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Abstract

We present new results, both positive and negative, on the
well-studied problem of learning disjunctive normal form
(DNF) expressions.

We �rst prove that an algorithm due to Kushilevitz and
Mansour [16] can be used to weakly learn DNF using mem-
bership queries in polynomial time, with respect to the uni-
form distribution on the inputs. This is the �rst positive
result for learning unrestricted DNF expressions in polyno-
mial time in any nontrivial formal model of learning. It pro-
vides a sharp contrast with the results of Kharitonov [15],
who proved that AC0 is not e�ciently learnable in the same
model (given certain plausible cryptographic assumptions).
We also present e�cient learning algorithms in various mod-
els for the read-k and SAT-k subclasses of DNF.

For our negative results, we turn our attention to the
recently introduced statistical query model of learning [11].
This model is a restricted version of the popular Probably
Approximately Correct (PAC) model [23], and practically
every class known to be e�ciently learnable in the PAC
model is in fact learnable in the statistical query model [11].
Here we give a general characterization of the complexity of
statistical query learning in terms of the number of uncorre-
lated functions in the concept class. This is a distribution-
dependent quantity yielding upper and lower bounds on the
number of statistical queries required for learning on any in-
put distribution. As a corollary, we obtain that DNF expres-
sions and decision trees are not even weakly learnable with
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respect to the uniform input distribution in polynomial time
in the statistical query model. This result is information-
theoretic and therefore does not rely on any unproven as-
sumptions. It demonstrates that no simple modi�cation of
the existing algorithms in the computational learning the-
ory literature for learning various restricted forms of DNF
and decision trees from passive random examples (and also
several algorithms proposed in the experimental machine
learning communities, such as the ID3 algorithm for decision
trees [22] and its variants) will solve the general problem.

The unifying tool for all of our results is the Fourier anal-
ysis of a �nite class of boolean functions on the hypercube.

1 Introduction and History

We present new results, both positive and negative, on the
well-studied problem of learning DNF expressions. The prob-
lem of e�ciently learning DNF in any nontrivial formal
model of learning has been of central interest to the compu-
tational learning theory community since the seminal paper
of Valiant [23] introducing the popular Probably Approxi-
mately Correct (PAC) learning model. Despite the impor-
tance of this problem, prior to this work no polynomial-time
algorithm for learning unrestricted DNF had been discov-
ered, even when the uniform input distribution was con-
sidered, and even when the learning algorithm was allowed
to make membership queries and output a hypothesis only
slightly outperforming random guessing (known as weak learn-
ing). Indeed, in the distribution-independent PAC model
there are representation-dependent hardness results (that
is, hardness results that assume certain syntactic restric-
tions on the learning algorithm's hypothesis) for learning
even some rather restricted forms of DNF [21, 12]. These
hardness results left unresolved the status of learning DNF
formulas in the absence of hypothesis restrictions, or with
respect to the uniform distribution, or using membership
queries.

We prove that an algorithm due to Kushilevitz and Man-
sour [16] can be used to weakly learn DNF formulas with re-
spect to the uniform distribution using membership queries.
Thus, we give the �rst positive result for learning unre-
stricted DNF in a nontrivial model of learning. This result
provides a sharp contrast between DNF formulas and the
more general class of AC0 circuits, which Kharitonov [15]
proved is not learnable in this same model under certain
cryptographic assumptions.

Due to the dearth of positive results for unrestricted
DNF expressions, various restricted DNF classes have at-
tracted considerable attention in the literature [4, 2, 10, 3, 1,
5, 17, 8]. Here we extend some of these results. In particular,



it is known that the class of read-k DNF (that is, DNF ex-
pressions in which every variable appears at most k times) is
learnable in polynomial time in the distribution-independent
PACmodel using membership queries for k � 2 [2, 10], but is
as hard to learn in this same model as unrestricted DNF for
k � 3 [10]. Aizenstein and Pitt [3] have shown that read-k,
SAT-` DNF (that is, DNF expressions which are both read-k
and such that at most ` terms are satis�ed by any input) can
be e�ciently learned in the distribution-independent PAC
model using membership queries.

Here we show that, using membership queries and with
respect to the uniform input distribution, read-k DNF is
learnable in polynomial time with an accuracy that is a con-
stant depending on k. We also prove that SAT-k DNF is
strongly learnable in time exponential in k (but otherwise
polynomial), and that SAT-k, log(n)-DNF is exactly learn-
able using membership queries in the same time bound.

Finally, we examine the learnability of a class that con-
tains many functions, including parity and majority, which

are not in DNF. Let cPT 1 denote the class of functions that
are computable as a majority of a polynomial number of par-

ities. We show that cPT 1 is weakly learnable with respect to
uniform using membership queries.

In the second part of the paper, we examine the DNF
learning problem in the recently introduced statistical query
model of learning [11]. This is a restricted version of the
PAC model in which the learning algorithm does not actu-
ally receive labeled examples of the unknown target function
drawn with respect to the input distribution. Instead, in the
statistical query model the learner may specify any property
of labeled examples, and obtain accurate estimates of the
probability that a random example will possess the prop-
erty. An important feature of this model is that any class
e�ciently learnable from statistical queries (for all distri-
butions or special distributions, respectively) is e�ciently
learnable in the PAC model with an arbitrarily high rate of
classi�cation noise (for all distributions or special distribu-
tions, respectively) [11]. Furthermore, it has been demon-
strated [11] that practically every class known to be e�-
ciently learnable in the PAC model (either for all distri-
butions or special distributions) is also e�ciently learnable
in the statistical query model (and thus is e�ciently PAC
learnable with classi�cation noise). In other words, PAC
model algorithms almost always learn by estimating proba-
bilities. (A notable exception to this is the class of parity
functions, which is known to be e�ciently learnable in the
PAC model but is not e�ciently learnable in the statisti-
cal query model [11].) Consequently, any light we can shed
on the problem of learning DNF expressions in the statis-
tical query model provides insight into the still unresolved
problem of learning DNF in the basic PAC model.

