(q1)∥q1 < 1/2, and hence Ψs

q1(v
−(q1)) is well-defined.

Moreover, by Proposition 2.5, we have that

distAGY(q1,Ψ
s
q1(v

−(q1))) ≤ 2
∥∥v−(q1)∥∥q1 .

In particular, by taking δ small enough, depending only on K, and applying (8.10), we get that
Ψs

q1(v
−(q1)) belongs to the ρ-ball around q1. On the other hand, by (2.7) and (8.9), we have that the

points Ψs
q1(v

−(q1)) and gτk(s)q2 have the same image in period coordinates. By (8.8) and the fact
that |τk(s)| = O(δ), we also have that gτk(s)q2 is in the ρ-ball around q1, whenever δ is sufficiently
small. Hence, by injectivity of period coordinates on the ρ-ball around q1, we obtain

Ψs
q1(v

−(q1)) = gτk(s)q2,

which concludes the proof. □

Combining Lemma 8.7 and non-uniform hyperbolicity of the geodesic flow, we obtain the follow-
ing corollary.

Corollary 8.8. For every 1 ≤ k ≤ N , and for µT-almost every tremor q ∈ Tκ arising from Gk, we
have limt→∞ distAGY(gt+kℓ0q, gt+τk(q)Φk(q)) = 0, where τk(·) is as in (8.6).

Proof. Recall that tk = t0 + kℓ0. Let the notation be as in Lemma 8.7. By this lemma and
Corollary 2.6, for all t ≥ t0,

gt+τk(q)Φk(q) = gt−t0Ψ
s
gtkq

(v−(gtkq)) = Ψs
gt+kℓ0

q(Dgt−t0(gtkq) · v
−(gtkq)),

6Proposition 2.2 is stated for the marked stratum Hm, however we note that it suffices to check the ensuing
estimate for the lift of the tremor path to Hm since our tremor path is contained in an injective neighborhood of q1.
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where Dgt denotes the derivative of gt. Proposition 2.5 then implies the bound

distAGY(gt+kℓ0q, gt+τk(q)Φk(q)) ≤ 2
∥∥Dgt−t0(gtkq) · v

−(gtkq)
∥∥
gt+kℓ0

q

≤ 2 ∥Dgt+kℓ0(q)∥
s
q→gt+kℓ0

q

∥∥Dg−tk(gtkq) · v
−(gtkq)

∥∥
q
,

for all t ≥ t0, where ∥Dgt(q)∥sq→gtq
is the operator norm of the restriction of the derivative of gt

to the tangent space Es(q) to the strong stable leaf through q. This operator norm tends to 0 as
t → ∞ for µT-almost every q ∈ T(ω) by Corollary 2.14, which concludes the proof. □

8.3. Conclusion of the proof of Proposition 8.4. We keep the notation of the previous sub-
section. Denote by µTκ the restriction of µT to Tκ, normalized to be a probability measure. Let
Gk ⊂ Tκ denote the domain of Φk, i.e., Gk consists of all the tremors arising from Gk ⊂ [0, 1].
Then, Gk has µTκ-measure at least 1− ε.

Let θκµT(Tκ) ≍N,δ,t0 1 and define λ to be the following Borel measure on T(ω):

λ =
θ−1
κ

N

N∑
k=1

(Φk)∗µT|Gk
.

Then, Lemma 8.6 then shows that dλ/dµT ≫N,δ,t0 1. Moreover, since τk(−) = O(δ), Corollary 8.8
implies that for all 1 ≤ k ≤ N ,

lim sup
t→∞

d∗((gt)∗(Φk)∗µT|Gk
, (gt+kℓ0)∗µT|Gk

) ≪ δ · µT(Gk).

Hence, µT(Gk) ≥ (1−O(ε))θκ for each k, it follows that for all large enough t,

d∗

(
(gt)∗λ,

1

N

N∑
k=1

(gt+kℓ0)∗µTκ

)
≪ δ + ε.

Taking δ < ε, this concludes the proof of the proposition since ε was arbitrary.

8.4. A conesequence of Theorem 1.6. We record here a consequence of Theorem 1.6 to equidis-
tribution of gt-pushes of the pieces Tκ ⊂ T(ω).

