Bounded and Divergent Orbits and Expanding Curves on Homogeneous Spaces

Osama Khalil

The Ohio State University

Maryland Dynamics Workshop

April 2018

- *G* is a connected Lie group with Lie algebra \mathfrak{g} .
- g_t is Ad-diagonalizable over \mathbb{R} :

$$\mathfrak{g} = \bigoplus \mathfrak{g}_{lpha}, \qquad \mathfrak{g}_{lpha} = \left\{ X \in \mathfrak{g} : g_t X g_{-t} = e^{lpha(t)} X \right\}$$

- $u(Y) = \exp(Y)$ for $Y \in \mathfrak{g}$.
- X a topological space and $G \curvearrowright X$.

Definition

A map $\varphi : [0, 1] \rightarrow \mathfrak{g}$ is $\mathbf{g_t}$ -admissible if:

- φ is C^2 and $\dot{\varphi} \not\equiv 0$.
- **2** g_t normalizes $\dot{\varphi}$: the image of φ is contained in \mathfrak{g}_{α} for some $\alpha > 0$.
- $\ \, {\color{black} \bullet} \ \, {\color{black} \circ} \ \, {\color{b$

• Estimate the Hausdorff dimension of the set of parameters $s \in [0, 1]$:

• $g_t u(\varphi(s))x_0$ diverges on average in X: for any compact set $K \subseteq X$:

$$\frac{1}{T}\int_0^T \chi_K(g_t u(\varphi(s))x_0) dt \to 0$$

2 $g_t u(\varphi(s)) x_0$ remains inside a compact subset of X for all t > 0.

- T^1M : unit tangent bundle of a rank 1, locally symmetric manifold of finite volume, $p \in M$.
- $g^t : T^1 M \to T^1 M$: the geodesic flow.
- $\varphi: [0,1] \to T_p^1 M$ a g^t -admissible map. (Automatic for \mathbb{H}^n).

The Hausdorff dimension of the set of $s \in [0, 1]$ such that

- $g^t \varphi(s)$ diverges on average is at most 1/2.
- 2) $g^t \varphi(s)$ is bounded is equal to 1. (This set is winning).

• Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS '95).

- T^1M : unit tangent bundle of a rank 1, locally symmetric manifold of finite volume, $p \in M$.
- $g^t : T^1 M \to T^1 M$: the geodesic flow.
- $\varphi: [0,1] \to T_p^1 M$ a g^t -admissible map. (Automatic for \mathbb{H}^n).

The Hausdorff dimension of the set of $s \in [0, 1]$ such that

- $g^t \varphi(s)$ diverges on average is at most 1/2.
- 2 $g^t \varphi(s)$ is bounded is equal to 1. (This set is winning).

• Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS '95).

- T^1M : unit tangent bundle of a rank 1, locally symmetric manifold of finite volume, $p \in M$.
- $g^t : T^1 M \to T^1 M$: the geodesic flow.
- $\varphi: [0,1] \to T_p^1 M$ a g^t -admissible map. (Automatic for \mathbb{H}^n).

The Hausdorff dimension of the set of $s \in [0, 1]$ such that

- $g^t \varphi(s)$ diverges on average is at most 1/2.
- 2 $g^t \varphi(s)$ is bounded is equal to 1. (This set is winning).
 - Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS '95).

Diophantine Approximation in Number Fields

- $K = \mathbb{Q}(\alpha)$ a number field of degree d, e.g. $K = \mathbb{Q}(\sqrt{2})$.
- \mathcal{O}_K its ring of integers, e.g. $\mathbb{Z}[\sqrt{2}]$.
- Σ the set of Galois embeddings of *K* into \mathbb{R} and \mathbb{C} , e.g.

$$a + b\sqrt{2} \mapsto a + b\sqrt{2}, \qquad a + b\sqrt{2} \mapsto a - b\sqrt{2}$$

- $K_{\Sigma} = \mathbb{R}^r \times \mathbb{C}^s, r + s = |\Sigma|.$
- **x** = (x_σ)_{σ∈Σ} ∈ K_Σ is *badly approximable* by *K* if there exists c > 0, for all p, q ∈ O_K:

$$\max_{\sigma \in \Sigma} \left\{ |\sigma(p) + x_{\sigma} \sigma(q)| \right\} \max_{\sigma \in \Sigma} \left\{ |\sigma(q)| \right\} \geqslant c$$

Diophantine Approximation in Number Fields

- $G = \mathrm{SL}(2,\mathbb{R})^r \times \mathrm{SL}(2,\mathbb{C})^s$.
- Γ is image of diagonal Galois embedding of $SL(2, \mathcal{O}_K)$.

$$g_t = \left(\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} \right)_{\sigma \in \Sigma}, \qquad u(\mathbf{x}) = \left(\begin{pmatrix} 1 & \mathbf{x}_{\sigma} \\ 0 & 1 \end{pmatrix} \right)_{\sigma \in \Sigma}$$

• Einsiedler-Ghosh-Lyttle (Dani's correspondence in number fields): $\mathbf{x} \in K_{\Sigma}$ is *badly approximable* iff $g_t u(\mathbf{x})\Gamma$ remains bounded in G/Γ .

