
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

Alekh Agarwal ALEKHA@MICROSOFT.COM

Microsoft Research, New York, NY

Daniel Hsu DJHSU@CS.COLUMBIA.EDU

Columbia University, New York, NY

Satyen Kale SATYEN@SATYENKALE.COM

Yahoo! Labs, New York, NY

John Langford JCL@MICROSOFT.COM

Microsoft Research, New York, NY

Lihong Li LIHONGLI@MICROSOFT.COM

Microsoft Research, Redmond, WA

Robert E. Schapire SCHAPIRE@CS.PRINCETON.EDU

Princeton University, Princeton, NJ

Abstract
We present a new algorithm for the contextual
bandit learning problem, where the learner re-
peatedly takes one of K actions in response to
the observed context, and observes the reward
only for that action. Our method assumes access
to an oracle for solving fully supervised cost-
sensitive classification problems and achieves the
statistically optimal regret guarantee with only
Õ(
√
KT) oracle calls across all T rounds. By

doing so, we obtain the most practical contextual
bandit learning algorithm amongst approaches
that work for general policy classes. We conduct
a proof-of-concept experiment which demon-
strates the excellent computational and statistical
performance of (an online variant of) our algo-
rithm relative to several strong baselines.

1. Introduction
In the contextual bandit problem, an agent collects rewards
for actions taken over a sequence of rounds; in each round,
the agent chooses an action to take on the basis of (i) con-
text (or features) for the current round, as well as (ii) feed-
back, in the form of rewards, obtained in previous rounds.

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

The feedback is incomplete: in any given round, the agent
observes the reward only for the chosen action; the agent
does not observe the reward for other actions. Contextual
bandit problems are found in many important applications
such as online recommendation and clinical trials, and rep-
resent a natural half-way point between supervised learn-
ing and reinforcement learning. The use of features to en-
code context is inherited from supervised machine learn-
ing, while exploration is necessary for good performance
as in reinforcement learning.

The choice of exploration distribution on actions is im-
portant. The strongest known results (Auer et al., 2002;
McMahan & Streeter, 2009; Beygelzimer et al., 2011) pro-
vide algorithms that carefully control the exploration dis-
tribution to achieve an optimal regret after T rounds of
O(
√
KT log(|Π|/δ)), with probability at least 1− δ, rela-

tive to a set of policies Π ⊆ AX mapping contexts x ∈ X
to actions a ∈ A (where K is the number of actions). The
regret is the difference between the cumulative reward of
the best policy in Π and the cumulative reward collected by
the algorithm. Because the bound has only a logarithmic
dependence on |Π|, the algorithm can compete with very
large policy classes that are likely to yield high rewards, in
which case the algorithm also earns high rewards. How-
ever, the computational cost of the above algorithms is lin-
ear in |Π|, which is tractable only for simple policy classes.

A sub-linear in |Π| running time is possible for policy
classes that can be efficiently searched. In this work, we

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

use the abstraction of an optimization oracle to capture this
property: given a set of context/reward vector pairs, the
oracle returns a policy in Π with maximum total reward.
Using such an oracle in an i.i.d. setting (formally defined
in Section 2.1), it is possible to create ε-greedy (Sutton &
Barto, 1998) or epoch-greedy (Langford & Zhang, 2007)
algorithms that run in time O(log |Π|) with only a single
call to the oracle per round. However, these algorithms
have suboptimal regret bounds of O((K log |Π|)1/3T 2/3)
because the algorithms randomize uniformly over actions
when they choose to explore.

The RandomizedUCB algorithm of Dudı́k et al. (2011a)
achieves the optimal regret bound (up to logarithmic fac-
tors) in the i.i.d. setting, and runs in time poly(T, log |Π|)
with Õ(T 5) calls to the optimization oracle per round.
Naively this would amount to Õ(T 6) calls to the oracle
over T rounds, although a doubling trick from our analy-
sis can be adapted to ensure only Õ(T 5) calls to the oracle
are needed over all T rounds in the RandomizedUCB al-
gorithm. This is a fascinating result because it shows that
the oracle can provide an exponential speed-up over previ-
ous algorithms with optimal regret bounds. However, the
running time of this algorithm is still prohibitive for most
natural problems owing to the Õ(T 5) scaling.

In this work, we prove the following1:

Theorem 1. There is an algorithm for the i.i.d. contex-
tual bandit problem with an optimal regret bound requir-
ing Õ

(√
KT

ln(|Π|/δ)

)
calls to the optimization oracle over

T rounds, with probability at least 1− δ.

Concretely, we make Õ(
√
KT/ ln(|Π|/δ)) calls to the or-

acle with a net running time of Õ(T 1.5
√
K log |Π|), vastly

improving over the complexity of RandomizedUCB. The
major components of the new algorithm are (i) a new co-
ordinate descent procedure for computing a very sparse
distribution over policies which can be efficiently sampled
from, and (ii) a new epoch structure which allows the dis-
tribution over policies to be updated very infrequently. We
consider variants of the epoch structure that make differ-
ent computational trade-offs; on one extreme we concen-
trate the entire computational burden on O(log T) rounds
with Õ(

√
KT/ ln(|Π|/δ)) oracle calls each time, while on

the other we spread our computation over
√
T rounds with

Õ(
√
K/ ln(|Π|/δ)) oracle calls for each of these rounds.