Recall we are fixing a pseudo-Anosov element γ in the Veech group of (M,ω) with primitive
period ℓ0 > 0. For η > 0, we let Tη ⊂ T(ω) be the subset of the twist torus defined as in (8.4) with
η in place of κ. We also recall that µTη is the normalized restriction of µT to the piece Tη.

Proposition 8.9. For every ε > 0 and f ∈ Cc(M), there is N = N(ε, f) > 0 such that for any
η > 0, there is T = T (η, ε, f) ≥ 1 so that for all t ≥ T , we have∣∣∣∣∣ 1N

N∑
k=1

∫
f d(gt+kℓ0)∗µTη −

∫
f dµM

∣∣∣∣∣ < ε. (8.12)

Analogously to how Theorem 1.6 follows from Corollary 4.6 we have the following, which gener-
alizes [S, S + T ] ∩ N to more general arithmetic progressions [S, S + T ] + (t+ ℓN):

Lemma 8.10. Let ℓ ∈ R+ and δ > 0. There exist T0 > 0 and proper SL2(R)-orbit closures
N1, . . . ,Nn in M such that for any compact set F ⊂ M \ ∪k

i=1Ni, we can find S0 ≥ 0, so that for
all T ≥ T0, t > 0, S ≥ S0 and x ∈ F , we have∣∣∣∣{k ∈ [S, S + T ] ∩ ℓN : d∗

( ∫ 1

0
δgku(s)gtxds, µM

)
< δ

}∣∣∣∣ > (1− δ)T. (8.13)

We also need the following elementary lemma in measure theory and its proof is left to the
reader.
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Lemma 8.11. For any f ∈ Cc(M) and ϵ > 0 there exists δ > 0 so that if Ω is the set of Borel
probability measures of mass at most 1 and P is a probability measure on Ω with the property that

P({σ ∈ Ω : |
∫

fdσ −
∫

fdν) < δ}) > 1− δ

then ∣∣∣∣ ∫ ∫ fdσdP(σ)−
∫

fdν

∣∣∣∣ < ϵ.

Lemma 8.12. Let ϵ > 0 be given, there exist N > 0 and proper SL2(R)-orbit closures N1, . . . ,Nn

in M such that for any compact set F ⊂ M \ ∪k
i=1Ni, we can find S0 ≥ 0, so that for all t ≥ S0,

and x ∈ F , we have ∣∣∣∣ N∑
k=1

1

N

∫ 1

0
f(gkℓ0+tu(s)x)ds−

∫
fdµM

∣∣∣∣ < ϵ. (8.14)

Proof. Let δ > 0 be given by Lemma 8.11. We apply Lemma 8.10, specialized to the case of a
single function f , to obtain N and letting P be uniform measure on {1, . . . , N}. By Lemma 8.10,
we get for every x ∈ F that

P
({

k ∈ {1, . . . , N} :

∣∣∣∣ ∫ 1

0
f(gt+kℓu(s)x)−

∫
fdµM

∣∣∣∣ < δ

})
> 1− δ.

Thus by Lemma 8.11 we have∣∣∣∣∣
N∑
k=1

∫ 1

0
f(gkℓ0+tu(s)x)ds−

∫
fdµM)

∣∣∣∣∣ < ϵ.

□

Proof of Proposition 8.9. Let δ > 0 be given by Lemma 8.11 for f . We apply Lemma 8.12 with δ
in place of ϵ and obtain suborbit closures N1, . . . ,Nn. Observe that each Ni has µM measure 0.
Because the Ni are all SL2(R)-invariant, it follows that µTη(Ni) = 0 for all η > 0. We now choose
a compact set F ⊂ Tη \

⋃n
i=1Ni with µTη(F ) > 1− δ. By Lemma 8.12 we have that

µTη

({
x ∈ Tη :

∣∣∣∣ N∑
k=1

1

N

∫ 1

0
f(gkℓ0+tu(s)x)ds−

∫
fdµM

∣∣∣∣ < δ

})
> 1− δ.

By Lemma 8.11 with P = µTη we have∣∣∣∣ ∫ N∑
k=1

1

N

∫ 1

0
f(gkℓ0+tu(s)x)dsdµTη −

∫
fdµM

∣∣∣∣ < ϵ.