Diophantine Approximation in Number Fields

K_Σ = ℝ^r × ℂ^s can be identified with the full unstable manifold of g_t via **x** → u(**x**).

•
$$\varphi = (\varphi_{\sigma})_{\sigma \in \Sigma} : [0, 1] \to \mathbb{R}^r \times \mathbb{C}^s$$
 is $C^{1+\varepsilon}$.

• Maximality Assumption:

$$\dot{\varphi}_{\sigma} \not\equiv 0, \qquad \sigma \in \Sigma$$

For all $x_0 \in G/\Gamma$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

- $g_t u(\varphi(s)) x_0$ is divergent on average in G/Γ is at most 1/2.
- **2** $g_t u(\varphi(s))x_0$ is bounded in G/Γ is equal to 1. (The set is winning).

The result for curves remains true for:

- reducible lattices, or
- ② any semisimple algebraic group G and $\Gamma < G$ is an arithmetic lattice of \mathbb{Q} -rank equal to 1 under an appropriate maximality condition.

For all $x_0 \in G/\Gamma$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

- $g_t u(\varphi(s)) x_0$ is divergent on average in G/Γ is at most 1/2.
- **2** $g_t u(\varphi(s))x_0$ is bounded in G/Γ is equal to 1. (The set is winning).

The result for curves remains true for:

- reducible lattices, or
- any semisimple algebraic group G and Γ < G is an arithmetic lattice of Q-rank equal to 1 under an appropriate maximality condition.

Remarks:

- G = SL(2, ℝ)^r × SL(2, ℂ)^s, Γ = Δ(SL(2, O_K)): Dimension of bounded orbits on curves was previously obtained by Einsiedler, Ghosh and Lyttle by different methods (ETDS '16).
- Y. Cheung (ETDS '07): the dimension of divergent orbits for g_t in the entire SL(2, ℝ)ⁿ/SL(2, ℤ)ⁿ is 3n − 1/2 for n ≥ 2.

• $Y \in \mathcal{M}_{m,n}(\mathbb{R})$ is **badly approximable** if there exists c > 0 for all $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^m \times \mathbb{Z}^n$: $\|\mathbf{p} + Y \cdot \mathbf{q}\|_{\infty}^m \|\mathbf{q}\|_{\infty}^n \ge c$

• *Y* is **singular** if for every $\varepsilon > 0$, there exists $N_0 \in \mathbb{N}$; for all $N \ge N_0$, there exists $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^m \times \mathbb{Z}^n$:

 $\begin{cases} \|\mathbf{p} + Y\mathbf{q}\| \leq \varepsilon/N \\ 0 < \|\mathbf{q}\| \leq N^{n/m} \end{cases}$

- $Y \in M_{m,n}(\mathbb{R})$ is **badly approximable** if there exists c > 0 for all $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^m \times \mathbb{Z}^n$: $\|\mathbf{p} + Y \cdot \mathbf{q}\|_{\infty}^m \|\mathbf{q}\|_{\infty}^n \ge c$
- Y is singular if for every $\varepsilon > 0$, there exists $N_0 \in \mathbb{N}$; for all $N \ge N_0$, there exists $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^m \times \mathbb{Z}^n$:

$$\begin{cases} \|\mathbf{p} + Y\mathbf{q}\| \leq \varepsilon/N\\ 0 < \|\mathbf{q}\| \leq N^{n/m} \end{cases}$$

•
$$G = \operatorname{SL}(m+n, \mathbb{R}), \Gamma = \operatorname{SL}(m+n, \mathbb{Z}),$$

$$g_t = \begin{pmatrix} e^{nt} \operatorname{I}_m & \mathbf{0} \\ \mathbf{0} & e^{-mt} \operatorname{I}_n \end{pmatrix}, \qquad u(Y) = \begin{pmatrix} \operatorname{I}_m & Y \\ \mathbf{0} & \operatorname{I}_n \end{pmatrix}$$

• Dani's Correspondence: Y is **badly approximable** iff $g_t u(Y)\Gamma$ remains bounded in G/Γ and **singular** iff $g_t u(Y)\Gamma$ diverges in G/Γ .