We stress that in either case, the total number of calls to the
oracle is only sublinear in T . Finally, we develop a more
efficient online variant, and conduct a proof-of-concept ex-
periment showing low computational complexity and high
reward relative to several natural baselines.

1Throughout this paper, we use the Õ notation to suppress
dependence on logarithmic factors in T and K, as well as
log(|Π|/δ) (i.e. terms which are O(log log(|Π|/δ)).

Motivation and related work. The EXP4-family of al-
gorithms (Auer et al., 2002; McMahan & Streeter, 2009;
Beygelzimer et al., 2011) solve the contextual bandit prob-
lem with optimal regret by updating weights (multiplica-
tively) over all policies in every round. Except for a few
special cases (Helmbold & Schapire, 1997; Beygelzimer
et al., 2011), the running time of such measure-based algo-
rithms is generally linear in the number of policies.

In contrast, the RandomizedUCB algorithm of Dudı́k et al.
(2011a) is based on a natural abstraction from supervised
learning: efficiently finding a function in a rich function
class that minimizes the loss on a training set. This abstrac-
tion is encapsulated in the notion of an optimization oracle,
which is also used by ε-greedy (Sutton & Barto, 1998) and
epoch-greedy (Langford & Zhang, 2007).

Another class of approaches based on Bayesian updating is
Thompson sampling (Thompson, 1933; Li, 2013), which
often enjoys strong theoretical guarantees in expectation
over the prior and good empirical performance (Chapelle
& Li, 2011). Such algorithms, as well as the closely
related upper-confidence bound algorithms (Auer, 2002;
Chu et al., 2011), are computationally tractable in cases
where the posterior distribution over policies can be effi-
ciently maintained or approximated. In our experiments,
we compare to a strong baseline algorithm that uses this
approach (Chu et al., 2011).

To circumvent the Ω(|Π|) running time barrier, we restrict
attention to algorithms that only access the policy class
via the optimization oracle. Specifically, we use a cost-
sensitive classification oracle, and a key challenge is to de-
sign good supervised learning problems for querying this
oracle. The RandomizedUCB algorithm of Dudı́k et al.
(2011a) uses a similar oracle to construct a distribution over
policies that solves a certain convex program. However, the
number of oracle calls in their work is prohibitively large,
and the statistical analysis is also rather complex.2

Main contributions. In this work, we present a new and
simple algorithm for solving a similar convex program as
that used by RandomizedUCB. The new algorithm is based
on coordinate descent: in each iteration, the algorithm calls
the optimization oracle to obtain a policy; the output is a
sparse distribution over these policies. The number of itera-
tions required to compute the distribution is small—at most
Õ(
√
Kt/ ln(|Π|/δ)) in any round t. In fact, we present a

more general scheme based on epochs and warm start in
which the total number of calls to the oracle is, with high
probability, just Õ(

√
KT/ ln(|Π|/δ)) over all T rounds;

we prove that this is nearly optimal for a certain class of
optimization-based algorithms. The algorithm is natural

2The paper of Dudı́k et al. (2011a) is colloquially referred to,
by its authors, as the “monster paper” (Langford, 2014).

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

and simple to implement, and we provide an arguably sim-
pler analysis than that for RandomizedUCB. Finally, we
report proof-of-concept experimental results using a vari-
ant algorithm showing strong empirical performance.

2. Preliminaries
In this section, we recall the i.i.d. contextual bandit setting
and some basic techniques used in previous works (Auer
et al., 2002; Beygelzimer et al., 2011; Dudı́k et al., 2011a).

2.1. Learning Setting

Let A be a finite set of K actions, X be a space of possible
contexts (e.g., a feature space), and Π ⊆ AX be a finite set
of policies that map contexts x ∈ X to actions a ∈ A.3 Let
∆Π := {Q ∈ RΠ : Q(π) ≥ 0 ∀π ∈ Π,

∑
π∈ΠQ(π) ≤ 1}

be the set of non-negative weights over policies with total
weight at most one, and let RA+ := {r ∈ RA : r(a) ≥
0 ∀a ∈ A} be the set of non-negative reward vectors.

Let D be a probability distribution over X × [0, 1]A, the
joint space of contexts and reward vectors; we assume ac-
tions’ rewards from D are always in the interval [0, 1]. Let
DX denote the marginal distribution of D over X .

In the i.i.d. contextual bandit setting, the context/reward
vector pairs (xt, rt) ∈ X × [0, 1]A over all rounds t =
1, 2, . . . are randomly drawn independently from D. In
round t, the agent first observes the context xt, then (ran-
domly) chooses an action at ∈ A, and finally receives the
reward rt(at) ∈ [0, 1] for the chosen action. The (ob-
servable) record of interaction resulting from round t is the
quadruple (xt, at, rt(at), pt(at)) ∈ X×A× [0, 1]× [0, 1];
here, pt(at) ∈ [0, 1] is the probability that the agent chose
action at ∈ A. We let Ht ⊆ X ×A× [0, 1]× [0, 1] denote
the history (set) of interaction records in the first t rounds.
We use Êx∼Ht [·] to denote expectation when a context x is
uniformly chosen at random from the t contexts in Ht.

