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Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; 1.2.
[Artificial Intelligence]; 1.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.
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Angluin and Laird provided an algorithm for learning Boolean conjunctions
that tolerates a noise rate approaching the information-theoretic barrier of 1/2.
Subsequently, there have been some isolated instances of efficient noise-tolerant
algorithms [Kearns and Schapire 1994; Sakakibara 1991; Schapire 1992], but
little work on characterizing which classes can be efficiently learned in the
presence of noise, and no general transformations of Valiant model algorithms
into noise-tolerant algorithms. The primary contribution of the present paper is
in making significant progress in both of these areas.

We identify and formalize an apparently rather weak sufficient condition on
learning algorithms in Valiant’s model that permits the immediate derivation of
noise-tolerant learning algorithms. More precisely, we define a natural restriction
on Valiant model algorithms that allows them to be reliably and efficiently
simulated in the presence of arbitrarily large rates of classification noise. This
allows us to obtain efficient noise-tolerant learning algorithms for practically
every concept class for which an efficient learning algorithm in the original
noise-free Valiant model is known. A notable exception is the class of parity
concepts, whose properties we investigate in some detail.

Our sufficient condition is formalized by the introduction of a new model of
learning from statistical queries, in which the standard Valiant model oracle EX( f,
%) (giving random examples of the target concept f with respect to an input
distribution % over X) is replaced by the weaker oracle STAT(f, ¥). This
oracle, rather than supplying the learning algorithm with individual random
examples, instead provides accurate estimates for probabilities over the sample
space generated by EX(f, 9). Taking as input a query of the form (x, «), where
X = x(x, €) is any Boolean function over inputs x € X and ¢ € {0, 1},
STAT(f, D) returns an estimate for the probability that x(x, f(x)) = 1 (whenx
is drawn according to 9). This estimate is accurate within additive error a € [0,
1] which we call the allowed approximation error of the query.

The natural notion of efficiency in such a model should assign high cost to
queries in which x is computationally expensive to evaluate, and to queries in
which « is small. We shall formalize this shortly (Sections 2, 3, and 4 define the
Valiant, classification noise and statistical query models respectively), and the
result will be a model which is weaker than the standard Valiant model, in the
sense that statistical query algorithms can be trivially simulated given access to
the noise-free examples oracle EX(f, @).

In the statistical query model, we are effectively restricting the way in which a
learning algorithm may use a random sample, and we thus capture the natural
notion of learning algorithms that construct a hypothesis based on statistical
properties of large samples rather than on the idiosyncrasies of a particular
sample. Note that algorithms in this model may also estimate conditional
probabilities by expanding the conditional probability as the ratio of two simple
probabilities.

One of our main theorems, given in Section 5, is that any class efficiently
learnable from statistical queries is also efficiently learnable with classification
noise. The theorem holds even with respect to particular distributions or classes
of distributions. This latter property is important since many of the most
powerful positive results in the Valiant model hold only for special but natural
distributions, thus allowing us to obtain efficient noise-tolerant algorithms for
these same distributions.
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We give many applications of this result in Section 6. In addition to unifying all
previous analyses of learning with noise in the Valiant model (since all of the
proposed algorithms for noise-tolerant learning can be shown to fall into the
statistical query model), we use our new model to obtain efficient noise-tolerant
learning algorithms for many concept classes for which no such algorithm was
previously known. Examples include learning perceptrons (linear separators)
with noise with respect to any radially symmetric distribution; learning conjunc-
tions with noise with only a logarithmic sample size dependence on the number
of irrelevant variables; learning n-dimensional axis-aligned rectangles with noise;
learning AC"® with noise with respect to the uniform distribution in time
O(n'mly( - ")) (for which the algorithm of Linial et al. [1989] can be shown to fall
into the statistical query model without modification); and many others.

The fact that practically every concept class known to be efficiently learnable
in the Valiant model can in fact be learned from statistical queries (and thus with
classification noise) raises the natural question of whether the two models are
equivalent. We answer this question negatively in Section 7 by proving that the
class of parity concepts, known to be efficiently learnable in the Valiant model,
cannot be efficiently learned from statistical queries. The class of parity concepts
is also notorious for having no known efficient noise-tolerant algorithm.

In Section 8, we investigate query complexity in our model. Our interest here
centers on the trade-off between the number of statistical queries that must be
made, and the required accuracy of these queries. For instance, translation of
Valiant model sample size lower bounds [Blumer et al. 1989; Ehrenfeucht 1988]
into the statistical query model leaves open the possibility that some classes
might be learned with just a single statistical query of sufficiently small allowed
approximation error. Here we dismiss such possibilities, and provide a much
stronger lower bound by proving that for any concept class of Vapnik—Cher-
vonenkis dimension d, there is a distribution on which a statistical query
algorithm must make at least (d/log d) queries, each with allowed approxima-
tion error at most O(e€), in order to obtain a hypothesis with error less than e.