Here we provide a general characterization of the number
of statistical queries required for learning that is applicable
to any concept class with respect to any input distribution.
We prove that if a class contains a superpolynomial number
of nearly uncorrelated functions with respect to the input
distribution, then a superpolynomial number of statistical
queries are required for learning with respect to that distri-
bution. On the other hand, if a class contains only a polyno-
mial number of nearly uncorrelated functions with respect
to the distribution, then the class is weakly learnable by a
(possibly non-uniform) polynomial time algorithm.

A corollary of this characterization is that DNF formulas
and decision trees are not even weakly learnable in polyno-

mial time with respect to the uniform distribution in the
statistical query model. This result does not rely on any
unproven assumptions. An important consequence of this
result is that no algorithm which can be cast as a statis-
tical query algorithm can learn unrestricted forms of DNF
and decision trees. Therefore, no simple modi�cation of the
existing algorithms from the computational learning theory
literature for learning various restricted forms of DNF and
decision trees from passive random examples will solve the
general problem. The same statement also applies to sev-
eral well-studied algorithms proposed in the experimental
machine learning community, including the ID3 algorithm
for learning decision trees [22] and its variants.

All of our results rely heavily on the Fourier represen-
tation of functions on the hypercube [18, 16, 20], demon-
strating once again the utility of spectral analysis tools in
computational learning theory.

2 De�nitions and Notation

2.1 Learning on the Uniform Distribution Using Member-
ship Queries

A concept is a boolean function on an input space X (which
in this paper will always be f0; 1gn), and for convenience
we de�ne boolean functions to have outputs in f+1;�1g.
A concept class F is a set of concepts. An input ~x is an
element of the input space f0; 1gn. We use xi to denote the
ith bit of ~x and we generally use f to denote the chosen
target concept from F .

We say that a (possibly randomized) function g is an
�-approximation of f if 1 Pr[f = g] � 1 � �, where the
probability is taken over the uniform distribution on the
input space and over any random choices made by g.

A membership query is a query to an oracle for f for the
value of f on a desired input ~x. If there is an algorithm
A with access to membership queries and such that for any
positive � and � and any target concept f 2 F , with prob-
ability at least 1 � � algorithm A produces as output an
�-approximation for f in time polynomial in n, the size s of
f , 1=�, and 1=�, then we say that F is (strongly) learnable
using membership queries with respect to the uniform distri-
bution. The size of a concept f is a measure of the number
of bits in the smallest representation of f ; throughout this
paper we will use the number of terms in the smallest DNF
representation of f as the size s of f . The parameters �
and � above are called the accuracy and con�dence of the
approximation, respectively.

If there is a polynomial p(n; s) and an algorithm A with
access to membership queries such that for any positive �
and any target concept f 2 F , with probability at least
1 � � algorithm A produces as output a 1=2 � 1=p(n; s)-
approximation for f in time polynomial in n, s, and 1=�,
then F is weakly learnable using membership queries with
respect to the uniform distribution, or alternatively, is e�-
ciently 1=2� 1=p(n; s)-approximated.

2.2 The Statistical Query Learning Model

Unlike the membership query models of learning we have
de�ned so far, in the statistical query learning model [11]
the learner is not explicitly allowed to see labeled examples

1Unless subscripted by a distribution D, all probabilities and ex-
pectations are taken with respect to the uniform distribution on
f0;1gn.



(~x; f(~x)) of the target concept, but instead may only esti-
mate probabilities involving labeled examples. We formalize
this as follows: the learning algorithm is given access to
a statistics oracle. A query to this oracle is a pair (g; �),
where g is a function g : f0; 1gn � f+1;�1g ! f+1;�1g,
and � 2 [0; 1] is a real number called the tolerance of the
query. The oracle may respond to the query (g; �) with any
value v satisfying

ED[g(~x; f(~x))]� � � v � ED[g(~x; f(~x))] + �:

Since we will examine statistical query learnability not just
with respect to the uniform input distribution, but with re-
spect to any �xed distribution D on f0; 1gn, we have placed
a subscript on the expectation indicating the distribution.

Thus, a statistical query algorithm may obtain estimates
for the expectations of binary-valued random variables of its
own choosing. Note that if we regard the query function g as
computing a property of labeled examples (with g(~x; f(~x)) =
+1 indicating that the property holds), then the response to
the query provides the learning algorithm with an estimate
for the probability that the property holds that is accurate
within additive error � .

We say that the concept class F is learnable from statisti-
cal queries with respect to an input distribution D if there is
a learning algorithm A with access to statistical queries for
the target function and input distribution, such that for any
positive � and any target f 2 F , algorithm A produces an �-
approximation for f (with respect to D) in time polynomial
in n, the size of f , and 1=�. Furthermore, algorithm A must
only make queries (g; �) in which g can be computed by a
circuit whose size is bounded by a �xed polynomial in the
parameters, and in which � is lower bounded by the inverse
of a �xed polynomial in the parameters2. Thus, A must run
in polynomial time, and is allowed to make only e�ciently
computable queries with inverse polynomial tolerance.

The motivation for this notion of e�ciency is that every
class learnable from statistical queries is e�ciently learn-
able in the PAC model by a straightforward simulation ar-
gument [11], and thus the statistical query model can be
regarded as a natural restriction on the type of computa-
tions a PAC model algorithm can perform. The general
motivation for the statistical query model can be found in
the paper of Kearns [11]. Here it su�ces to reiterate that
almost every class known to be e�ciently learnable in the
PAC model or its distribution-speci�c variant can be shown
to be learnable in the statistical query model, and further-
more statistical query learning implies e�cient PAC learning
even in the presence of large amounts of classi�cation noise.

2.3 DNF Expressions

A DNF formula is a disjunction of terms, where each term
is a conjunction of literals and a literal is either a variable or
its negation. For a given DNF formula f we use s to denote
the number of terms in f , Ti to represent the ith term in
f (the ordering is arbitrary), and Vi to denote the set of
variables in Ti. A DNF formula f is k-DNF if it has at most
k literals in each term, is read-k if each variable appears at
most k times, and is SAT-k if no input satis�es more than
k terms of f .

