Bounded and Divergent Orbits and Expanding Curves on Homogeneous Spaces

Osama Khalil

The Ohio State University
Maryland Dynamics Workshop

April 2018

The main objects

- G is a connected Lie group with Lie algebra \mathfrak{g}.
- g_{t} is Ad-diagonalizable over \mathbb{R} :

$$
\mathfrak{g}=\bigoplus \mathfrak{g}_{\alpha}, \quad \mathfrak{g}_{\alpha}=\left\{X \in \mathfrak{g}: g_{t} X g_{-t}=e^{\alpha(t)} X\right\}
$$

- $u(Y)=\exp (Y)$ for $Y \in \mathfrak{g}$.
- X a topological space and $G \curvearrowright X$.

Admissible Curves

Definition

A map $\varphi:[0,1] \rightarrow \mathfrak{g}$ is $\mathbf{g}_{\mathbf{t}}$-admissible if:
(1) φ is C^{2} and $\dot{\varphi} \not \equiv 0$.
(2) g_{t} normalizes $\dot{\varphi}$: the image of φ is contained in \mathfrak{g}_{α} for some $\alpha>0$.
(3) φ commutes with $\dot{\varphi}:[\varphi, \dot{\varphi}] \equiv 0$.

Central Questions

- Estimate the Hausdorff dimension of the set of parameters $s \in[0,1]$:
(1) $g_{t} u(\varphi(s)) x_{0}$ diverges on average in X : for any compact set $K \subseteq X$:

$$
\frac{1}{T} \int_{0}^{T} \chi_{\kappa}\left(g_{t} u(\varphi(s)) x_{0}\right) d t \rightarrow 0
$$

(2) $g_{t} u(\varphi(s)) x_{0}$ remains inside a compact subset of X for all $t>0$.

Real Rank One Manifolds

- $T^{1} \mathrm{M}$: unit tangent bundle of a rank 1 , locally symmetric manifold of finite volume, $p \in M$.
- $g^{t}: T^{1} \mathcal{M} \rightarrow T^{1} \mathcal{M}$: the geodesic flow.
- $\varphi:[0,1] \rightarrow T_{p}^{1} \mathcal{M}$ a g^{t}-admissible map. (Automatic for \mathbb{H}^{n}).

Theorem (K. '18)

The Hausdorff dimension of the set of $s \in[0,1]$ such that

- $g^{t} \varphi(s)$ diverges on average is at most $1 / 2$.
(3) $g^{t} \varphi(s)$ is bounded is equal to 1 . (This set is winning).
- Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS '95).

Real Rank One Manifolds

- $T^{1} \mathcal{M}$: unit tangent bundle of a rank 1 , locally symmetric manifold of finite volume, $p \in M$.
- $g^{t}: T^{1} \mathcal{M} \rightarrow T^{1} \mathcal{M}$: the geodesic flow.
- $\varphi:[0,1] \rightarrow T_{p}^{1} \mathcal{M}$ a g^{t}-admissible map. (Automatic for \mathbb{H}^{n}).

Theorem (K. '18)

The Hausdorff dimension of the set of $s \in[0,1]$ such that
(1) $g^{t} \varphi(s)$ diverges on average is at most $1 / 2$.
(2) $g^{t} \varphi(s)$ is bounded is equal to 1 . (This set is winning).

- Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS '95).

Real Rank One Manifolds

- $T^{1} \mathcal{M}$: unit tangent bundle of a rank 1 , locally symmetric manifold of finite volume, $p \in M$.
- $g^{t}: T^{1} \mathcal{M} \rightarrow T^{1} \mathcal{M}$: the geodesic flow.
- $\varphi:[0,1] \rightarrow T_{p}^{1} \mathcal{M}$ a g^{t}-admissible map. (Automatic for \mathbb{H}^{n}).

Theorem (K. '18)

The Hausdorff dimension of the set of $s \in[0,1]$ such that
(1) $g^{t} \varphi(s)$ diverges on average is at most $1 / 2$.
(2) $g^{t} \varphi(s)$ is bounded is equal to 1 . (This set is winning).

- Remark: (2) was previously obtained by Aravinda and Leuzinger by different methods (ETDS '95).