Let R(π) := E(x,r)∼D[r(π(x))] denote the expected (in-
stantaneous) reward of a policy π ∈ Π, and let π? :=
arg maxπ∈ΠR(π) be a policy that maximizes the expected
reward (the optimal policy). Let Reg(π) := R(π?)−R(π)
denote the expected (instantaneous) regret of a policy π ∈
Π relative to the optimal policy. Finally, the (empirical cu-
mulative) regret of the agent after T rounds is defined as∑T
t=1

(
rt(π?(xt))− rt(at)

)
.

2.2. Inverse Propensity Scoring

An unbiased estimate of a policy’s reward R(π) may be
obtained from a history of interaction records Ht using in-
verse propensity scoring (IPS; also called inverse proba-

3Extension to VC classes is simple using standard arguments.

bility weighting): the expected reward of policy π ∈ Π is
estimated as

R̂t(π) :=
1

t

t∑
i=1

ri(ai) · 1{π(xi) = ai}
pi(ai)

. (1)

This technique can be viewed as mapping Ht 7→ IPS(Ht)
of interaction records (x, a, r(a), p(a)) to context/reward
vector pairs (x, r̂), where r̂ ∈ RA+ is a fictitious reward
vector that assigns to the chosen action a a scaled reward
r(a)/p(a) (possibly greater than one), and assigns to all
other actions zero rewards. We may equivalently write
R̂t(π) = t−1

∑
(x,r̂)∈IPS(Ht)

r̂(π(x)); it is easy to verify
that E[r̂(π(x))|(x, r)] = r(π(x)), as p(a) is indeed the
agent’s probability (conditioned on (x, r)) of picking ac-
tion a. This implies R̂t(π) is an unbiased estimator for any
history Ht.

Let πt := arg maxπ∈Π R̂t(π) denote a policy that max-
imizes the expected reward estimate based on inverse
propensity scoring with history Ht (π0 can be arbitrary),
and let R̂egt(π) := R̂t(πt) − R̂t(π) denote estimated re-
gret relative to πt. Note that R̂egt(π) is generally not an
unbiased estimate of Reg(π), because πt is not always π?.

2.3. Optimization Oracle

One natural mode for accessing the set of policies Π is enu-
meration, but this is impractical in general. In this work, we
instead only access Π via an optimization oracle which cor-
responds to a cost-sensitive learner. Following Dudı́k et al.
(2011a), we call this oracle AMO4.

Definition 1. For a set of policies Π, the arg max oracle
(AMO) is an algorithm, which for any sequence of context
and reward vectors, (x1, r1), (x2, r2), . . . , (xt, rt) ∈ X ×
RA+, returns arg maxπ∈Π

∑t
τ=1 rτ (π(xτ)).

2.4. Projections and Smoothing

In each round, our algorithm chooses an action by ran-
domly drawing a policy π from a distribution over Π, and
then picking the action π(x) recommended by π on the
current context x. This is equivalent to drawing an ac-
tion according to Q(a|x) :=

∑
π∈Π:π(x)=aQ(π), ∀a ∈ A.

For keeping the variance of reward estimates from IPS in
check, it is desirable to prevent the probability of any ac-
tion from being too small. Thus, as in previous work, we
also use a smoothed projection Qµ(·|x) for µ ∈ [0, 1/K],
Qµ(a|x) := (1 − Kµ)

∑
π∈Π:π(x)=aQ(π) + µ, ∀a ∈ A.

Every action has probability at least µ under Qµ(·|x).

For technical reasons, our algorithm maintains non-
negative weights Q ∈ ∆Π over policies that sum to at

4Cost-sensitive learners often need a cost instead of reward, in
which case we use ct = 1− rt.

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

most one, but not necessarily equal to one; hence, we
put any remaining mass on a default policy π̄ ∈ Π to
obtain a legitimate probability distribution over policies
Q̃ = Q +

(
1−

∑
π∈ΠQ(π)

)
1π̄ . We then pick an action

from the smoothed projection Q̃µ(·|x) of Q̃ as above.

3. Algorithm and Main Results
Our algorithm (ILOVETOCONBANDITS) is an epoch-
based variant of the RandomizedUCB algorithm of Dudı́k
et al. (2011a) and is given in Algorithm 1. Like
RandomizedUCB, ILOVETOCONBANDITS solves an
optimization problem (OP) to obtain a distribution over
policies to sample from (Step 7), but does so on an
epoch schedule, i.e., only on certain pre-specified rounds
τ1, τ2, The only requirement of the epoch schedule is
that the length of epoch m is bounded as τm+1 − τm =
O(τm). For simplicity, we assume τm+1 ≤ 2τm for
m ≥ 1, and τ1 = O(1).

The crucial step here is solving (OP). Before stating the
main result, let us get some intuition about this problem.
The first constraint, Eq. (2), requires the average estimated
regret of the distribution Q over policies to be small, since
bπ is a rescaled version of the estimated regret of policy
π. This constraint skews our distribution to put more mass
on “good policies” (as judged by our current information),
and can be seen as the exploitation component of our algo-
rithm. The second set of constraints, Eq. (3), requires the
distribution Q to place sufficient mass on the actions cho-
sen by each policy π, in expectation over contexts. This can
be thought of as the exploration constraint, since it requires
the distribution to be sufficiently diverse for most contexts.
As we will see later, the left hand side of the constraint is
a bound on the variance of our reward estimates for policy
π, and the constraint requires the variance to be controlled
at the level of the estimated regret of π. That is, we require
the reward estimates to be more accurate for good policies
than we do for bad ones, allowing for much more adaptive
exploration than that of ε-greedy style algorithms.