Suppose $A \in GL(n, \mathbb{R})$, $B \in M_{n,n}(\mathbb{R})$ and $\varphi : [0, 1] \to M_{n,n}(\mathbb{R})$ is given by

 $\varphi(s) = B + sA$

Then, for any $x_0 \in G/\Gamma$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

- $g_t u(\varphi(s)) x_0$ diverges on average is at most 1/2.
- **2** $g_t u(\varphi(s)) x_0$ remains bounded in G/Γ is equal to 1. (This set is winning).

- Schmidt 1969: the set of badly approximable matrices in $M_{m,n}(\mathbb{R})$ is winning (has full dimension).
- Beresnevich (Invent. Math. '15): (weighted) badly approximable points on non-degenerate curves in M_{1,n}(ℝ) ≅ ℝⁿ have dimension 1.
- Kleinbock-Weiss (Adv. in Math. '10, JMD '13): the set of bounded orbits for a partially hyperbolic algebraic flow on a homogeneous space is winning.

- Y. Cheung (Annals '11): singular vectors in M_{1,2}(ℝ) ≅ ℝ² has dimension 4/3.
 - Cheung-Chevallier (Duke '16): singular vectors in \mathbb{R}^n have dimension $n^2/n + 1$.
- Kadyrov-Kleinbock-Lindenstrauss-Margulis (J. d'Analyse '17): singular matrices in $M_{m,n}(\mathbb{R})$ have dimension **at most** $mn \frac{mn}{m+n}$.

• Contraction Hypothesis \implies Dimension Estimates.

2 Establish the Contraction Hypothesis.

- *G* is a connected Lie group with Lie algebra \mathfrak{g} .
- g_t is Ad-diagonalizable over \mathbb{R} :

$$\mathfrak{g} = \bigoplus \mathfrak{g}_{lpha}, \qquad \mathfrak{g}_{lpha} = \left\{ X \in \mathfrak{g} : g_t X g_{-t} = e^{lpha(t)} X \right\}$$

•
$$u(Y) = \exp(Y)$$
 for $Y \in \mathfrak{g}$.

• $G \curvearrowright X$, a topological space (not necessarily a homogeneous space for *G*).

Definition

A map $\varphi : [0, 1] \rightarrow \mathfrak{g}$ is $\mathbf{g_t}$ -admissible if:

•
$$\varphi$$
 is C^2 and $\dot{\varphi} \not\equiv$ 0.

2 g_t normalizes $\dot{\varphi}$: the image of φ is contained in \mathfrak{g}_{α} for some $\alpha > 0$.

• φ commutes with $\dot{\varphi}$: $[\varphi, \dot{\varphi}] \equiv 0$.

 $f: X \to [0,\infty]$ is a height function:

• *f* is proper and finite on compact subsets of $X \setminus \{f = \infty\}$.

② *f* is **log-smooth**: for every bounded set $\mathcal{O} \subset G$, there exists *C* ≥ 1, for all *g* ∈ \mathcal{O} and all *x* ∈ *X*\{*f* = ∞},

$$C^{-1}f(x) \leq f(gx) \leq Cf(x)$$

• $\{f = \infty\}$ is *G*-invariant.

- For M > 0, χ_M indicator function of $\{f \leq M\}$.
- For x ∈ X, we say
 g_tx diverges on average if for all M > 0:

$$\frac{1}{T}\int_0^T \chi_M(g_t x) \ dt \to 0$$

g_tx is bounded if

 $\sup_{t>0}f(g_tx)<\infty$

Definition

 φ satisfies the **first order** β -**contraction hypothesis** on X if there exists a height function f and $0 < \beta < 1$ such that for all t > 0:

$$\int_0^1 f(g_t u(r\dot{\varphi}(s))x) dr \leqslant c e^{-\beta \alpha(t)} f(x) + b$$

for some constants c, b > 0.

In words, g_t orbits starting from points on φ are biased towards sublevel sets of f: when $f(x) \gg 1$

$$\int_0^1 f(g_t u(r\dot{\varphi}(s))x) dr \ll e^{-\beta\alpha(t)} f(x)$$

Definition

 φ satisfies the **first order** β -**contraction hypothesis** on X if there exists a height function f and $0 < \beta < 1$ such that for all t > 0:

$$\int_0^1 f(g_t u(r\dot{\varphi}(s))x) dr \leqslant c e^{-\beta \alpha(t)} f(x) + b$$

for some constants c, b > 0.