Diophantine Approximation in Number Fields

- $K=\mathbb{Q}(\alpha)$ a number field of degree d, e.g. $K=\mathbb{Q}(\sqrt{2})$.
- \mathcal{O}_{K} its ring of integers, e.g. $\mathbb{Z}[\sqrt{2}]$.
- Σ the set of Galois embeddings of K into \mathbb{R} and \mathbb{C}, e.g.

$$
a+b \sqrt{2} \mapsto a+b \sqrt{2}, \quad a+b \sqrt{2} \mapsto a-b \sqrt{2}
$$

Diophantine Approximation in Number Fields

- $K_{\Sigma}=\mathbb{R}^{r} \times \mathbb{C}^{s}, r+s=|\Sigma|$.
- $\mathbf{x}=\left(x_{\sigma}\right)_{\sigma \in \Sigma} \in K_{\Sigma}$ is badly approximable by K if there exists $c>0$, for all $p, q \in \mathcal{O}_{K}$:

$$
\max _{\sigma \in \Sigma}\left\{\left|\sigma(p)+x_{\sigma} \sigma(q)\right|\right\} \max _{\sigma \in \Sigma}\{|\sigma(q)|\} \geqslant c
$$

Diophantine Approximation in Number Fields

- $G=\operatorname{SL}(2, \mathbb{R})^{r} \times \operatorname{SL}(2, \mathbb{C})^{s}$.
- Γ is image of diagonal Galois embedding of $\operatorname{SL}\left(2, \mathcal{O}_{K}\right)$.

$$
g_{t}=\left(\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)\right)_{\sigma \in \Sigma}, \quad u(\mathbf{x})=\left(\left(\begin{array}{cc}
1 & \mathbf{x}_{\sigma} \\
0 & 1
\end{array}\right)\right)_{\sigma \in \Sigma}
$$

- Einsiedler-Ghosh-Lyttle (Dani's correspondence in number fields): $\mathbf{x} \in K_{\Sigma}$ is badly approximable iff $g_{t} u(\mathbf{x}) \Gamma$ remains bounded in G / Γ.

Diophantine Approximation in Number Fields

- $K_{\Sigma}=\mathbb{R}^{r} \times \mathbb{C}^{s}$ can be identified with the full unstable manifold of g_{t} $\operatorname{via} \mathbf{x} \mapsto u(\mathbf{x})$.
- $\varphi=\left(\varphi_{\sigma}\right)_{\sigma \in \Sigma}:[0,1] \rightarrow \mathbb{R}^{r} \times \mathbb{C}^{s}$ is $C^{1+\varepsilon}$.
- Maximality Assumption:

$$
\dot{\varphi}_{\sigma} \not \equiv 0, \quad \sigma \in \Sigma
$$

Diophantine Approximation in Number Fields

Theorem (K. '18)

For all $x_{0} \in G / \Gamma$, the Hausdorff dimension of the set of $s \in[0,1]$ such that
(1) $g_{t} u(\varphi(s)) x_{0}$ is divergent on average in G / Γ is at most $1 / 2$.
(2) $g_{t} u(\varphi(s)) x_{0}$ is bounded in G / Γ is equal to 1 . (The set is winning).

The result for curves remains true for:

- reducible lattices, or
(3) any semisimple algebraic group G and $\Gamma<G$ is an arithmetic lattice of \mathbb{Q}-rank equal to 1 under an appropriate maximality condition.

Diophantine Approximation in Number Fields

Theorem (K. '18)

For all $x_{0} \in G / \Gamma$, the Hausdorff dimension of the set of $s \in[0,1]$ such that
(1) $g_{t} u(\varphi(s)) x_{0}$ is divergent on average in G / Γ is at most $1 / 2$.
(2) $g_{t} u(\varphi(s)) x_{0}$ is bounded in G / Γ is equal to 1 . (The set is winning).

The result for curves remains true for:
(1) reducible lattices, or
(2) any semisimple algebraic group G and $\Gamma<G$ is an arithmetic lattice of \mathbb{Q}-rank equal to 1 under an appropriate maximality condition.

Diophantine Approximation in Number Fields

Remarks:

- $G=\operatorname{SL}(2, \mathbb{R})^{r} \times \operatorname{SL}(2, \mathbb{C})^{s}, \Gamma=\Delta\left(\mathrm{SL}\left(2, \mathcal{O}_{K}\right)\right)$:

Dimension of bounded orbits on curves was previously obtained by Einsiedler, Ghosh and Lyttle by different methods (ETDS '16).

- Y. Cheung (ETDS '07): the dimension of divergent orbits for g_{t} in the entire $\operatorname{SL}(2, \mathbb{R})^{n} / \mathrm{SL}(2, \mathbb{Z})^{n}$ is $3 n-1 / 2$ for $n \geq 2$.