Because Tη is foliated by periodic horocycles, u(s)µTη = µTη for all s, and so we have∣∣∣∣ ∫ N∑
k=1

1

N
fd(gkℓ0+t)∗µTη −

∫
fdµM

∣∣∣∣ < ϵ.

This completes the proof of the proposition. □
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8.5. Proof of Theorem B. Let U ⊂ M be a non-empty open set. Let ε > 0 to be chosen
depending only on U . Let N be the parameter provided by Proposition 8.9 when applied with ε/2
and with f being a smooth bump supported in U with Lipschitz constant Lip(f) = OU (1), and
having

∫
f µM ≥ µM(U)− ε/2.

Let δ and t0 be the parameters provided by Proposition 8.4, and let κ = δe−2(t0+Nℓ0). Then, by
Proposition 8.9 applied with η = κ, for all large enough t, we have

1

N

N∑
k=1

(gt+kℓ0)∗µTκ(U) > µM(U)− ε.

Hence, applying the weak-∗ closeness from Proposition 8.4 to the bump function f , we obtain for
all large enough t that

(gt)∗λ(U) > µM(U)− 2ε−OLip(f)(ε).

Taking ε small enough depending on U , the above lower bound is > µM(U)/2. Thus, the estimate
on the Radon-Nikodym derivative in Proposition 8.4 implies that

(gt)∗µT(U) ≫N,δ,t0 µM(U),

for all large enough t. This concludes the proof.

Appendix A. Density of Translates of Twist Tori of the Decagon

In this section, we outline the modifications on the proof of Theorem A to show that its conclusion
holds for the decagon surface despite it not satisfying the assumption of that result.

Theorem A.1. Let (M5, ω5) denote the horizontally periodic translation surface obtained from the
regular decagon with one horizontal edge by identifying parallel sides by translations. Then, for
every ϵ > 0 and K ⊂ H(1, 1), there exists t0 > 0, so that for all t ≥ t0 we have gtT(ω5) is ϵ-dense
in K.

The proof of Theorem A.1 follows the same steps of the proof of Theorem A given in Section 5,
with the exception of Subsection 5.2, which was the only place in the argument whereM-primitivity
was used. Our goal is to show how to carry out this part of the argument in absence of this
hypothesis. More concretely, we will define a suitable substitute of the sets Rδ in (5.6), consisting
of tremors at positive distance from any fixed finite collection of proper orbit closures, and satisfying
Lemma 5.5.

We retain the notation of Section 5.1, applied with ω5 in place of ω. In particular, throughout
this section, we fix a choice of β ∈ Twist0(ω5) and x = Trem(ω5, rβ) in (5.5) and (5.4), such that

SL2(R) · x = SL2(R) · T(ω5).

Let D = SL2(R) · (M5, ω5). Recall that by McMullen’s classification of orbit closures in genus two
[McM07], there is exactly one orbit closure between D and H(1, 1), namely, the eigenform locus E5
with discriminant 5. For q ∈ E5, we denote by TqE5 ⊂ H1

C the tangent space of E5 at q. Recall
the forgetful projection p : H1(M5,Σ(ω5);R) → H1(M5;R) from relative to absolute cohomology.
Note that E5 has rank one, i.e., its tangent space splits as follows:

TqE5 = Tautq ⊕Ker(p), (A.1)

where Tautq is the tautological plane Tautq; cf. §2.4 for definitions.
We begin by showing that our fixed tremor β is not trapped in E5.

Lemma A.2. The restriction of the forgetful projection p to Twist0(ω5) is injective. In particular,
for β as above, β /∈ Tω5E5.

The proof is done by identifying a saddle connection γ crossing a cylinder and connecting a cone
point to itself. This gives a non-trivial integral absolute homology class [γ] so that p(β)(γ) ̸= 0.
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Proof of Lemma A.2. Let e be the top horizontal edge of the regular decagon, and let p and q be
its endpoints. Note that p and q give rise to two different singular points in M5. In particular, e is
a saddle connection in (M5, ω5) on the top boundary of a horizontal cylinder C. Moreover, since
M5 has only two singularities, the bottom boundary of C must contain another copy of either p or
q, say p. Consider the saddle connection γ joining the two copies of p on the top and bottom of C,
and contained entirely within C. Such γ exists by convexity of cylinders. Let βC ∈ Twist(ω5) be
the class corresponding to horizontal twists in C; cf. §2.3 for a definition. Then, since γ crosses C,
we have βC(γ) ̸= 0.