This problem is very similar to the one in Dudı́k et al.
(2011a), and our coordinate descent algorithm in Sec-
tion 3.1 gives a constructive proof that the problem is fea-
sible. As in Dudı́k et al. (2011a), we have the following
regret bound:5

Theorem 2. Assume the optimization problem (OP) can
be solved whenever required in Algorithm 1. With
probability at least 1 − δ, the regret of Algorithm 1
(ILOVETOCONBANDITS) after T rounds is

O
(√

KT ln(T |Π|/δ) +K ln(T |Π|/δ)
)
.

5Omitted proofs and other details are given in the full version
of the paper (Agarwal et al., 2014).

Algorithm 1 Importance-weighted LOw-Variance Epoch-
Timed Oracleized CONtextual BANDITS algorithm
(ILOVETOCONBANDITS)
input Epoch schedule 0 = τ0 < τ1 < τ2 < · · · , allowed

failure probability δ ∈ (0, 1).
1: Initial weights Q0 := 0 ∈ ∆Π, initial epoch m := 1.

Define µm := min{1/2K,
√

ln(16τ2
m|Π|/δ)/(Kτm)}

for all m ≥ 0.
2: for round t = 1, 2, . . . do
3: Observe context xt ∈ X .
4: (at, pt(at)) := Sample(xt, Qm−1, πτm−1, µm−1).
5: Select action at and observe reward rt(at) ∈ [0, 1].
6: if t = τm then
7: Let Qm be a solution to (OP) with history Ht and

minimum probability µm.
8: m := m+ 1.
9: end if

10: end for

Optimization Problem (OP)
Given a historyHt and minimum probability µm, define

bπ := R̂egt(π)
ψµm

for ψ := 100, and find Q ∈ ∆Π such that∑
π∈Π

Q(π)bπ ≤ 2K (2)

∀π ∈ Π : Êx∼Ht

[
1

Qµm(π(x)|x)

]
≤ 2K + bπ. (3)

3.1. Solving (OP) via Coordinate Descent

We now present a coordinate descent algorithm to solve
(OP). The pseudocode is given in Algorithm 2. Our analy-
sis, as well as the algorithm itself, are based on a potential
function which we use to measure progress. The algorithm
can be viewed as a form of coordinate descent applied to
this same potential function. The main idea of our analy-
sis is to show that this function decreases substantially on
every iteration of this algorithm; since the function is non-
negative, this gives an upper bound on the total number of
iterations as expressed in the following theorem.

Theorem 3. Algorithm 2 (with Qinit := 0) halts in at most
4 ln(1/(Kµm))

µm
iterations, and outputs a solution Q to (OP).

3.2. Using an Optimization Oracle

We now show how to implement Algorithm 2 via AMO
(c.f. Section 2.3).

Lemma 1. Algorithm 2 can be implemented using one call
to AMO before the loop is started, and one call for each
iteration of the loop thereafter.

Proof. At the very beginning, before the loop is started,

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

Algorithm 2 Coordinate Descent Algorithm
Require: History Ht, minimum probability µ, initial

weights Qinit ∈ ∆Π.
1: Set Q := Qinit.
2: loop
3: Define, for all π ∈ Π,

Vπ(Q) = Êx∼Ht [1/Q
µ(π(x)|x)]

Sπ(Q) = Êx∼Ht

[
1/(Qµ(π(x)|x))2

]
Dπ(Q) = Vπ(Q)− (2K + bπ).

4: if
∑
π Q(π)(2K + bπ) > 2K then

5: Replace Q by cQ, where

c :=
2K∑

π Q(π)(2K + bπ)
< 1. (4)

6: end if
7: if there is a policy π for which Dπ(Q) > 0 then
8: Add the (positive) quantity

απ(Q) =
Vπ(Q) +Dπ(Q)

2(1−Kµ)Sπ(Q)

to Q(π) and leave all other weights unchanged.
9: else

10: Halt and output the current set of weights Q.
11: end if
12: end loop

we compute the best empirical policy so far, πt, by calling
AMO on the sequence of historical contexts and estimated
reward vectors; i.e., on (xτ , r̂τ), for τ = 1, 2, . . . , t.

Next, we show that each iteration in the loop of Algorithm 2
can be implemented via one call to AMO. Going over the
pseudocode, first note that operations involvingQ in Step 4
can be performed efficiently since Q has sparse support.
Note that the definitions in Step 3 don’t actually need to be
computed for all policies π ∈ Π, as long as we can identify
a policy π for which Dπ(Q) > 0. We can identify such a
policy using one call to AMO as follows.