Systems of Linear Forms

- $Y \in M_{m, n}(\mathbb{R})$ is badly approximable if there exists $c>0$ for all $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^{m} \times \mathbb{Z}^{n}:$

$$
\|\mathbf{p}+Y \cdot \mathbf{q}\|_{\infty}^{m}\|\mathbf{q}\|_{\infty}^{n} \geqslant c
$$

- Y is singular if for every $\varepsilon>0$, there exists $N_{0} \in \mathbb{N}$; for all $N \geqslant N_{0}$, there exists $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^{m} \times \mathbb{Z}^{n}$:

Systems of Linear Forms

- $Y \in \mathcal{M}_{m, n}(\mathbb{R})$ is badly approximable if there exists $c>0$ for all $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^{m} \times \mathbb{Z}^{n}:$

$$
\|\mathbf{p}+Y \cdot \mathbf{q}\|_{\infty}^{m}\|\mathbf{q}\|_{\infty}^{n} \geqslant c
$$

- Y is singular if for every $\varepsilon>0$, there exists $N_{0} \in \mathbb{N}$; for all $N \geqslant N_{0}$, there exists $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^{m} \times \mathbb{Z}^{n}$:

$$
\left\{\begin{array}{l}
\|\mathbf{p}+Y \mathbf{q}\| \leqslant \varepsilon / N \\
0<\|\mathbf{q}\| \leqslant N^{n / m}
\end{array}\right.
$$

Systems of Linear Forms

- $G=\mathrm{SL}(m+n, \mathbb{R}), \Gamma=\mathrm{SL}(m+n, \mathbb{Z})$,

$$
g_{t}=\left(\begin{array}{cc}
e^{n t} \mathrm{I}_{m} & \mathbf{0} \\
\mathbf{0} & e^{-m t} \mathrm{I}_{n}
\end{array}\right), \quad u(Y)=\left(\begin{array}{cc}
\mathrm{I}_{m} & Y \\
\mathbf{0} & \mathrm{I}_{n}
\end{array}\right)
$$

- Dani's Correspondence: Y is badly approximable iff $g_{t} u(Y) \Gamma$ remains bounded in G / Γ and singular iff $g_{t} u(Y) \Gamma$ diverges in G / Γ.

Systems of Linear Forms

Theorem (K. '18)

Suppose $A \in \operatorname{GL}(n, \mathbb{R}), B \in \mathcal{M}_{n, n}(\mathbb{R})$ and $\varphi:[0,1] \rightarrow \mathcal{M}_{n, n}(\mathbb{R})$ is given by

$$
\varphi(s)=B+s A
$$

Then, for any $x_{0} \in G / \Gamma$, the Hausdorff dimension of the set of $s \in[0,1]$ such that
(1) $g_{t} u(\varphi(s)) x_{0}$ diverges on average is at most $1 / 2$.
(2) $g_{t} u(\varphi(s)) x_{0}$ remains bounded in G / Γ is equal to 1 . (This set is winning).

Bounded orbits: a very brief history

- Schmidt 1969: the set of badly approximable matrices in $M_{m, n}(\mathbb{R})$ is winning (has full dimension).
- Beresnevich (Invent. Math. '15): (weighted) badly approximable points on non-degenerate curves in $\mathcal{M}_{1, n}(\mathbb{R}) \cong \mathbb{R}^{n}$ have dimension 1 .
- Kleinbock-Weiss (Adv. in Math. '10, JMD '13): the set of bounded orbits for a partially hyperbolic algebraic flow on a homogeneous space is winning.

Divergent orbits: a very brief history

- Y. Cheung (Annals '11): singular vectors in $\mathcal{M}_{1,2}(\mathbb{R}) \cong \mathbb{R}^{2}$ has dimension $4 / 3$.
- Cheung-Chevallier (Duke '16): singular vectors in \mathbb{R}^{n} have dimension $n^{2} / n+1$.
- Kadyrov-Kleinbock-Lindenstrauss-Margulis (J. d'Analyse '17): singular matrices in $M_{m, n}(\mathbb{R})$ have dimension at most $m n-\frac{m n}{m+n}$.

Ingredients of the proof

(1) Contraction Hypothesis \Longrightarrow Dimension Estimates.
(2) Establish the Contraction Hypothesis.