Now, let 0 ̸= α ∈ Twist0(ω5) be arbitrary. Since M5 has exactly two horizontal cylinders, C and
C ′, with disjoint interiors, we have that α = aβC + a′βC′ , for some a, a′ ∈ R. Moreover, since α
has 0 intersection pairing with Re(ω5), while the intersection pairing of βC and βC′ with Re(ω5) is
the non-zero (signed) area of their respective cylinders, we have that both coefficients a and a′ are
non-zero. Also, since v ⊂ C, we have βC′(γ) = 0, and thus α(γ) = aβC(γ) ̸= 0.

On the other hand, since γ joins a singularity to itself and has non-zero holonomy, it also
represents a non-zero class in the absolute homology group H1(M5;Z), which we denote by the
same name. In particular, p(α)(γ) ̸= 0. This proves the first assertion.

For the second assertion of the lemma, note that since β is a balanced class, its image p(β)
belongs to Taut0ω5

, and is non-zero by the first assertion. On the other hand, we have by (A.1) that

p(Tω5E5) = Tautω5 , which has trivial intersection with Taut0, thus proving our claim. □

The following corollary is immediate from the classification results of McMullen and Lemma A.2.

Corollary A.3 ([McM07]). We have SL2(R) · T(ω5) = H(1, 1).

Next, we show that the image tremors β(t, s) do not collapse on E5. To this end, recall that the
compact set K ⊂ D and the parameter ε chosen in §5.1. For t > 0, we let λt denote the uniform
measure on the following set

Ft
def
= {(ω5(t, s), β(t, s)/Nβ(t, s)) : s ∈ [0, 1], ω5(t, s) ∈ K} ⊂ PTaut0•,

where we view Ft as a subset of the projective bundle over D with fibers the projective space of
the balanced space Taut0•, i.e., the complementary space of the tautological plane defined in §2.4.

Lemma A.4. We have

lim
t→∞

λt({(q,PTqE5) : q ∈ D}) = 0,

where PTqE5 is the projectivization of the tangent space of E5.

Proof. Let βabs(t, s) = p(β(t, s)) denote the image of β(t, s) in real absolute cohomology H1
R,abs.

Let λabs
t denote the associated measure on projective space. Then, βabs ̸= 0 by Lemma A.2.

Using the SL2(R)-invariant decomposition H1
R,abs = Tautq ⊕ Taut0q at every q ∈ D, we write

βabs(t, s) = βst
abs(t, s) + β0

abs(t, s) for its components along the tautological and balanced spaces
respectively. Then, since β(t, s) is a balanced class by construction, we have βst

abs(t, s) = 0, i.e.,

βabs(t, s) = β0
abs(t, s). It follows that λ

abs
t lives on the projectivization of the balanced bundle, and

hence so do all of its weak-∗ limits.
On the other hand, by (A.1), the image of TqE5 in H1

R,abs is the tautological plane Tautq. Hence,
since the forgetful projection p induces a continuous map on projective spaces, if the lemma fails to
hold, we get a weak-∗ limit λ∞ of the measures λt whose image in PH1

R,abs lives on the projectivized
tautological bundle, which yields a contradiction. □

As a first step towards constructing our good set of tremors, for δ0, t > 0, we define

Pδ0(t) = {Tremβ(t, s, r) : s ∈ [0, 1], ω5(t, s) ∈ K, δ0/2 < rNβ(t, s) < δ0} .
The following lemma substitutes for Lemma 5.4.
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Lemma A.5. Let N ⊊ H(1, 1) be a proper orbit closure. Then, for all sufficiently small δ0 > 0, if
η > 0 is sufficiently small, then the set

{s ∈ [0, 1] : Tremβ(t, s, r) ∈ Pδ0(t) ∩N (δ0) for some r with δ0/2 < rNβ(t, s) < δ0} (A.2)

has Lebesgue measure < ε for all large enough t, where N (η) is the η-neighborhood of N .

