MCS 548 – Mathematical Theory of Artificial Intelligence Fall 2016 Problem Set 1

Lev Reyzin

Due: 9/30/16 at the beginning of class

Instructions: Atop your problem set, please write your name and list your collaborators.

Problems

1. Let the domain be \mathcal{R} and the concept \mathcal{C}_s be the class of concepts defined by unions of s intervals: i.e. c is defined by $a_1 \leq a_2 \leq \ldots \leq a_{2s-1} \leq a_{2s} \in \mathcal{R}$ and c(x) = 1 if $x \in [a_1, a_2] \cup [a_3, a_4] \cup \ldots \cup [a_{2s-1}, a_{2s}]$. Describe an efficient PAC learner for C_s (assume the learner knows s) and can choose a sample size m as a function of s, ϵ , and δ . Make sure to argue your learner runs in time polynomial in $s, 1/\epsilon$, and $1/\delta$.

2. Recall that a Boolean literal is either a variable $x_i, i \in [1 \dots n]$ or its negation \bar{x}_i .

- i. Give a membership and equivalence query algorithm for efficient exact learning of conjunctions of at most n Boolean literals. Are both equivalents and membership queries necessary for efficient exact learning? If not, which query alone suffices?
- ii. Are conjunctions of at most n Boolean literals learnable in the limit from informant? From text?

3. Consider the following variant of the PAC model. Given a target function $f : \mathcal{X} \to \{0, 1\}$, let \mathcal{D}^+ be the distribution over $\mathcal{X}^+ = \{x \in \mathcal{X} : f(x) = 1\}$ defined as $\mathcal{D}^+(a) = \mathcal{D}(a)/\mathcal{D}(\mathcal{X}^+)$ for $a \in \mathcal{X}^+$. And D^- is the distribution over \mathcal{X}^- (defined analogously). In this model, the learner does not have access to D but is able to draw examples from both \mathcal{D}^+ and \mathcal{D}^- . A class is learnable in this model if a learner can produce a hypothesis h whose risk is $\leq \epsilon$ on both D^- and D^+ simultaneously. Show that if \mathcal{H} is efficiently learnable in the standard PAC model then \mathcal{H} is also efficiently learnable in this variant.

4. A k-fold union of hypotheses from a class C is a collection $c_1, \ldots, c_k \in C$ that assigns the label $c_1(x) \vee \ldots \vee c_k(x)$ to example x. Give an explicit class C of (any) VC dimension d such that the class of k-fold unions of hypotheses from C has VC dimension greater than $(1 + \epsilon)kd$ for sufficiently large values of k. Extra credit will be given for exhibiting a class with growth rate of $\omega(kd)$.

Note: an upper bound on the VC-dimension of $2kd \log_2(3k)$ is given by Blumer et al. [1989].

References

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the vapnik-chervonenkis dimension. J. ACM, 36(4):929-965, 1989. doi: 10.1145/76359.76371. URL http://doi.acm.org/10.1145/76359.76371.