In Section 9, we show the equivalence of learning in the classification noise
model and learning in a more realistic model with a variable noise rate, and
Section 10 concludes with some open problems.

We note that since the original conference publication of these results, a great
many results have been obtained using the statistical query model, including
work by Aslam and Decatur [1993; 1995]. The noise simulation result presented
here has also appeared in more tutorial form [Kearns and Vazirani 1994].

2. The Valiant Learning Model

Let & be a class of {0, 1}-valued functions (also called concepts) over an input
space X. In trying to design a learning algorithm for the class %, we assume that
there is a fixed but arbitrary and unknown farget distribution % over X that
governs the generation of random examples. More precisely, when executed on
the target concept f € &, a learning algorithm will be given access to an oracle
EX(f, %) that on each call draws an input x randomly and independently
according to 9, and returns the (labeled) example (x, f(x)).

Once we have fixed the target concept f and target distribution %, there is a
natural measure of the error of any other concept ~# with respect to f and 9.
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Thus, we define error(h) = Pr.cq|f(x) # h(x)] (throughout the paper, the
notation x € % indicates that x is drawn randomly according to the distribution
%). Notice that we have dropped the dependence of error(h) on f and % for
notational brevity.

We assume that all inputs x are of some common length n. Here the length of
inputs is typically measured by the number of components; the most common
examples of n are the Boolean hypercube {0, 1}" and n-dimensional real space
R”. We also assume a mapping size( f) that measures the size or complexity of
representing each f € % in some fixed encoding scheme. Thus, size( f) will
measure the size of the smallest representation (there may be many) of the target
concept f in the representation scheme % used by the learning algorithm,' and
we will allow the algorithm running time polynomial in the input length n and

size(f).

Definition 1 (Learning in the Valiant Model). Let & be a class of concepts
over X, and let ¥ be a class of representations of concepts over X. We say that F
is efficiently learnable using ¥ in the Valiant model if there exists a learning
algorithm L and a polynomial p(-, -, -, *) such that for any f € & over inputs of
length n, for any distribution % over X, and forany 0 < e=1and 0 < é = 1, the
following holds: if L is given inputs €, 8, n and size( f), and L is given access to
EX(f, @), then L will halt in time bounded by p(l/e, 1/8, n, size(f)) and
output a representation in ¥ of a concept & that with probability at least 1 — &
satisfies error(h) = e. This probability is taken over the random draws from &
made by EX(f, 9) and any internal randomization of L. We call e the accuracy
parameter and & the confidence parameter.

3. The Classification Noise Model

The well-studied classification noise model [Angluin and Laird 1988; Laird 1988;
Kearns and Li 1993; Sloan 1988; Kearns and Schapire 1994; Sakakibara 1991;
Schapire 1992] is an extension of the Valiant model intended to capture the
simplest type of white noise in the labels seen by the learner. We introduce a
parameter 0 = n < 1/2 called the noise rate, and replace the oracle EX(f, 9)
with the faulty oracle EXJy(f, @) (where the subscript is the acronym for
Classification Noise). On each call, EX{y(f, @) first draws an input x randomly
according to 9 (just as in the noise-free case). The oracle then flips a coin whose
probability of heads is 1 — n and whose probability of tails is . If the outcome is
heads, the oracle returns the uncorrupted example (x, f(x)); but if the outcome
is tails, the oracle returns the erroneous example (x, = f(x)). Note that in this
model, errors occur only in the labels given to the learner; the inputs x given to
the learner remain independently distributed according to %. Other models
allowing corruption of the input as well as the label have been studied previously
[Valiant 1985; Kearns and Li 1993], with considerably less success in finding
efficient error-tolerant algorithms. Here, we will concentrate primarily on the

! The choice of representation used by the learning algorithm can sometimes be quite significant, as
previous results have demonstrated concept classes & for which the choice of hypothesis representa-
tion can mean the difference between intractability and efficient learning [Pitt and Valiant 1988;
Kearns et al. 1987].
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classification noise model, although, in Section 9, we will examine a more
realistic extension of this model.

Despite the noise in the labels, the learning algorithm’s goal remains that of
finding a hypothesis concept & satistying error(h) = Pr.cq[f(x) # h(x)] = e.
Furthermore, we would like the algorithm to tolerate the highest possible noise
rate. Obviously, as n approaches 1/2 learning becomes more difficult because the
label seen by the learner approaches an unbiased coin flip. Thus we must allow
learning algorithms to have a polynomial time dependence on the quantity
1/(1 — 2m), which is simply proportional to the inverse of the distance of m
from 1/2.