Proof. Lemma 5.4 treats the possibility N = D, as well as any proper orbit closure that does not
contain D. Indeed, this Lemma shows that if δ0 > 0 is sufficiently small, then in fact ∪t>0Pδ0(t)
lies at positive distance from N . In particular, taking η to be half this positive distance, we get
that the exceptional set in (A.2) is empty in those cases.

It remains to treat the case D ⊊ N ⊊ H(1, 1). As noted before, McMullen’s classification gives
that N = E5. Let λt be the measures in Lemma A.4, and consider the map

(s, ℓ) 7→ Tremβ(t, s, ℓ/Nβ(t, s)). (A.3)

By Lemma A.4, we can find an open neighborhood U of {(q,PTqE5) : q ∈ D} so that λt(U) < ε for
all large enough t. Since the map (A.3) is continuous and K is compact, there exist δ0, η > 0 so
that if ω5(t, s) ∈ K and

(ω5(t, s), β(t, s)/Nβ(t, s)) /∈ U,

then for all δ0/2 < r < δ0, we have distAGY(Tremβ(t, s, r/Nβ(t, s)), E5) > η. This proves the
lemma. □

Next, let N1, . . . ,Nk ⊊ H(1, 1) denote the finite collection of exceptional orbit closures produced
using Theorem 1.6 as in §5.1. Given δ0, η > 0, we define

RD
δ0,η

def
=
⋃
t>0

Pδ0(t) \
k⋃

i=1

Ni(η),

where Ni(η) denotes the η-neighborhood of Ni. We now show that Lemma 5.5 holds with RD
δ0,η

in
place of Rδ0 . Recall the notation of that lemma.

Lemma A.6. For all sufficiently small δ0 > 0 and η > 0, the statement of Lemma 5.5 holds with
RD

δ0η
in place of Rδ0 for all large enough t.

Proof. Parts (1) and (3) of Lemma 5.5 are formal consequences of Proposition 5.1. Part (2) also
holds with the same argument after removing a small measure set coming from Lemma A.5 as we
now describe.

First, we assume that δ0 and η are sufficiently small so that Lemma A.5 holds for N = Ni, for
all 1 ≤ i ≤ k. Let Good(t) ⊆ [0, 1] be the complement of the set in (A.2). Recall that the compact
set K ⊂ D was provided by Proposition 5.1. Then, Part (1) of that proposition, applied with ℓ = 0,
implies that ω5(t − T − L0, s) belongs to K, for all but a set of s ∈ [0, 1] of measure at most ε.
Together with Lemma A.5, this implies that Good(t− T −L0) has measure at least 1− 2ε. Hence,
Part (2) of Lemma 5.5 follows by a very similar argument, but where we pick our interval I so
that I ∩ S0 ∩Good(t− T0 −L0) ̸= ∅. The latter can be arranged since S0 ∩Good(t− T0 −L0) has
measure at least 1− 3ε. □

The rest of the proof of Theorem A.1 now follows exactly as in §5.3 with the set RD
δ0,η

defined

above in place of Rδ0 defined in (5.6).

Appendix B. Limiting Distributions of Output Directions

In this section, we show how Theorem 1.8 can be used in the presence of natural additional
hypotheses on the cocycle to establish uniqueness of the limit of the measures in (1.5) as t → ∞.
The additional hypotheses we consider are either that the image of the representation is bounded



DENSITY OF MIRZAKHANI’S TWIST TORI 39

(Theorem B.1), or is proximal and irreducible (Theorem B.3). In fact, we identify the limiting
distribution in these two cases.

B.1. Bounded representations. The goal of this section is to outline a strengthening of Theo-
rem 1.8 under the added hypothesis on the image of the lattice Γ landing in a compact group K.
In fact, we prove the following stronger statement regarding convergence of the distribution of the
values of the cocycle as a measure on the compact group containing its image. Note that, in this

case, the cocycle induces a skew product action on V ×Γ K
def
= (SL2(R) ×K)/Γ, where the action

on the second factor is by left multiplication.

Theorem B.1. Assume that the image of the representation of Γ is bounded, and let K denote the
smallest compact group containing its image. Then, for all (x, k) ∈ V×ΓK, and all f ∈ Cc(V×ΓK),

lim
t→∞

∫ 1

0
f(gtu(s) · (x, k)) ds =

∫
f dµV ⊗mK ,

where µV is the SL2(R)-invariant probability measure on V and mK is the Haar probability measure
on K.