2Note that allowing queries with � = 0 would provide the algo-
rithm with at least the power of membership queries.

We assume for convenience that the true output value
of a boolean function is represented by +1 and the false

value by �1.

2.4 The Fourier Transform

For each bit vector ~a 2 f0; 1gn we de�ne the function �~a :
f0; 1gn ! f+1;�1g as

�~a(~x) = (�1)

P
n

i=1
aixi = 1� 2

 
nX
i=1

aixi mod 2

!
:

That is, let ~u~a;~x represent the vector of bits from ~x for which
the corresponding bits in ~a are 1. Then �~a(~x) is the boolean
function that is 1 when the parity of ~u~a;~x is even and is
�1 otherwise. De�ned this way, the 2n parity functions �~a
have a number of useful properties which we will exploit
repeatedly.

First, with inner product de�ned by hf; gi = E[fg] and

norm by kfk =
p
E[f2], f�~zg~z2f0; 1gn is an orthonormal

basis for the vector space of real-valued functions on the
Boolean cube Zn2 . That is, every function f : f0; 1gn ! R
can be uniquely expressed as a linear combination of parity
functions:

f =
X

~a2f0;1gn

f̂(~a)�~a:

We call the vector of coe�cients f̂ the Fourier transform of
f . Because of the orthonormality of the parity functions,
f̂(~a) = E[f�~a]: Thus for boolean f , f̂(~a) represents the

correlation of f and �~a. Also note that f̂(~0) = E[f�~0] =

E[f ]. We call f̂(~0) the constant Fourier coe�cient since �~0
is the constant function +1. Finally, the Fourier transform
is a linear operator. That is, if h = cf + g for functions f; g
and scalar c, then ĥ = cf̂ + ĝ.

Parseval's identity states that for every function f , E[f2] =P
~a
f̂2(~a): For boolean f it follows that

P
~a
f̂2(~a) = 1, a fact

we use frequently.
At times we use a subset A of the n variables of a func-

tion as the index of a parity or Fourier coe�cient, with the
following meaning: �A denotes the function �~a where ~a is
the characteristic vector corresponding to A, and f̂(A) has
a similar interpretation.

A t-sparse function is a function that has at most t non-
zero Fourier coe�cients. The support of a function f is the
set fA j f̂(A) 6= 0g.

3 Preliminaries

Our positive learnability results rely heavily on an algorithm
of Kushilevitz and Mansour [16] (the KM algorithm) which
�nds, with high probability, close approximations to all of
the large Fourier coe�cients of a function f . The KM algo-
rithm is allowed to make membership queries for f . Kushile-
vitz and Mansour have shown that given such approximate
coe�cients one can strongly learn some important concept
classes such as decision trees [16]. However, while the KM
algorithm is a key element of our learning scheme, we need
to extend their approach somewhat to handle the case where
the large Fourier coe�cients give us only a weak approxima-
tion to the target function.



The main idea behind our positive results is to show that
DNF formulas have enough su�ciently large Fourier coe�-
cients that the KM algorithm can be usefully applied. We
then use a general transformation that shows how to take a
deterministic approximation g which is signi�cantly (that is,
inverse polynomially) closer to f than the origin (regarding
the functions as vectors), and produce a randomized approx-
imation h such that Pr[f 6= h] is similarly better than 1=2.
Thus our learning problem reduces to �nding a function g
appropriately \close to" f . To show that the KM algorithm
can �nd such a g for the concept classes we consider, we
will combine known results about the KM algorithm with a
new bound on the size of Fourier coe�cients for functions
in these classes.

We begin by stating as a lemma the known results about
the KM algorithm which we will need. These and the other
results of this section hold for any class of boolean functions,
not just DNF.

Lemma 1 (Kushilevitz & Mansour) For any target con-
cept f , threshold �, and �; � > 0, the KM algorithm, with
probability at least 1� �, outputs all the nonzero Fourier co-
e�cients of a function g whose support S obeys the following
properties:

1. S contains every set A such that jf̂(A)j > �.

2.
X
A2S

(f̂(A)� ĝ(A))2 � �:

3. jSj is polynomial in 1=�.

The algorithm uses membership queries, and runs in time
polynomial in n, 1=�, 1=�, and log(1=�).

We use KM(�; �; �) to represent an execution of the KM
algorithm with the respective threshold, accuracy, and con-
�dence parameters. That it is possible for the algorithm to
return a number of coe�cients that is polynomial in 1=� fol-

lows from the fact that since
P

A
f̂2(A) = 1, there are at

most 1=�2 coe�cients of f with magnitude at least �.
We now turn to bounding the di�erence between the tar-

get f and the function g returned by the KM algorithm. It
can be shown that for boolean target functions f , running
KM(�; �; �) produces a function g (with support S) that
with probability at least 1 � � has E[(f � g)2] = � + 1 �P

A2S
f̂2(A). To see this, note that we may write:

E[(f � g)2] =
X
A

( df � g)2(A)

=
X

(f̂(A)� ĝ(A))2

� �+
X
A62S

(f̂(A)� ĝ(A))2

= �+ 1�
X
A2S

f̂2(A):

The �rst equality is Parseval, the second is by linearity of
the Fourier transform, and the inequality is by Lemma 1.
The �nal equality holds because ĝ(A) = 0 for A 62 S, andP

A
f̂2(A) = 1.
While the Kushilevitz and Mansour analysis assumes

that the summation in this �nal bound is near 1, for our

weak learning results the value we assume for this summa-
tion may be quite small (but non-negligible). The following
lemma gives us a bound on E[(f � g)2] in terms of a lower

bound on
P

A2S f̂
2(A).

Lemma 2 Given a f+1;�1g-valued function f , let S be a

set such that
P

A2S f̂
2(A) � �, and let g be the output of

KM(
p
�=(4jSj); �=4; �). Then with probability at least 1��,

E[(f � g)2] � 1� �=2.