First, note that for any policy π, we have Vπ(Q) =

t−1
∑t
τ=1 1/Qµ(π(xτ)|xτ), and bπ = R̂t(πt)/(ψµ) −

(ψµt)−1
∑t
τ=1 r̂τ (π(xτ)). Now consider the sequence of

historical contexts and reward vectors, (xτ , r̃τ) for τ =
1, 2, . . . , t, where for any action a we define

r̃τ (a) :=
1

t

(
ψµ

Qµ(a|xτ)
+ r̂τ (a)

)
. (5)

Observe that Dπ(Q) = (ψµ)−1
∑t
τ=1 r̃τ (π(xτ))+ a con-

stant independent of π. Therefore, arg maxπ∈ΠDπ(Q) =
arg maxπ∈Π

∑t
τ=1 r̃τ (π(xτ)), and hence, calling AMO

once on the sequence (xτ , r̃τ) for τ = 1, 2, . . . , t, we ob-
tain a policy that maximizes Dπ(Q), and thereby identify a
policy for which Dπ(Q) > 0 whenever one exists.

3.3. Epoch Schedule

Recalling the setting of µm in Algorithm 1, The-
orem 3 shows that Algorithm 2 solves (OP) with
Õ(
√
Kt/ ln(|Π|/δ)) calls to AMO in round t. Thus, if we

use the epoch schedule τm = m (i.e., run Algorithm 2 in
every round), then we get a total of Õ(

√
KT 3/ ln(|Π|/δ))

calls to AMO over all T rounds. This number can be
dramatically reduced using a more carefully chosen epoch
schedule.

Lemma 2. For the epoch schedule τm := 2m−1, the total
number of calls to AMO is Õ(

√
KT/ ln(|Π|/δ)).

Proof. The epoch schedule satisfies the requirement
τm+1 ≤ 2τm. With this epoch schedule, Algorithm 2
is run only O(log T) times over T rounds, leading to
Õ(
√
KT/ ln(|Π|/δ)) total calls to AMO.

3.4. Warm Start

We now present a different technique to reduce the number
of calls to AMO. This is based on the observation that prac-
tically speaking, it seems terribly wasteful, at the start of a
new epoch, to throw out the results of all of the preceding
computations and to begin yet again from nothing. Instead,
intuitively, we expect computations to be more moderate if
we begin again where we left off last, i.e., a “warm-start”
approach. Here, when Algorithm 2 is called at the end of
epochm, we useQinit := Qm−1 (the previously computed
weights) rather than 0.

We can combine warm-start with a different epoch sched-
ule to guarantee Õ(

√
KT/ ln(|Π|/δ)) total calls to AMO,

spread across O(
√
T) calls to Algorithm 2.

Lemma 3. Define the epoch schedule (τ1, τ2) := (3, 5)
and τm := m2 for m ≥ 3 (this satisfies τm+1 ≤ 2τm).
With high probability, the warm-start variant of Algo-
rithm 1 makes Õ(

√
KT/ ln(|Π|/δ)) calls to AMO over T

rounds and O(
√
T) calls to Algorithm 2.

3.5. Computational Complexity

So far, we have only considered computational complex-
ity in terms of the number of oracle calls. However, the
reduction also involves the creation of cost-sensitive clas-
sification examples, which must be accounted for in the
net computational cost. With some natural bookkeeping
of probabilities, the computational complexity of our algo-
rithm, modulo the oracle running time, can be made to be
Õ(
√

(KT)3/ ln(|Π|/δ)). Details are given in the full ver-
sion of the paper.

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

3.6. A Lower Bound on the Support Size

An attractive feature of Algorithm 2 is that the number of
calls to AMO is directly related to the number of policies in
the support of Qm. For instance, with the doubling sched-
ule of Section 3.3, Theorem 3 implies that we never have
non-zero weights for more than 4 ln(1/(Kµm))

µm
policies in

epoch m. The support size of the distributions Qm in Al-
gorithm 1 is crucial to the computational cost of sampling
an action.

We now demonstrate a lower bound showing that it is not
possible to construct substantially sparser distributions that
also satisfy the low-variance constraint (3) in the optimiza-
tion problem (OP). To formally state the lower bound, for
a given an epoch schedule (τm), define the following set of
non-negative vectors over policies:

Qm := {Q ∈ ∆Π : Q satisfies Eq. (3) in round τm}.

(The distribution Qm computed by Algorithm 1 is in Qm.)
Recall that supp(Q) denotes the support of Q (the set of
policies where Q puts non-zero entries). We have the fol-
lowing lower bound on |supp(Q)|.
Theorem 4. For any epoch schedule 0 = τ0 < τ1 < τ2 <
· · · and any M ∈ N sufficiently large, there exists a distri-
bution D over X × [0, 1]A and a policy class Π such that,
with probability at least 1− δ,

inf
m∈N:

τm≥τM/2

inf
Q∈Qm

|supp(Q)| = Ω

(√
KτM

ln(|Π|τM/δ)

)
.

In the context of our problem, this lower bound shows that
the bounds in Lemma 2 and Lemma 3 are unimprovable,
since the number of calls to AMO is at least the size of the
support, given our mode of access to Π.

4. Regret Analysis
In this section, we outline the regret analysis for our algo-
rithm ILOVETOCONBANDITS.

The deviations of the policy reward estimates R̂t(π) are
controlled by (a bound on) the variance of each term in
Eq. (1): essentially the left-hand side of Eq. (3) from (OP),
except with Êx∼Ht [·] replaced by Ex∼DX

[·]. Resolving this
discrepancy is handled using deviation bounds, so Eq. (3)
holds with Ex∼DX

[·], with worse right-hand side constants.