Recall our set up

- G is a connected Lie group with Lie algebra \mathfrak{g}.
- g_{t} is Ad-diagonalizable over \mathbb{R} :

$$
\mathfrak{g}=\bigoplus \mathfrak{g}_{\alpha}, \quad \mathfrak{g}_{\alpha}=\left\{x \in \mathfrak{g}: g_{t} \chi_{g_{-t}}=e^{\alpha(t)} X\right\}
$$

- $u(Y)=\exp (Y)$ for $Y \in \mathfrak{g}$.
- $G \curvearrowright X$, a topological space (not necessarily a homogeneous space for $G)$.

Recall our set up

Definition

A map $\varphi:[0,1] \rightarrow \mathfrak{g}$ is $\mathbf{g}_{\mathbf{t}}$-admissible if:
(1) φ is C^{2} and $\dot{\varphi} \not \equiv 0$.
(2) g_{t} normalizes $\dot{\varphi}$: the image of φ is contained in \mathfrak{g}_{α} for some $\alpha>0$.
(3) φ commutes with $\dot{\varphi}:[\varphi, \dot{\varphi}] \equiv 0$.

Height Functions

$f: X \rightarrow[0, \infty]$ is a height function:
(1) f is proper and finite on compact subsets of $X \backslash\{f=\infty\}$.
(2) f is log-smooth: for every bounded set $\mathcal{O} \subset G$, there exists $C \geq 1$, for all $g \in \mathcal{O}$ and all $x \in X \backslash\{f=\infty\}$,

$$
C^{-1} f(x) \leqslant f(g x) \leqslant C f(x)
$$

(3) $\{f=\infty\}$ is G-invariant.

Bounded and divergent orbits - another look

- For $M>0, \chi_{M}$ indicator function of $\{f \leq M\}$.
- For $x \in X$, we say
(1) $g_{t} X$ diverges on average if for all $M>0$:

$$
\frac{1}{T} \int_{0}^{T} \chi_{M}\left(g_{t} x\right) d t \rightarrow 0
$$

(2) $g_{t} x$ is bounded if

$$
\sup _{t>0} f\left(g_{t} x\right)<\infty
$$

The Contraction Hypothesis

Definition

φ satisfies the first order β-contraction hypothesis on X if there exists a height function f and $0<\beta<1$ such that for all $t>0$:

$$
\int_{0}^{1} f\left(g_{t} u(r \dot{\varphi}(s)) x\right) d r \leqslant c e^{-\beta \alpha(t)} f(x)+b
$$

for some constants $c, b>0$.

In words, g_{t} orbits starting from points on φ are biased towards sublevel sets of f : when $f(x) \gg 1$

$$
\int_{0}^{1} f\left(g_{t} u(r \dot{\varphi}(s)) x\right) d r \ll e^{-\beta \alpha(t)} f(x)
$$

The Contraction Hypothesis

Definition

φ satisfies the first order β-contraction hypothesis on X if there exists a height function f and $0<\beta<1$ such that for all $t>0$:

$$
\int_{0}^{1} f\left(g_{t} u(r \dot{\varphi}(s)) x\right) d r \leqslant c e^{-\beta \alpha(t)} f(x)+b
$$

for some constants $c, b>0$.

In words, g_{t} orbits starting from points on φ are biased towards sublevel sets of f : when $f(x) \gg 1$

$$
\int_{0}^{1} f\left(g_{t} u(r \dot{\varphi}(s)) x\right) d r \ll e^{-\beta \alpha(t)} f(x)
$$

Contraction \Longrightarrow Dimension Estimates

Theorem (K. '18)

Suppose φ is a g_{t}-admissible curve satisfying the $1^{\text {st }}$ order β-contraction hypothesis. Then, for all $x_{0} \in X \backslash\{f=\infty\}$, the Hausdorff dimension of the set of $s \in[0,1]$ such that
(1) $g_{t} u(\varphi(s)) x_{0}$ is divergent on average is at most $1-\beta$.
(2) $g_{t} u(\varphi(s)) x_{0}$ remains bounded in X is equal to 1 .

An example: SL($2, \mathbb{R}) / \mathrm{SL}(2, \mathbb{Z})$

$f: \operatorname{SL}(2, \mathbb{R}) / \mathrm{SL}(2, \mathbb{Z}) \rightarrow \mathbb{R}_{+}$is given by the y-coordinate in the upper half plane model.