Proof: Let T be the support of g. Then with probability

at least 1 � �, for all A 2 S � T , f̂(A) �
p
�=(4jSj) and

thus
P

A2S�T
f̂2(A) � �=4. Therefore with at least this

probability

E[(f � g)2] � 1 + �=4�
X
A2T

f̂2(A)

� 1 + �=4�

 X
A2S

f̂2(A)�
X

A2S�T

f̂2(A)

!
� 1� �=2:

Now we are ready to link the squared error measure
above with the notion of �-approximation.

Lemma 3 Given a f+1;�1g-valued function f and a de-
terministic approximation g, de�ne the randomized function
h as follows: let h(~x) = �1 with probability

p =
(1� g(~x))2

2(1 + g2(~x))

and h(~x) = 1 with probability 1 � p. Then Pr[f 6= h] �
(1=2)E[(f � g)2]. So, if E[(f � g)2] � 1 � � then h is a
1=2� �=2-approximation for f .

Proof: First, the algorithm is well-de�ned since 0 � p � 1
for any value of g(~x). Noting that 1� p = Pr[h(~x) = 1] can
be written as (�1� g(~x))2=2(1 + g2(~x)), it follows that for
any �xed ~x, Pr[h(~x) 6= f(~x)] = (f(~x)� g(~x))2=2(1+ g2(~x)),
where the probability is taken over the random choices made
by h. Now considering the distribution over all inputs ~x as
well as h's random choices, we get

Pr[h 6= f ] �
1

2
E[(f � g)2]:

(Lemma 3)
A similar but slightly weaker randomized approxima-

tion method was given by Kearns, Schapire, and Sellie [13].
Putting the results of this section together, we have the fol-
lowing.

Theorem 4 A concept classF is weakly learnable with mem-
bership queries with respect to the uniform distribution if
there are polynomials p and q such that for every f 2 F

there is a set S with jSj � p(n; s) such that
P

A2S f̂
2(A) �

1=q(n; s), where s represents the size of f . In particular, for
every f in such a class the algorithm

KM

 
1

2
p
p(n; s)q(n; s)

;
1

4q(n; s)
; �

!



plus the approximation scheme of Lemma 3 will with proba-
bility at least 1 � � produce a randomized 1=2 � 1=4q(n; s)-
approximation of f . The algorithm runs in time polynomial
in n, s, and log(1=�).

4 Positive Results

4.1 Weakly Learning DNF

Linial, Mansour, and Nisan [18] showed that AC0, the class
of constant-depth circuits, is learnable in superpolynomial
but subexponential time with respect to the uniform dis-
tribution by proving that for every AC0 function f almost
all of the \large" Fourier coe�cients of f are coe�cients of
parities of \few" variables. We show that an even stronger
property holds for the Fourier transform of any DNF func-
tion, a property which will be key to several of our positive
results about DNF learnability. The following de�nition will
simplify the statement and proof of this property.

De�nition 1 Let f be a DNF formula and let Ti (with vari-
ables Vi) be a term in f . Then for every A � Vi, de�ne
�A(Ti) to be �A(~x), where ~x is any input which satis�es Ti.

Lemma 5 Let f be a DNF formula. Then for every term
Ti (with variables Vi),X

A�Vi

f̂(A)�A(Ti) = +1:

Proof: Consider a particular term Ti of f . Let fi represent
the restriction of f obtained by �xing the variables in Vi so
that Ti is satis�ed. Then fi � +1. Since �~0 � +1, f̂i(~0) =

E[fi�~0] = 1. Now since f =
P

f̂(A)�A, the restriction fi is
also a linear combination of the restrictions �A;i of the �A's
obtained by �xing the variables in Vi as above, that is,

fi =
X

A�fx1 ;:::;xng

f̂(A)�A;i:

For all A � Vi, �A;i = �A(Ti) is a constant function. On
the other hand, for all A 6� Vi, the restriction �A;i is not a
constant since some variables in �A survive the restriction.
Thus f̂i(~0) =

P
A�Vi

f̂(A)�A(Ti), and as established above,

f̂i(~0) = 1. (Lemma 5)

A particularly useful implication of the lemma for our
purposes is that for every term Ti in f , there is some A �
Vi such that jf̂(A)j � 2�jVi j. Thus if even one term in
a DNF f has O(log s) variables then there is at least one
Fourier coe�cient of f which is inverse polynomially large.
This allows us to use the KM algorithm to weakly learn
DNF with membership queries with respect to the uniform
distribution.

Theorem 6 The class of DNF formulas can be e�ciently
(1=2 � 1=6s)-approximated.

Proof: We assume that there is at least one term in f
with at most log(3s) literals; otherwise, f is su�ciently
well-approximated by the constant �1 function. Thus by
Lemma 5 there is at least one Fourier coe�cient (call if

f̂(A)) of magnitude 1=3s. The parity �A corresponding to

f̂(A) can be found with probability 1�� in time polynomial

in n, s, and log(1=�) by KM(1=3s;1; �). As f̂(A) repre-

sents the correlation of �A and f , g = sign(f̂(A))�A is an
adequate approximation. (Theorem 6)

A related but more complicated algorithm yields im-
proved accuracy (the details of the algorithm are omitted).

Theorem 7 The class of DNF formulas can be e�ciently
(1=2� 
(log(s)=s))-approximated.

4.2 Learning Read-k DNF

Lemma 5 gives us that every term has at least one \large"
Fourier coe�cient associated with it. However, conceivably
a small set of large coe�cients are shared by many of the
terms, so there may be very few large coe�cients in the
DNF formula. On the other hand, each coe�cient (except
the constant coe�cient) of a read-k formula may be shared
by at most k terms. We use this fact to obtain an accuracy
bound of 1=2� 
(1=k) for the class of read-k DNF.

Theorem 8 For every k, the class of read-k DNF can be
e�ciently (1=2� 1=16k)-approximated.