The rest of the analysis, which deviates from that of
RandomizedUCB, compares the expected regret Reg(π)

of any policy π with the estimated regret R̂egt(π) using
the variance constraints Eq. (3):
Lemma 4 (Informally). With high probability, for each m
such that τm ≥ Õ(K log |Π|), each round t in epoch m,
and each π ∈ Π, Reg(π) ≤ 2R̂egt(π) +O(Kµm).

This lemma can easily be combined with the
constraint Eq. (2) from (OP): since the weights
Qm−1 used in any round t in epoch m satisfy∑
π∈ΠQm−1(π)R̂egτm−1(π) ≤ ψ · 2Kµτm−1, we

obtain a bound on the (conditionally) expected regret in
round t using the above lemma: with high probability,∑
π∈Π Q̃m−1 Reg(π) ≤ O(Kµm−1). Summing these

terms up over all T rounds and applying martingale
concentration gives the bound in Theorem 2.

5. Analysis of the Optimization Algorithm
In this section, we give a sketch of the analysis of our main
optimization algorithm for computing weights Qm on each
epoch as in Algorithm 2. As mentioned in Section 3.1, this
analysis is based on a potential function.

Since our attention for now is on a single epochm, here and
in what follows, when clear from context, we drop m from
our notation and write simply τ = τm, µ = µm, etc. Let
UA be the uniform distribution over the action set A. We
define the following potential function for use on epoch m:

Φm(Q) = τµ

(
Êx[RE (UA‖Qµ(· | x))]

1−Kµ
+

∑
π∈ΠQ(π)bπ

2K

)
.

This function is defined for all vectors Q ∈ ∆Π. Also,
RE (p‖q) denotes the unnormalized relative entropy be-
tween two nonnegative vectors p and q over the action
space (or any set) A: RE (p‖q) =

∑
a∈A(pa ln(pa/qa) +

qa − pa), which is always nonnegative. Here, Qµ(·|x) de-
notes the “distribution” (which might not sum to 1) over A
induced by Qµ for context x as given in Section 2.4. Thus,
ignoring constants, this potential function is a combination
of two terms: The first measures how far from uniform are
the distributions induced by Qµ, and the second is an esti-
mate of expected regret under Q since bπ is proportional to
the empirical regret of π. Making Φm small thus encour-
ages Q to choose actions as uniformly as possible while
also incurring low regret — exactly the aims of our algo-
rithm. The constants that appear in this definition are for
later mathematical convenience.

For further intuition, note that, by straightforward calcu-
lus, the partial derivative ∂Φm/∂Q(π) is roughly propor-
tional to the variance constraint for π given in Eq. (3) (up
to a slight mismatch of constants). This shows that if this
constraint is not satisfied, then ∂Φm/∂Q(π) is likely to be
negative, meaning that Φm can be decreased by increasing
Q(π). Thus, the weight vector Q that minimizes Φm sat-
isfies the variance constraint for every policy π. It turns
out that this minimizing Q also satisfies the low regret con-
straint in Eq. (2), and also must sum to at most 1; in other
words, it provides a complete solution to our optimization
problem. Algorithm 2 does not fully minimize Φm, but it

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

is based roughly on coordinate descent. This is because
in each iteration one of the weights (coordinate directions)
Q(π) is increased. This weight is one whose corresponding
partial derivative is large and negative.

To analyze the algorithm, we first argue that it is correct
in the sense of satisfying the required constraints, provided
that it halts.

Lemma 5. If Algorithm 2 halts and outputs a weight vector
Q, then the constraints Eq. (3) and Eq. (2) must hold, and
furthermore the sum of the weights Q(π) is at most 1.

What remains is the more challenging task of bounding the
number of iterations until the algorithm does halt. We do
this by showing that significant progress is made in reduc-
ing Φm on every iteration. To begin, we show that scaling
Q as in Step 4 cannot cause Φm to increase.

Lemma 6. Let Q be a weight vector such that∑
π Q(π)(2K + bπ) > 2K, and let c be as in Eq. (4).

Then Φm(cQ) ≤ Φm(Q).

Next, we show that substantial progress will be made in
reducing Φm each time that Step 8 is executed.

Lemma 7. Let Q denote a set of weights and suppose,
for some policy π, that Dπ(Q) > 0. Let Q′ be a new
set of weights which is an exact copy of Q except that
Q′(π) = Q(π) + α where α = απ(Q) > 0. Then
Φm(Q)− Φm(Q′) ≥ τµ2/(4(1−Kµ)).

So Step 4 does not cause Φm to increase, and Step 8 causes
Φm to decrease by at least the amount given in Lemma 7.
This immediately implies Theorem 3: for Qinit = 0, the
initial potential is bounded by τµ ln(1/(Kµ))/(1−Kµ),
and it is never negative, so the number of times Step 8 is
executed is bounded by 4 ln(1/(Kµ))/µ as required.

5.1. Epoching and Warm Start

As shown in Section 2.3, the bound on the number of iter-
ations of the algorithm from Theorem 3 also gives a bound
on the number of times the oracle is called. To reduce
the number of oracle calls, one approach is the “doubling
trick” of Section 3.3, which enables us to bound the total
combined number of iterations of Algorithm 2 in the first
T rounds is only Õ(

√
KT/ ln(|Π|/δ)). This means that

the average number of calls to the arg-max oracle is only
Õ(
√
K/(T ln(|Π|/δ))) per round, meaning that the oracle

is called far less than once per round, and in fact, at a van-
ishingly low rate.