In addition to Theorem 1.8, we need the following result which follows from entropy considera-
tions and the fact that the action on the fibers is isometric. The method of proof is well-known and
goes back to the proof of Ratner’s theorems [Rat91a, Rat91b] due to Margulis and Tomanov [MT94].
It has also been applied in many other works on measure rigidity since.

Proposition B.2. Let ν̂ be an A-invariant Borel measure which projects to µV . Then, ν̂ is SL2(R)-
invariant.

Sketch of Proof of Proposition B.2. First note that it suffices to prove the statement under the
assumption that ν̂ is A-ergodic. Indeed, by A-ergodicity of µV , the image of almost every A-ergodic
component of ν̂ under the projection to V is µV .

Let U− ⊂ SL2(R) be the subgroup of lower triangular unipotent matrices and t > 0. Since the
action on fibers is isometric, the measure theoretic entropy of ν̂ with respect to gt agrees with the
metric entropy of µV , which is 2t. The isometric action on the fibers also implies that the stable
manifolds of gt are given by orbits of U−. It follows by [BAM+18, Eq (8.3)] that the conditional
entropy along those orbits is also equal to 2t, which in turn agrees with the Lyapunov exponent
(rate of contraction in this case) along the U−-orbits. By work of Ledrappier [Led84], it follows
that ν̂ is invariant by U−; cf. [BAM+18, Theorem 9.5] for the precise statement and [EL10] for
an exposition of the theory of entropy, conditional measures, and invariance in the context of
homogeneous dynamics.

Similarly, since the entropy of gt is the same as that of g−1
t , we conclude that ν̂ is U -invariant.

Since U and U− generate SL2(R), this implies that ν̂ is SL2(R)-invariant and concludes the proof.
□

We are now ready for the proof of Theorem B.1.

Proof of Theorem B.1. Let ν̂ be as in the statement of the theorem. By Theorem 1.8 and Proposi-
tion B.2, ν̂ is SL2(R)-invariant7. Let ν̂x be a system of conditional measures for ν̂ on K with respect
to the projection to V. Since ν̂ is SL2(R)-invariant and projects to Haar measure on V, uniqueness
of the conditional measures ν̂x implies they are equivariant with respect to the SL2(R)-action, i.e.,
for all g ∈ SL2(R), ν̂gx = B(g, x)∗ν̂x, where we recall that B(g, x) denotes the map from the fiber
over x to the fiber over gx induced from left multiplication by g ∈ SL2(R). By considering the

7Theorem 1.8 concerns distributions on the projective bundle PV̂, however the same proof works in the setting of
Theorem B.1. Indeed, the key sub-polynomial divergence estimate, Lemma 6.3, is immediate in this case since the
action on the fiber is isometric.
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set of g ∈ SL2(R) such that gx = x, it follows that ν̂x is K-invariant and is independent of x. It
follows that ν̂ = µV ⊗mK , where µV and mK are the Haar measures on V and K respectively. This
concludes the proof. □

B.2. Proximal and irreducible representations. Recall that the cocycle B(gt, x) is said to be
proximal with respect to an A-invariant measure µ on V if its top Lyapunov exponent with respect
to µ is simple, i.e., the corresponding top Lyapunov space has dimension 1. In this section, we
use Theorem 1.8 to show that proximality and irreducibility guarantee that expanding horocycle

arcs on the projective bundle PV̂ converge to a unique limiting measure, with atomic disintegration

along fibers of the projection PV̂ → V.

Theorem B.3. Assume that the representation of Γ is irreducible and that the cocycle B(gt, x)
is proximal with respect to the SL2(R)-invariant measure µV on V. Then, there exists a Borel

probability measure ν̂ on PV̂ which projects to µV , so that for all (x, v) ∈ PV̂, and all f ∈ Cc(PV̂),

lim
t→∞

∫ 1

0
f(gtu(s) · (x, v)) ds =

∫
f dν̂. (B.1)

B.2.1. Irreducibility and non-concentration on P−-invariant sub-bundles. Recall that P = AU
(resp. P− = AU−) is the subgroup of upper (resp. lower) triangular matrices in SL2(R). The
following lemma is the key consequence of irreducibility we use in our proof. It is used to show
that the Oseledets’ distributions of slower-than-maximal growth receive 0 mass.