Proof: For any read-k DNF f we will show that there is

a set S with jSj � 24n2k2 such that
P

A2S f̂
2(A) � 1=4k:

The result then follows from Theorem 4.

To derive this bound, �rst consider the case k = 1.

Lemma 5 implies that for each term Ti:
P

A22Vi jf̂(A)j � 1

where 2Vi represents the power set of Vi. De�ne S = [i2
Vi .

Because k = 1, for any i 6= j, 2Vi \ 2Vj = f;g. Thus, letting
Si denote the set 2

Vi � ;,X
A2S

f̂2(A) �
X
i

X
A2Si

f̂2(A):

We will assume that jf̂(~0)j � 1=6, since otherwise f is ade-
quately approximated by a constant function. Thus for each
Ti,
P

A2Si
jf̂(A)j � 5=6; which implies that

P
A2Si

f̂2(A) �

(5=6)2=jSij. So,X
A2S

f̂2(A) �
�
5
6

�2X
i

1

2jVi j � 1
:

By the restriction on f̂(~0) we know that at least 5=12 of the
inputs satisfy f . Since the fraction of inputs which satisfy a

term Ti is 2
�jVi j,

P
i
2�jVi j � 5=12 and so

P
A2S f̂

2(A) �

(5=6)2(5=12) > 1=4.
Now consider larger k. In this case, for any given set A

we can have A 2 Si for up to (but no more than) k distinct
values of i. ThusX

A2S

f̂2(A) �
1

k

X
i

X
A2Si

f̂2(A)

and therefore
P

A2S f̂
2(A) > 1=4k.

Finally, we need to bound jSj. In general, the set S
above can be exponentially large even for a read-once DNF.
We get around this by considering only \small" terms when
constructing S. Speci�cally, we now let

S =
[

jVij�log(24kn)

2Vi :



Because there are at most kn terms in a read-k DNF, the
terms which are excluded from S are satis�ed by at most
1=24 of the inputs. The included terms are therefore satis�ed
by at least 5=12� 1=24 = 9=24 of the inputs, and using this
value rather than 5=12 in the earlier analysis still gives the
desired bound. (Theorem 8)

4.3 Learning SAT-k DNF

We demonstrate the (strong) learnability of SAT-k DNF
for constant k by showing that every SAT-k DNF is well-
approximated by a function with small support.

Theorem 9 3 For any k, the class of SAT-k DNF formulas
can be �-approximated by a randomized learning algorithm
which uses membership queries, succeeds with probability 1�
�, and runs in time polynomial in n, sk, 1=�k, and log(1=�).

Proof: We will show that there is some polynomially sparse
deterministic function g such that E[(f � g)2] � �=2. The
result then follows from standard arguments.

Let r = 8s=� and let g be what remains of f after re-
moving any terms having more than log(r) variables. Then
E[(f � g)2] = 4Pr[f 6= g] � �=2. The inequality holds be-
cause each term removed from f covers at most an �=8s
fraction of the input space. To see that g has small sup-
port, let s0 represent the number of terms in g and de�ne
Pi(~x), 1 � i � s0, to be +1 if ~x satis�es the ith term of
g and 0 if ~x does not. At most log(r) variables are rel-
evant for Pi and thus the Fourier representation of Pi has
no more than r non-zero coe�cients. Using the principle
of inclusion-exclusion we can create a function P 0 from the
Pi's which is (rs0)k-sparse and which is 1 when g is satis�ed
and 0 otherwise. Speci�cally, let

P 0 =
X
i1

Pi1 �
X
i1<i2

Pi1Pi2 +
X

i1<i2<i3

Pi1Pi2Pi3

� � � � � (�1)k
X

i1<���<ik

Pi1 � � �Pik :

It can be veri�ed inductively that this polynomial has the
claimed properties. Noting that g = 2P 0 � 1 completes the
proof. (Theorem 9)

By restricting the size of terms in the SAT-k DNF's con-
sidered and using exact reconstruction and derandomization
techniques similar to those of Kushilevitz and Mansour [16],
we can extend the above to a deterministic, distribution-
independent learning result (this generalizes a similar result
for SAT-1 (disjoint) DNF by Khardon [14]).

Theorem 10 For any k, the class of SAT-k O(log s)-DNF
formulas of s terms can be learned exactly by a deterministic
learning algorithm which uses membership queries and runs
in time polynomial in n and sk.

4.4 Learning cPT 1

In this section we generalize our weak learning result for un-

restricted DNF. In particular, let cPT 1 represent the class of
functions computable as the majority of a polynomial (in n)
number of parities; equivalently, this is the class of functions
that are the sign of a polynomially-sparse function having

3A similar result has also been shown by Lipton using a somewhat
di�erent analysis [19].

polynomially-bounded integer Fourier coe�cients. We show

that cPT 1 is weakly learnable with respect to uniform using

queries. cPT 1 is a rather general class containing many func-
tions, such as majority, that are not approximable by AC0

circuits. Our weak learnability proof builds on the work of
Bruck [7].

Theorem 11 cPT 1 is weakly learnable using membership
queries with respect to the uniform distribution.

Proof: By de�nition, for any f 2 cPT 1 there is some g =P
A2S ĝ(A)�A such that f = sign(g), jSj � p(n), and for all

A 2 S we have both that ĝ(A) is an integer and jĝ(A)j �
p(n) for some polynomial p. Since f = sign(g),

E[jgj] = E[fg] =
X
A2S

f̂(A)ĝ(A);

where the �nal equality follows from a generalization of Par-
seval's identity and the fact that ĝ(A) = 0 for A 62 S. We
can assume without loss of generality that for all x 2 f0; 1gn,
g(x) 6= 0, and therefore E[jgj] � 1. Thus for some A 2 S,

jf̂(A)j � 1=p2(n), and we can therefore use KM to �nd a
weak approximator for f . (Theorem 11)

5 Characterizing Statistical Query Learning

In this second part of the paper, we present results that char-
acterize when a given class of functions is weakly learnable
under a given distribution in the statistical query model. An
important corollary of this characterization is that the class
of parity functions on log n variables (that is, the class of
functions �A where jAj = O(log n)) cannot be even weakly
learned with a polynomial number of statistical queries (each
with inverse polynomial tolerance), even with respect to the
uniform input distribution. This immediately implies that
DNF expressions and decision trees, both of which contain
the log n-bit parities as a subclass, are not weakly learn-
able in the statistical query model, even with respect to the
uniform input distribution.