We now turn to warm-start approach of Section 3.4, where
in each epochm+1 we initialize the coordinate descent al-
gorithm withQinit = Qm, i.e. the weights computed in the
previous epoch m. To analyze this, we bound how much
the potential changes from Φm(Qm) at the end of epoch

m to Φm+1(Qm) at the very start of epoch m + 1. This,
combined with our earlier results regarding how quickly
Algorithm 2 drives down the potential, we are able to get
an overall bound on the total number of updates across T
rounds.

Lemma 8. Let M be the largest integer for which τM+1 ≤
T . With probability at least 1 − 2δ, for all T , the total
epoch-to-epoch increase in potential is

M∑
m=1

(Φm+1(Qm)− Φm(Qm)) ≤ Õ

(√
T ln(|Π|/δ)

K

)
,

where M is the largest integer for which τM+1 ≤ T .

This lemma, along with Lemma 7 can be used to further
establish Lemma 3. We only provide an intuitive sketch
here, with the details deferred to the appendix. As we ob-
serve in Lemma 8, the total amount that the potential in-
creases across T rounds is at most Õ(

√
T ln(|Π|/δ)/K).

On the other hand, Lemma 7 shows that each time Q is
updated by Algorithm 2 the potential decreases by at least
Ω̃(ln(|Π|/δ)/K) (using our choice of µ). Therefore, the
total number of updates of the algorithm totaled over all T
rounds is at most Õ(

√
KT/ ln(|Π|/δ)). For instance, if we

use (τ1, τ2) := (3, 5) and τm := m2 for m ≥ 3, then the
Q is only updated about

√
T times over T rounds; on each

of those rounds, Algorithm 2 requires Õ(
√
K/ ln(|Π|/δ))

iterations, on average, giving the claim in Lemma 3.

6. Experimental Evaluation
In this section we evaluate a variant of Algorithm 1 against
several baselines. While Algorithm 1 is significantly more
efficient than many previous approaches, the overall com-
putational complexity is still at least Õ((KT)1.5) plus the
total cost of the oracle calls, as discussed in Section 3.5.
This is markedly larger than the complexity of an ordinary
supervised learning problem where it is typically possible
to perform an O(1)-complexity update upon receiving a
fresh example using online algorithms.

A natural solution is to use an online oracle that is stateful
and accepts examples one by one. An online cost-sensitive
classification (CSC) oracle takes as input a weighted ex-
ample and returns a predicted class (corresponding to one
of K actions in our setting). Since the oracle is stateful, it
remembers and uses examples from all previous calls in an-
swering questions, thereby reducing the complexity of each
oracle invocation to O(1) as in supervised learning. Using
several such oracles, we can efficiently track a distribution
over good policies and sample from it. We detail this ap-
proach (which we call Online Cover) in the full version of
the paper. The algorithm maintains a uniform distribution
over a fixed number n of policies where n is a parameter of
the algorithm. Upon receiving a fresh example, it updates

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

Table 1. Progressive validation loss, best hyperparameter values, and running times of various algorithm on RCV1.
Algorithm ε-greedy Explore-first Bagging LinUCB Online Cover Supervised
P.V. Loss 0.148 0.081 0.059 0.128 0.053 0.051
Searched 0.1 = ε 2× 105 first 16 bags 103 dim, minibatch-10 cover n = 1 nothing
Seconds 17 2.6 275 212× 103 12 5.3

all n policies with the suitable CSC examples (Eq. (5)). The
specific CSC oracle we use is a reduction to squared-loss
regression (Algorithms 4 and 5 of Beygelzimer & Langford
(2009)) which is amenable to online updates. Our imple-
mentation is included in Vowpal Wabbit.6

Due to lack of public datasets for contextual bandit prob-
lems, we use a simple supervised-to-contextual-bandit
transformation (Dudı́k et al., 2011b) on the CCAT docu-
ment classification problem in RCV1 (Lewis et al., 2004).
This dataset has 781265 examples and 47152 TF-IDF fea-
tures. We treated the class labels as actions, and one minus
0/1-loss as the reward. Our evaluation criteria is progres-
sive validation (Blum et al., 1999) on 0/1 loss. We compare
several baseline algorithms to Online Cover; all algorithms
take advantage of linear representations which are known
to work well on this dataset. For each algorithm, we report
the result for the best parameter settings (shown in Table 6).

1. ε-greedy (Sutton & Barto, 1998) explores randomly
with probability ε and otherwise exploits.

2. Explore-first is a variant that begins with uniform ex-
ploration, then switches to an exploit-only phase.

3. A less common but powerful baseline is based on bag-
ging: multiple predictors (policies) are trained with
examples sampled with replacement. Given a context,
these predictors yield a distribution over actions from
which we can sample.

4. LinUCB (Auer, 2002; Chu et al., 2011) has been quite
effective in past evaluations (Li et al., 2010; Chapelle
& Li, 2011). It is impractical to run “as is” due to
high-dimensional matrix inversions, so we report re-
sults for this algorithm after reducing to 1000 dimen-
sions via random projections. Still, the algorithm re-
quired 59 hours7. An alternative is to use diagonal
approximation to the covariance, which runs substan-
tially faster (≈1 hour), but gives a worse error of
0.137.