One final issue is what information the learner should be provided about the
exact value of m. For simplicity in the current paper, we adopt the convention of
Angluin and Laird [1988] and assume that the learning algorithm is given only an
upper bound m, (where 1/2 > m, = m), and is given polynomial time
dependence on 1/(1 — 2m,). For all of the results presented here, even this
assumption can be removed using a technique due to Laird [1988].

Definition 2 (Learning with Noise). Let & be a class of concepts over X, and
let ¥ be a class of representations of concepts over X. We say that F is efficiently
learnable with noise using ¥ if there exists a learning algorithm L and a

distribution % over X, for any noise rate 0 = n < 1/2, and for any 0 < € = 1 and
0 < & = 1, the following holds: if L is given inputs m, (where 1/2 > m, = 7)), e,
8, n and size(f), and L is given access to EXZy(f, @), then L will halt in time
bounded by p(1/(1 — 27,), 1/e, 1/8, n, size( f)) and output a representation in
# of a concept & that with probability at least 1 — & satisfies error(h) = €. This
probability is taken over the random draws from 9, the random noise bits of
EXJn(f, @) and any internal randomization of L.

4. The Statistical Query Model

We now introduce a new learning model that is related to but apparently weaker
than the Valiant model, and is designed to limit the ways in which the learning
algorithm can use the random examples it receives from the oracle EX(f, 9).
The restriction we would like to enforce is that learning be based not on the
particular properties of individual random examples, but instead on the global
statistical properties of large samples. Such an approach to learning seems
intuitively more robust than algorithms that are willing to make radical alter-
ations to their hypotheses on the basis of individual examples.

To formalize this restriction, we introduce a new oracle STAT(f, @) that will
replace the standard examples oracle EX( f, @). It will be helpful throughout the
paper to think of STAT(f, @) as an intermediary oracle (standing between the
learning algorithm and the examples oracle EX(f, %)) whose goal is to enforce
the restriction on the learner’s use of examples described above. Unlike EX(f,
D), STAT(f, %) is an oracle that the learner interacts with. The oracle
STAT(f, @) takes as input a statistical query of the form (x, «). Here x is any
mapping of a labeled example to {0, 1} (thus y: X X {0, 1} — {0, 1}) and « €
[0, 1].
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We interpret a query (x, @) as a request for the value P, = Pr,cq[x(x,
f(x)) = 1]; we will abbreviate the right side of this equation by Przy(rq)[x =
1] to emphasize that the distribution on examples is simply that generated by the
oracle EX(f, 9@). Thus, each query is a request for the probability of some event
on the distribution generated by EX(f, 9). However, the oracle STAT(f, %)
will not return the exact value of P, but only an approximation, and the role of «
is to quantify the amount of error the learning algorithm is willing to tolerate in
this approximation. More precisely, on query (x, @) the oracle STAT(f, &) is
allowed to return any value P that satisfies P, — a = P = P, + a. We refer
to a as the allowed approxtmatzon error of the query.

At this point, it should be clear that given access to the oracle EX(f, @), it is
a simple matter to simulate the behavior of the oracle STAT(f, @) on a query
(x, «) with probability at least 1 — &: we draw from EX(f, %) a sufficient
number of random labeled examples (x, f(x)) and use the fraction of the
examples for which x(x, f(x)) = 1 as our estimate PX of P,. The number of
calls to EX(f, 9) required will be polynomial in 1/« and log(1/8), and the time
required will be polynomial in the time required to evaluate y, and in 1/« and
log(1/8). To ensure that efficient algorithms for learning using STAT(f, @) can
be efficiently simulated using EX(f, %), we must place natural restrictions on «
(namely, that it is an inverse polynomial in the learning problem parameters) and
on x (namely, that it can be evaluated in polynomial time). Thus, we require that
algorithms only ask STAT(f, &) for estimates of sufficiently simple probabili-
ties, with sufficiently coarse resolution. This is done in the following definition,
which formalizes the model of learning from statistical queries. The intuition that
algorithms with access to STAT(f, @) can be simulated given access to EX(f,
%) is then formalized in greater detail as Theorem 1.

Definition 3 (Learning from Statistical Queries). Let & be a class of concepts
over X, and let ¥ be a class of representations of concepts over X. We say that F
is efficiently learnable from statistical queries using ¥ if there exists a learning
algorithm L and polynomials p(-, -, *), g(*, *, *), and r(-, -, ) such that for any
f € & over inputs of length n, for any distribution % over X, and for any 0 <
€ = 1, the following holds: if L is given inputs €, n and size( f), and L is given
access to STAT(f, %), then (1) for every query (x, o) made by L, x can be
evaluated in time g(1/€, n, size(f)) and 1/« is bounded by r(1/e, n, size(f)),
and (2) L will halt in time bounded by p(l/e, n, size(f)) and output a
representation in J of a concept 4 that satisfies error(h) < e.