Lemma B.4. Let ν̂ be a P -invariant probability measure on PV̂. Then, ν̂(Q) = 0, for every proper,

measurable, P−-invariant sub-bundle Q ⊂ PV̂.

Proof. By the ergodic decomposition, it suffices to prove the lemma under the additional assumption
that ν̂ is P -ergodic. Note that ν̂ projects to the SL2(R)-invariant measure µV by P -invariance.
By [EW11, Prop. 11.8], since ν̂ is P -ergodic, it is also A-ergodic.

Suppose towards a contradiction that ν̂ does not satisfy the conclusion of the lemma and let Q
be a proper P−-invariant sub-bundle with minimal dimensional fibers having ν̂(Q) > 0. Since ν̂ is
A-ergodic and Q is A-invariant, we have ν̂(Q) = 1. Since ν̂ is also U -invariant, it follows that for
every u ∈ U , we have that ν̂(Q∩uQ) = 1. Hence, since Q is P− invariant, and SL2(R) is generated
by P− and U , we get that ν̂(Q∩ gQ) = 1 for all g ∈ SL2(R).

Let {ν̂x}x denote a disintegration of ν̂ with respect to the projection π : PV̂ → V. In particular,
each ν̂x is supported on the fiber π−1(x). It follows that for every g ∈ SL2(R), we have that
ν̂x(Q ∩ gQ) = ν̂x(Qx ∩B(g, g−1x)Qg−1x) = 1 for a µV -full measure set of x ∈ V (depending on g).
Here, Qx denotes the fiber of Q over x, and µV is the SL2(R)-invariant probability measure on V.

By minimality of Q, it follows that for all g ∈ SL2(R),

Qx = B(g, g−1x)Qg−1x, for µV−a.e.x. (B.2)

To see that this gives a contradiction to our irreducibility hypothesis, let k is the almost sure
constant value of the dimension of the fiber vector space corresponding to Qx. Such k exists by
ergodicity of µV and invariance of Q. Let Grk be the Grassmannian of k-dimensional subspaces

of Rd+1. Then, fixing a measurable trivialization of V̂ ∼= V × Rd+1, we may regard x 7→ Qx as a
B(−)-invariant measurable map V → Grk, where invariance is in the sense of (B.2). Moreover, we
can regard the cocycle B(−) as taking values in the image of Γ under the representation, which we
continue to denote by Γ for simplicity.

Hence, we may apply Zimmer’s cocycle reduction lemma [Zim84, Lemma 5.2.11] to the cocycle
B : V × SL2(R) → Γ and the induced Γ-action8 on Grk to get a measurable change-of-basis map

8This algebraic Γ-action satisfies the smoothness hypothesis of the cited lemma by a result of Borel-Serre [Zim84,
Theorem 3.1.3]. Here, smoothness means that Grk/Γ is countably separated; cf. [Zim84, Def. 2.1.9]. The proof
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φ : V → Γ, and a proper subspace W ∈ Grk such that for all g ∈ SL2(R)
φ(gx)−1B(g, x)φ(x) ∈ StabΓ(W ), (B.3)

for µV -a.e. x ∈ V.
By Fubini’s theorem, we get that for µV -a.e. x ∈ V, there is a full measure set G(x) ⊆ SL2(R)

so that (B.3) holds for all g ∈ G(x). Moreover, since Γ is countable, there is a positive measure

set E ⊆ V on which φ is constant. Let F ⊂ G be a fundamental domain for Γ and let Ẽ ⊆ F
be a lift of E. Then, given x ∈ E with lift x̃ ∈ Ẽ, since G(x) has full measure in SL2(R),
it follows that G(x) · x̃ intersects the positive measure set Ẽγ for all γ ∈ Γ. It follows that
{B(g, x) : g ∈ G(x), gx ∈ E} = Γ. Thus, by (B.3), this means that Γ fixes the proper subspace W ,
which contradicts our irreducibility assumption. □

B.2.2. Proof of Theorem B.3. Let ν̂ we a weak-∗ limit of the measures on the left hand-side of (B.1)
as t → ∞. Then, as before ν̂ is automatically U -invariant. Moreover, by Theorem 1.8, we have that
ν̂ is A-invariant. Theorem B.3 is an immediate consequence of the following measure classification
statement.