Our lower bound is information-theoretic, and thus does
not rely on any unproven assumptions. For our upper bound
we actually give a (non-uniform) polynomial time weak learn-
ing algorithm. Thus, we �nd that in the statistical query
model, weak learnability from a polynomial number of queries
of inverse polynomial tolerance, but in any amount of com-
putation time, in fact implies e�cient (although possibly
non-uniform) weak learnability. This is quite di�erent from
the situation in the PACmodel, where information-theoretic
learnability provably does not imply (even non-uniform) poly-
nomial time learnability given certain (non-uniform) cryp-
tographic assumptions.

In order to present our characterization, we need the
following key de�nition.

De�nition 2 For F a class of boolean functions over f0; 1gn

and D a distribution over f0; 1gn, we de�ne SQ-DIM(F ;D),
the statistical query dimension of F with respect to D, to
be the largest natural number d such that F contains d func-
tions f1; : : : ; fd with the property that for all i 6= j we have:

jPrD[fi = fj]�PrD[fi 6= fj]j �
1

d3
:



Thus, if SQ-DIM(F ;D) = d it means that there are
d \nearly uncorrelated" functions in the class F (with re-
spect to the distribution D). Note that unlike the well-
known Vapnik-Chervonenkis (VC) dimension, which is a
distribution-independent quantity and is known to charac-
terize the number of random examples required to learn in
the distribution-independent PAC model [6], the statistical
query dimension is a distribution-dependent quantity. It is
possible to prove a one-sided polynomial relationship be-
tween the two quantities: namely, if F is a class of VC
dimension d, then there exists a distribution D such that
SQ-DIM(F ;D) = 
(d) 4. However, there is no such polyno-
mial relationship in the other direction, as there are function
classes and distributions whose statistical query dimension
may be exponential in the VC dimension of the function
class (for instance, the class of all parity functions on f0; 1gn

with respect to the uniform input distribution).
We now state the main theorems of this section, which

establish that the statistical query dimension characterizes
(within a polynomial factor) the number of statistical queries
that must be made for learning.

Theorem 12 (Lower Bound) Let F be a class of functions
over f0; 1gn andD a distribution such that SQ-DIM(F ;D) �
d � 16: Then if all queries are made with a tolerance of at
least 1=d1=3, at least d1=3=2 queries are required to learn F
with error less than 1=2�1=d3 in the statistical query model.

Theorem 13 (Upper Bound) If F is a class of functions
over f0; 1gn andD a distribution such that SQ-DIM(F ;D) =
d, then there is a learning algorithm for F with respect to D
in the statistical query model that makes d queries, each of
tolerance at least 1=3d3, and �nds a hypothesis with error at
most 1=2 � 1=3d3.

We shall give the proofs for these main theorems mo-
mentarily.

If we think of F and D as function and distribution en-
sembles (one for each n), then Theorems 12 and 13 imply the
following. If for all polynomials p(�) and in�nitely many n we
have SQ-DIM(Fn;Dn) = d(n) � p(n) (that is, superpoly-
nomial statistical query dimension), then F is not weakly
learnable in the statistical query model with respect to D.
On the other hand, if there exists a polynomial p(�) such that
for all su�ciently large n, SQ-DIM(Fn;Dn) = d(n) � p(n)
(that is, polynomial statistical query dimension), then there
is a non-uniform (in n), polynomial time weak learning al-
gorithm for F with respect to D in the statistical query
model.

Note that Theorem 12, combined with the remarks above
on the relationship between the VC and statistical query di-
mensions, implies that for any class of VC dimension d, there
is a distribution on which d1=3=2 statistical queries of toler-

ance 1=d1=3 must be made for PAC learning (this bound is
incomparable to a similar lower bound given in the paper of
Kearns [11]). However, as we have already noted, dramat-
ically stronger lower bounds for statistical query learning
may hold, even for natural input distributions. For instance,
as promised, we have the following corollary.

4To see this, letD be uniform on a shattered set S of size 2blog dc �

d. Without loss of generality we may assume that S = f0;1gblog dc.
Since S is shattered, the function class contains all possible boolean
functions over S, and in particular the blogdc parity functions, which
are pairwise uncorrelated.

Corollary 14 There is a constant c > 0 such that
(nc log n)
statistical queries, each of tolerance O(1=nc log n), are re-
quired to weakly learn the classes of polynomial size DNF
formulae and polynomial size decision trees with respect to
the uniform distribution. Thus, these classes are not e�-
ciently learnable in the statistical query model.

Proof: Let Dn be the uniform distribution on f0; 1gn, and
consider the class Fn of all parity functions �A over f0; 1gn

in which jAj � log n (thus, the parity function depends on
at most log n of the input bits). The number of such func-
tions is exactly

�
n

log n

�
, and they are all pairwise uncorrelated

with respect to Dn. Thus SQ-DIM(Fn;Dn) �
�

n
log n

�
. Fur-

thermore, Fn is contained in both the class of polynomial
size DNF formulae and polynomial size decision trees, since
each function in Fn can be represented by its truth table
restricted to the log n input bits on which the function de-
pends. This truth table has size O(2log n) = O(n) and can be
represented as either a DNF of n terms or a decision tree of n
leaves. The result follows by Theorem 12. (Corollary 14)

We now turn to the proofs of the main theorems. Because
the proof of Theorem 13 is signi�cantly easier than the proof
of Theorem 12, we give it �rst.
Proof of Theorem 13: For �xed F and D such that
SQ-DIM(F ;D) = d, the nonuniform algorithm has \hard-
wired" for each n a maximal set of functions f1; : : : ; fd such
that for all i 6= j,

jPrD[fi = fj]�PrD[fi 6= fj]j �
1

d3
:

The algorithm makes d queries, each with tolerance 1=3d3.
The ith query gi is simply a request for the correlation of the
target function with fi, that is, gi(~x; `) = `�fi(~x) (recall that
by convention boolean functions assume values in f+1;�1g).
By assumption, the set ff1; : : : ; fdg is a maximal pairwise
(nearly) uncorrelated set, so at least one query gi will return
a value of at least 1=d3 � � � 2=3d3. Thus the algorithm
has found an fi such that

jPrD[fi = f ]�PrD[fi 6= f ]j �
2

3d3
� � �

1

3d3

where f is the target function, and we can use fi as our
weak hypothesis. (Theorem 13)
Proof of Theorem 12: In the following proof, it will be
helpful to keep in mind that our eventual approach will be
to perform a Fourier analysis not only of the functions in the
target class F , but also of the query function g : f0; 1gn �
f+1;�1g ! f+1;�1g. Recall that such a query is a request
from the learner for an approximation to ED[g(~x; f(~x))],
where D is the target distribution and f is the target func-
tion.

In order to prove the theorem, we will need to use an
extension of the Fourier theory to an arbitrary distribu-
tion; this extension has been examined in the computa-
tional learning theory literature before by Furst, Jackson
and Smith [9]. Thus let D be an arbitrary probability distri-
bution over f0; 1gn. Then for any two real-valued functions
f and g over f0; 1gn, we can de�ne the inner product with
respect to D by

hf; giD = ED[fg] =
X

~x2f0;1gn

D[~x]f(~x)g(~x):



It is easy to verify that h; iD is in fact an inner product for
the vector space of all real-valued functions over f0; 1gn, and
we shall use this in our analysis. If, as usual, we regard the
boolean functions f1; : : : ; fd as being f+1;�1g-valued, then
the assumption of the theorem gives that jhfi; fjiDj � 1=d3

for all i 6= j. It is also easy to see that for any f+1;�1g-
valued function f , hf; fiD = 1.

In the analysis to follow, we wish to use the given func-
tions f1; : : : ; fd as the beginnings of a basis for the vector
space of all functions. To do this, we will need the following
lemma.

Lemma 15 For d � 4, the functions f1; : : : ; fd are linearly
independent.

Proof: Without loss of generality, assume for contradic-
tion that we could write f1 =

P
i�2

�ifi for some real coef-

�cients �2; : : : ; �d. Then we have

0 = ED

"
(f1 �

X
i�2

�ifi)
2

#
= ED[f

2
1 ]� 2

X
i�2

�iED[f1fi]

+
X
i;j�2

�i�jED[fifj]

= 1� 2
X
i�2

�iED[f1fi] +
X
i�2

�2i

+
X

i;j�2;i6=j

�i�jED[fifj]

where we have used that ED[f
2
i ] = 1 for all i. Our goal is to

reach a contradiction by showing that this �nal expression
is strictly larger than 0. Let us de�ne

�max = maxfj�ij : i � 2g � 0

and use �max to simplify the expression above. Then

1 +
X
i�2

�2i � 1 + �2max:

Also, �����2X
i�2

�iED[f1fi]

����� � 2�max

d2

since ED[f1fi] = hf1; fiiD � 1=d3 for all i 6= 1. Finally,����� X
i;j�2;i6=j

�i�jED[fifj]

����� � �2max

d
:

So we have:

1 � 2
X
i�2

�iED[f1fi] +
X
i�2

�2i

+
X

i;j�2;i6=j

�i�jED[fifj]

� 1 + �2max �
2�max

d2
�

�2max

d
:

Now if �max � 1, then 2�max=d
2 + �2max=d � 2=d2 + 1=d <

1 for d � 3. If �max > 1, then 2�max=d
2 + �2max=d �

3�2max=d < �2max for d � 4. In either case, we have 1+�2max�
(2�max=d

2 + �2max=d) > 0, a contradiction. (Lemma 15)
Before extending f1; : : : ; fd to a complete basis, we ar-

gue that without loss of generality we can assume that the
support of the input distribution D is all of f0; 1gn 5. The
reason we may assume this is that if D does not have sup-
port f0; 1gn, we can instead carry out the ensuing analysis
using a distribution D0 that does have support f0; 1gn, and
is obtained fromD by taking an in�nitesimally small amount
of weight away from the support of D, and spreading this
weight uniformly among the vectors not in the support of
D. Then the functions f1; : : : ; fm will still be approximately
orthogonal, and it is not hard to prove that any statistical
query lower bound we can prove for D0 must also hold for
D, since the learning algorithm cannot distinguish D and
D0 (details are omitted).

Now using the Gram-Schmidt process, which applies to
any inner product space, we may extend f1; : : : ; fd to obtain
a basis f1; : : : ; fd; fd+1; : : : ; f2n for the vector space of all real
functions over f0; 1gn with the property that for any i � d+1
and any j 6= i, hfi; fjiD = 0, and for any i, hfi; fiiD = 1.
Note that our basis may not be orthonormal due to the fact
that for i; j � d, hfi; fjiD may be as large as 1=d3. Also,
note that we may assume there are 2n basis functions: since
D has support f0; 1gn, the 2n delta functions on f0; 1gn are
orthogonal and non-zero with respect to D.