5. Finally, our algorithm achieves the best loss of 0.0530.
Somewhat surprisingly, the minimum occurs for us

6http://hunch.net/˜vw. The implementation is in the
file cbify.cc and is enabled using --cover.

7The linear algebra routines are based on Intel MKL package.

with a cover set of size 1—apparently for this prob-
lem the small decaying amount of uniform random
sampling imposed is adequate exploration. Prediction
performance is similar with a larger cover set.

All baselines except for LinUCB are implemented as a sim-
ple modification of Vowpal Wabbit. All reported results
use default parameters where not otherwise specified. The
contextual bandit learning algorithms all use a doubly ro-
bust reward estimator instead of the importance weighted
estimators used in our analysis (Dudı́k et al., 2011b).

Because RCV1 is actually a fully supervised dataset, we
can apply a fully supervised online multiclass algorithm to
solve it. We use a simple one-against-all implementation
to reduce this to binary classification, yielding an error rate
of 0.051 which is competitive with the best previously re-
ported results. This is effectively a lower bound on the loss
we can hope to achieve with algorithms using only partial
information. Our algorithm is less than 2.3 times slower
and nearly achieves the bound. Hence on this dataset, very
little further algorithmic improvement is possible.

7. Conclusions
In this paper we have presented the first practical algorithm
to our knowledge that attains the statistically optimal re-
gret guarantee and is computationally efficient in the set-
ting of general policy classes. A remarkable feature of the
algorithm is that the total number of oracle calls over all T
rounds is sublinear—a remarkable improvement over pre-
vious works in this setting. We believe that the online vari-
ant of the approach which we implemented in our experi-
ments has the right practical flavor for a scalable solution to
the contextual bandit problem. In future work, it would be
interesting to directly analyze the Online Cover algorithm.

Acknowledgements

We thank Dean Foster and Matus Telgarsky for helpful dis-
cussions. Part of this work was completed while DH and
RES were visiting Microsoft Research.

References
Agarwal, Alekh, Hsu, Daniel, Kale, Satyen, Langford,

John, Li, Lihong, and Schapire, Robert E. Taming the

http://hunch.net/~vw

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

monster: A fast and simple algorithm for contextual ban-
dits. CoRR, abs/1402.0555, 2014.

Auer, Peter. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search, 3:397–422, 2002.

Auer, Peter, Cesa-Bianchi, Nicolò, Freund, Yoav, and
Schapire, Robert E. The nonstochastic multiarmed ban-
dit problem. SIAM Journal of Computing, 32(1):48–77,
2002.

Beygelzimer, Alina and Langford, John. The offset tree for
learning with partial labels. In KDD, 2009.

Beygelzimer, Alina, Langford, John, Li, Lihong, Reyzin,
Lev, and Schapire, Robert E. Contextual bandit algo-
rithms with supervised learning guarantees. In AISTATS,
2011.

Blum, Avrim, Kalai, Adam, and Langford, John. Beating
the holdout: Bounds for k-fold and progressive cross-
validation. In COLT, 1999.

Chapelle, Olivier and Li, Lihong. An empirical evaluation
of Thompson sampling. In NIPS, 2011.

Chu, Wei, Li, Lihong, Reyzin, Lev, and Schapire, Robert E.
Contextual bandits with linear payoff functions. In AIS-
TATS, 2011.

Dudı́k, Miroslav, Hsu, Daniel, Kale, Satyen, Karampatzi-
akis, Nikos, Langford, John, Reyzin, Lev, and Zhang,
Tong. Efficient optimal learning for contextual bandits.
In UAI, 2011a.

Dudı́k, Miroslav, Langford, John, and Li, Lihong. Doubly
robust policy evaluation and learning. In ICML, 2011b.

Helmbold, David P. and Schapire, Robert E. Predicting
nearly as well as the best pruning of a decision tree. Ma-
chine Learning, 27(1):51–68, 1997.

Langford, John. Interactive machine learning, Jan-
uary 2014. URL http://hunch.net/˜jl/
projects/interactive/index.html.

Langford, John and Zhang, Tong. The epoch-greedy algo-
rithm for contextual multi-armed bandits. In NIPS, 2007.

Lewis, David D, Yang, Yiming, Rose, Tony G, and Li,
Fan. Rcv1: A new benchmark collection for text cate-
gorization research. The Journal of Machine Learning
Research, 5:361–397, 2004.

Li, Lihong. Generalized Thompson sampling for contex-
tual bandits. CoRR, abs/1310.7163, 2013.

Li, Lihong, Chu, Wei, Langford, John, and Schapire,
Robert E. A contextual-bandit approach to personalized
news article recommendation. In WWW, 2010.

McMahan, H. Brendan and Streeter, Matthew. Tighter
bounds for multi-armed bandits with expert advice. In
COLT, 2009.

Sutton, Richard S. and Barto, Andrew G. Reinforcement
learning, an introduction. MIT Press, 1998.

Thompson, William R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3–4):285–294, 1933.

http://hunch.net/~jl/projects/interactive/index.html
http://hunch.net/~jl/projects/interactive/index.html