In words, g_t orbits starting from points on φ are biased towards sublevel sets of f: when $f(x) \gg 1$

$$\int_0^1 f(g_t u(r\dot{\varphi}(s))x) dr \ll e^{-\beta\alpha(t)}f(x)$$

Suppose φ is a g_t -admissible curve satisfying the 1st order β -contraction hypothesis. Then, for all $x_0 \in X \setminus \{f = \infty\}$, the Hausdorff dimension of the set of $s \in [0, 1]$ such that

- $g_t u(\varphi(s)) x_0$ is divergent on average is at most 1β .
- $\mathfrak{G}_{t} \mathfrak{g}_{t} \mathfrak{u}(\varphi(s)) \mathfrak{x}_{0}$ remains bounded in X is equal to 1.

 $f : SL(2, \mathbb{R})/SL(2, \mathbb{Z}) \to \mathbb{R}_+$ is given by the *y*-coordinate in the upper half plane model.

$\mathrm{SL}(n,\mathbb{R})/\mathrm{SL}(n,\mathbb{Z})\leftrightarrow \{\text{unimodular lattices in }\mathbb{R}^n\}$

$$f(x) = \max_{1 \leq i \leq n} \max \left\{ \frac{1}{\|\Lambda\|} : \Lambda \text{ is a subgroup of } x \text{ of rank } i
ight\}$$

$\mathrm{SL}(n,\mathbb{R})/\mathrm{SL}(n,\mathbb{Z}) \leftrightarrow \{\text{unimodular lattices in } \mathbb{R}^n\}$

$$f(x) = \max_{1 \leq i \leq n} \max \left\{ rac{1}{\|\Lambda\|} : \Lambda ext{ is a subgroup of } x ext{ of rank } i
ight\}$$

A history of contraction

Osama Khalil (Ohio State)

- Eskin-Margulis-Mozes: averaging over $SO(p) \times SO(q) < SL(p+q, \mathbb{R})$.
- Eskin-Margulis, Benoist-Quint: random walks on homogeneous spaces.
- Eskin-Masur: recurrence of Teichmüller flow orbits in strata of quadratic differentials.
- Eskin-Mirzakhani-Mohammadi: recurrence away from proper affine submanifolds.

Contraction in higher rank: the enemy

•
$$G = SL(3, \mathbb{R})$$
 and $\Gamma = SL(3, \mathbb{Z})$:

$$g_t = \begin{pmatrix} e^{2t} & 0 & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{-t} \end{pmatrix}, \qquad u_s = \begin{pmatrix} 1 & s & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Mahler's compactness criterion: a subset K of unimodular lattices inside G/Γ is bounded iff for all lattices Λ ∈ K, Λ ∩ B_ε(0) = {0} for some ε > 0.

$$g_t u_s \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ e^{-t} \end{pmatrix} \xrightarrow{t \to \infty} \mathbf{0}$$

• A uniform first order contraction hypothesis is not possible!

• A higher order form of the contraction hypothesis can be established:

$$\int_0^1 f(g_t \Phi(r) x) \, dr \leqslant a f(x) + b$$

for some 0 < a < 1 and b > 0 and Φ a certain Taylor polynomial for the curve φ .

- A uniform first order contraction hypothesis is not possible!
- A higher order form of the contraction hypothesis can be established:

$$\int_0^1 f(g_t \Phi(r)x) \, dr \leqslant af(x) + b$$

for some 0 < a < 1 and b > 0 and Φ a certain Taylor polynomial for the curve φ .

Higher order contraction

•
$$G = SL(m+n,\mathbb{R}), \Gamma = SL(m+n,\mathbb{Z}) \text{ and } X = G/\Gamma.$$

• $Y \in M_{m,n}, (\mathbf{r}, \mathbf{s}) = (r_1, \dots, r_m, s_1, \dots, s_n) \in \mathbb{R}^n_+ \text{ with } \sum r_i = 1 = \sum s_j$:

$$u(Y) = \begin{pmatrix} I_m & Y \\ 0 & I_n \end{pmatrix}, \qquad g_t^{\mathbf{r},\mathbf{s}} = \operatorname{diag}(e^{r_1t}, \ldots, e^{r_mt}, e^{-s_1t}, \ldots, e^{-s_nt})$$

Theorem (K. 18)

Suppose $\varphi : [0, 1] \to M_{m,n}$ is a strongly non-planar curve and (\mathbf{r}, \mathbf{s}) is any weight with $\sum r_i = 1 = \sum s_j$. Then, for all $x \in X$,

$$\sup_{t>0}\int_0^1 f\left(g_t^{\mathbf{r},\mathbf{s}}u(\varphi(s))x\right) ds < \infty$$

Moreover, the supremum can be taken to be uniform as x varies in compact subsets of X.

Osama Khalil (Ohio State)

- This implies very well approximable points have measure 0. (Kleinbock-Margulis 1998, Kleinbock-Margulis-Wang 2010).
- Solution 3 The approach uses the (C, α) -good theory of polynomials only.

Thanks!