Proposition B.5. The P -action on PV̂ is uniquely ergodic.

Proof. Let ν̂ be a P -invariant measure on PV̂. Then, ν̂ projects to Haar measure on V by P -
invariance. Let ν̂x denote the conditional measures of ν̂ along the fibers of the natural projection

PV̂ → V. The proof will follow upon uniquely characterizing the measures ν̂x. By A-invariance, we
have for ν̂-almost every x that

ν̂x = B(gt, g−tx)∗ν̂g−tx, (B.4)

where B(−) is the cocycle given by the action on fibers.
Let λ1 = limt→∞(1/t) log ∥B(gt, x)∥op be the top Lyapunov exponent for the cocycle over gt.

Define the sub-bundle V̂<λ1 with slower growth, i.e., fibers of V̂<λ1 are given by

V <λ1
x =

{
v ∈ Vx : lim sup

t→∞
log ∥B(gt, x)v∥1/tgtx

< λ1

}
.

Then, arguing as in the proof of Lemma 6.3, we have that V̂<λ1 is a proper measurable P−-invariant

sub-bundle. Hence, by Lemma B.4, ν̂(V̂<λ1) = 0.
The rest of the argument is now similar to the proof of Lemma 6.3. Let λ2 ≤ λ1 be the second

Lyapunov exponent of the cocycle B(gt,−). In particular, we have that

λ1 + λ2 = lim
t→∞

log
∥∥∧2B(gt, x)

∥∥1/t
op

.

with value independent of x. By assumption we have that λ2 < λ1. Let 0 < ε ≤ (λ1−λ2)/2. Then,
we can find tε > 0 so that the sets F1 and F2 defined by

F1 =
{
y ∈ V :

∥∥∧2B(gt, y)
∥∥
op

≤ e(λ1+λ2+ε/2)t for all t > tε

}
,

F2 =
{
(y, v) ∈ PV̂ : ∥B(gt, y)v∥gty ≥ e(λ1−ε/2)t ∥v∥y for all t > tε

}
, (B.5)

each has measure ≥ 1 − ε/2 with respect to µV and ν̂ respectively. Let F = π−1(F1) ∩ F2, where

π : PV̂ → V denotes the natural projection. In particular, we have that ν̂x(F ) > 1−
√
ε for a E ⊆ V

of measure ≥ 1−
√
ε. Moreover, given (y, v), (y, w) ∈ F and t > tε, we have

dist(B(gt, y)v,B(gt, y)w) ≤

∥∥∧2B(gt, y)
∥∥
op

∥v ∧ w∥y
∥B(gt, y)v∥gty ∥B(gt, y)w∥gty

≤ e−(λ1−λ2)t/2dist(v, w), (B.6)

of [Zim84, Lemma 5.2.11] follows from an application of ergodicity of µV to the invariant measurable map x 7→ Qx,
viewed as a map to Grk/Γ.
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where dist is the metric on the fibers defined in (6.1).
Now, note that by Poincaré recurrence, we have that µV -a.e. x admits a sequence tn → ∞

such that g−tnx ∈ E. Hence, in view of the identity (B.4), for µV -a.e. x, ν̂x has an atom of mass
≥ 1−

√
ε. Taking ε to 0, it follows that the conditional measure ν̂x is a Dirac mass almost surely.

Finally, to show that this property implies uniqueness of ν̂, let ν̂i, i = 1, 2 be two P -invariant

probability measures on PV̂. Let κi(x) ∈ Vx denote the single point supporting ν̂ix, i = 1, 2. Let
ε = min {(λ1 − λ2)/2, 1/2} and let F be the set defined below (B.5) for this ε. Then, arguing as
above, there is E ⊆ V with µV(E) ≥ 1−

√
ε so that for all y ∈ E, we have (y, κi(y)) ∈ F for i = 1, 2.

Hence, for µV -almost every x, we can apply (B.6) with y = g−nx, v = κ1(g−nx), and w = κ2(g−nx)
along a sequence of times n → ∞ such that g−nx ∈ E to conclude that κ1(x) = κ2(x), in view of
the equivariance relation (B.4). □
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