Example 2: $\operatorname{SL}(n, \mathbb{R}) / \operatorname{SL}(n, \mathbb{Z})$

$\mathrm{SL}(n, \mathbb{R}) / \mathrm{SL}(n, \mathbb{Z}) \leftrightarrow\left\{\right.$ unimodular lattices in $\left.\mathbb{R}^{n}\right\}$

Example 2: SL $(n, \mathbb{R}) / \operatorname{SL}(n, \mathbb{Z})$

$\operatorname{SL}(n, \mathbb{R}) / \operatorname{SL}(n, \mathbb{Z}) \leftrightarrow\left\{\right.$ unimodular lattices in $\left.\mathbb{R}^{n}\right\}$

$$
f(x)=\max _{1 \leqslant i \leqslant n} \max \left\{\frac{1}{\|\Lambda\|}: \Lambda \text { is a subgroup of } x \text { of rank } i\right\}
$$

A history of contraction

Markov Chains and Stochastic Stability

SECOND EDITION
$\left\|P^{n}(x, \cdot)-\pi\right\|_{f} \rightarrow 0$

Sean Meyn and Richard L. Tweedie

A history of contraction

- Eskin-Margulis-Mozes: averaging over $\mathrm{SO}(p) \times S O(q)<S L(p+q, \mathbb{R})$.
- Eskin-Margulis, Benoist-Quint: random walks on homogeneous spaces.
- Eskin-Masur: recurrence of Teichmüller flow orbits in strata of quadratic differentials.
- Eskin-Mirzakhani-Mohammadi: recurrence away from proper affine submanifolds.

Contraction in higher rank: the enemy

- $G=\operatorname{SL}(3, \mathbb{R})$ and $\Gamma=\operatorname{SL}(3, \mathbb{Z})$:

$$
g_{t}=\left(\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{-t} & 0 \\
0 & 0 & e^{-t}
\end{array}\right), \quad u_{s}=\left(\begin{array}{ccc}
1 & s & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Mahler's compactness criterion: a subset K of unimodular lattices inside G / Γ is bounded iff for all lattices $\Lambda \in K, \Lambda \cap B_{\varepsilon}(\mathbf{0})=\{\mathbf{0}\}$ for some $\varepsilon>0$.

$$
g_{t} u_{s}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
e^{-t}
\end{array}\right) \xrightarrow{t \rightarrow \infty} \mathbf{0}
$$

Higher order contraction

- A uniform first order contraction hypothesis is not possible!
- A higher order form of the contraction hypothesis can be established:

$$
\int_{0}^{1} f\left(g_{t} \Phi(r) x\right) d r \leqslant a f(x)+b
$$

for some $0<a<1$ and $b>0$ and Φ a certain Taylor polynomial for the curve φ.

Higher order contraction

- A uniform first order contraction hypothesis is not possible!
- A higher order form of the contraction hypothesis can be established:

$$
\int_{0}^{1} f\left(g_{t} \Phi(r) x\right) d r \leqslant a f(x)+b
$$

for some $0<a<1$ and $b>0$ and Φ a certain Taylor polynomial for the curve φ.

Higher order contraction

- $G=S L(m+n, \mathbb{R}), \Gamma=S L(m+n, \mathbb{Z})$ and $X=G / \Gamma$.
- $Y \in \mathcal{M}_{m, n},(\mathbf{r}, \mathbf{s})=\left(r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\sum r_{i}=1=\sum s_{j}:$

$$
u(Y)=\left(\begin{array}{cc}
\mathrm{I}_{m} & Y \\
0 & \mathrm{I}_{n}
\end{array}\right), \quad g_{t}^{\mathbf{r}, \mathbf{s}}=\operatorname{diag}\left(e^{r_{1} t}, \ldots, e^{r_{m} t}, e^{-s_{1} t}, \ldots, e^{-s_{n} t}\right)
$$

Theorem (K. 18)

Suppose $\varphi:[0,1] \rightarrow M_{m, n}$ is a strongly non-planar curve and (\mathbf{r}, \mathbf{s}) is any weight with $\sum r_{i}=1=\sum s_{j}$. Then, for all $x \in X$,

$$
\sup _{t>0} \int_{0}^{1} f\left(\mathrm{~g}_{t}^{\mathbf{r}, \mathbf{s}} u(\varphi(s)) x\right) d s<\infty
$$

Moreover, the supremum can be taken to be uniform as x varies in compact subsets of X.

Higher order contraction

(1) This implies very well approximable points have measure 0 . (Kleinbock-Margulis 1998, Kleinbock-Margulis-Wang 2010).
(2) The approach uses the (C, α)-good theory of polynomials only.

Thanks!