We now wish to extend f1; : : : ; f2n to a basis for the space
of all real functions on f0; 1gn � f+1;�1g. This obviously
includes all such functions assuming values only in f0; 1gn,
which is the space of possible statistical query functions. To
accomplish this, it will be most convenient to use an inner
product de�ned by a distribution ~D on f0; 1gn � f+1;�1g

that extends the distribution D, where ~D is simply the prod-
uct of D and the uniform distribution on f+1;�1g. To ex-
tend f1; : : : ; f2n , we de�ne for each 1 � i � 2n the function
hi(~x; y) = y � fi(~x), where ~x 2 f0; 1gn and y 2 f+1;�1g.
We also regard each of the original basis functions fi as a
function over f0; 1gn � f+1;�1g, where fi(~x; y) = fi(~x).
We now verify that f1; : : : ; f2n together with h1; : : : ; h2n is
in fact a basis for all functions on f0; 1gn �f+1;�1g under
the inner product h; i ~D. We have

hhi; fji ~D =
1

2
ED[hi(~x; 1)fj(~x)]

+
1

2
ED[hi(~x;�1)fj(~x)]

=
1

2
ED[fi(~x)fj(~x)]

+
1

2
ED[�fi(~x)fj(~x)]

= 0

and

hhi; hji ~D =
1

2
ED[hi(~x; 1)hj(~x; 1)]

+
1

2
ED[hi(~x;�1)hj(~x;�1)]

= ED[fifj]

5If we regard D as a linear transformation of the vector space of
all real functions over f0; 1gn (that is, as a 2n by 2n matrix with
nonzero entries only on the diagonal, corresponding to the probabili-
ties assigned by D), this is simply saying that D has full rank.



and ED[fifj] = 0 unless i; j � d, in which case it is bounded
by 1=d3, or unless i = j, in which case it equals 1. So by
the same argument as in Lemma 15 we have 2 � 2n indepen-
dent functions, forming a basis for functions over f0; 1gn �
f+1;�1g.

Now let g : f0; 1gn � f+1;�1g ! f+1;�1g be any sta-
tistical query. We will soon perform a Fourier analysis of
the expectation ED[g(~x; f(~x))], which is the quantity that
is approximated by the response of the query. Because we
have a basis, we can write g =

P
i�1

�ifi +
P

i�1
�ihi for

some real coe�cients �i and �i. Note that it is not true
that �i = hg; fii ~D and �i = hg; hii ~D because we do not have
an orthonormal basis. However, the following bound on the
coe�cients will serve our purposes.

Lemma 16 If g =
P

i�1
�ifi+

P
i�1

�ihi, where g and the

fi and hi are as de�ned above, then j�ij; j�ij � 2 for all i.

Proof: Without loss of generality, let �1 > 0 be the largest
coe�cient. Since we have an inner product space, we can
de�ne the f1-component of g by

hf1; gi ~Df1 =

 
�1 +

X
i�2

�ihf1; fiiD +
X
i�1

�ihf1; hii ~D

!
f1

=

 
�1 +

X
i�2

�ihf1; fiiD

!
f1

since hf1; hii ~D = 0. (Note that if �1 was the largest coef-
�cient, we would instead take the h1-component of g and
proceed analogously.) Again due to the properties of an
inner product, we must have

jjgjj =
p
E ~D[g

2]

�

������1 +X
i�2

�ihf1; fiiD

����� :
But the summation inside the absolute value is at most
�1=d

2, so the absolute value is at least �1 � �1=d
2 > �1=2

for d � 2. Since jjgjj = 1, the lemma follows. (Lemma 16)
We are now �nally in position to analyze the quantity of

interest, the expected value of the query g. Let the target
function be fj for some 1 � j � d; thus, we choose as the
target one of the original nearly orthogonal functions in the
target class F . We may write:

ED[g(~x; fj(~x))] = ED

"X
i�1

�ifi(~x)

+
X
i�1

�ihi(~x; fj(~x))

#
=

X
i�1

�iED[fi] +
X
i�1

�iED[fifj]

= C +
X
i�d

�ihfi; fjiD

where C =
P

i�1 �iED[fi] is a constant independent of the

target function fj, and we have used the fact that hfi; fjiD =

0 unless i � d. Now

�j �
2

d2
�
X
i�d

�ihfi; fjiD � �j +
2

d2

since hfj; fjiD = 1 and hfi; fjiD � 1=d3 for i 6= j, and
j�ij � 2 for all i by Lemma 16. Thus, we see that the only
contribution the target function makes to the expected value
of the query is in determining the coe�cient �j, plus an
O(1=d2) contribution. For the lower bound, the statistical
query g will always be answered with the value C. We now
analyze how many functions in f1; : : : ; fd can be eliminated
by this answer. For this, we need the following �nal lemma.

Lemma 17 X
i�d

�2i � 2:

Proof: Using Lemma 16 and the 1=d3 bounds on the in-
ner products, it is easy to verify that E ~D[g

2] = 1 is bounded
above and below by

P
i�d

�2i +
P

i�d
�2i � 16=d. This im-

plies
P

i�d �
2
i � 1�

P
i�d �

2
i + 16=d � 2 provided d � 16.

(Lemma 17)
Now if the query g is made with tolerance as large as

1=d1=3, then by the preceding arguments the function fj
is eliminated by the query response C only if �j exceeds

1=d1=3. But by Lemma 17, if r is the number of functions fj
in f1; : : : ; fd such that �j exceeds 1=d

1=3, then we must have

r(1=d1=3)2 � 2, or r � 2d2=3. This shows that at least d1=3=2
queries of allowed approximation error bounded above by
1=d1=3 are required in order to eliminate all the functions in
f1; : : : ; fd that are not the target function. If there are even
two functions remaining, by choosing adversarially between
the remaining functions we may force the error of the learn-
ing algorithm's hypothesis to be 1=2� 1=d3 with signi�cant
probability. (Theorem 12)

Note that in the above proof, even if the learning al-
gorithm is randomized, if it makes only d1=3�� queries for
some constant � > 0, it will eliminate only a small frac-
tion of f1; : : : ; fd. So if the adversary picks fj at random
from f1; : : : ; fd, with high probability it can answer as above
for each query and so again with high probability the algo-
rithm's error will be close to 1=2.

It is also instructive to note that if the tolerance � =
0, then over the uniform distribution the statistical query
model allows one to make membership queries (one can ask
whether the probability of a speci�c labeled example is non-
zero). So the algorithmic results in the previous sections
prove that such a lower bound cannot hold when 0-tolerance
queries may be made.
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