Later in the paper, we will also consider the variant of the statistical query
model in which the learner is provided with access to unlabeled inputs according
to 9, in addition to the oracle STAT(f, @). This is because unlabeled inputs are
sometimes crucial for learning (for instance, to estimate the important regions of
the distribution), and our main theorem (Theorem 3) still holds for this variant.
This is most easily seen by noting that algorithms in the noise model still have
access to 9 simply by ignoring the noisy labels returned by EXZy(f, D).

In the statistical query model, it will sometimes be helpful to identify the class
of queries from which a learning algorithm chooses. Thus, we say that & is
efficiently learnable from statistical queries using ¥ with query space 9 if the above
definition can be met by an algorithm that only makes queries (x, «) satisfying x
€ 9.
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Remark 1. No Confidence Parameter. Note that the confidence parameter 6 is
absent in this definition of learning. This is because the main purpose of & in the
Valiant model is to allow the learning algorithm a small probability of failure due
to an unrepresentative sample from EX(f, %). Since we have now replaced
EX(f, 9) by the oracle STAT(f, %), whose behavior is always guaranteed to
meet the approximation criterion P, — a = PX = P, + «a, we no longer need to
allow this failure probability.

Remark 2. Conditional Probabilities. Note that although the statistical query
model only provides the learner with an oracle for estimating probabilities, one
can also design algorithms that estimate conditional probabilities Prgy(sq)[x1 =
1|x, = 1], by expanding the conditional probability as a ratio of two simple
probabilities, and obtaining sufficiently accurate estimates of the numerator and
denominator to yield an additively accurate estimate of the ratio. Such algo-
rithms must be prepared for the case that the probability Prpy;q)[x, = 1] of
the conditioning event is too small; but this is typically not a restriction, since an
algorithm with access to EX(f, @) would also be unable to obtain an estimate
for the conditional probability in this case. Some of the algorithms we discuss will
take advantage of this way of estimating conditional probabilities. The estimation
of conditional probabilities in the statistical query model is also discussed by
Aslam and Decatur [1993; 1995].

Before we proceed with the technical portion of the paper, some final
comments regarding all of the models we have defined are in order. First of all,
for M representing any of the three models (Valiant, noise or statistical query)
we will simply say that & is efficiently learnable in model M to mean that & is
learnable using # for some ¥ in which each hypothesis over inputs of length n
can be evaluated in time polynomial in 7.

Secondly, we will have occasion to study some common variants of these
models. For some classes, we do not know a polynomial-time learning algorithm
but instead have an algorithm with at least a nontrivial time bound; in such cases
we drop the modifier “efficient” and instead say that the class is learnable in
model M within some explicitly stated time bound. For some classes, we have an
efficient algorithm only for a particular distribution % (or a class of distribu-
tions); in such cases, we say that the class is learnable with respect to % (or with
respect to the class of distributions) in model M.

Finally, we will need the following standard definition. For any concept class &
and a set of inputs S = {x,, ..., x,}, we say that F shatters S if for all of the 2¢
possible binary labelings of the points in S, there is a concept in F that agrees
with that labeling. The Vapnik—Chervonenkis dimension of % is the cardinality of
the largest set shattered by & [1971].

5. Simulating Statistical Queries Using Noisy Examples

Our first theorem formalizes the intuition given above that learning from
statistical queries implies learning in the noise-free Valiant model. The proof of
this theorem is omitted for brevity, but employs standard Chernoff bound and
uniform convergence analyses [Blumer et al. 1989]. The key idea in the simula-

2We could still keep & in order to allow for a probability of failure in randomized learning
algorithms, but for simplicity choose not to do so since all the algorithms we discuss are deterministic.
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tion is to draw a single large sample with which to estimate all probabilities
requested by the statistical query algorithm.

THEOREM 1. Let F be a class of concepts over X, and let ¥ be a class of
representations of concepts over X. Suppose that % is efficiently learnable from
statistical queries using ¥ by algorithm L. Then F is efficiently learnable using ¥ in
the Valiant model, and furthermore:

—(Finite Q case). If L uses a finite query space 2 and « is a lower bound on the
allowed approximation error for every query made by L, then the number of calls
to EX(f, @) required to learn in the Valiant model is O(1/o? log(|2]/5)).

—(Finite VC dimension case). If L uses a query space 2 of Vapnik—Chervonenkis
dimension d and « is a lower bound on the allowed approximation error for every
query made by L, then the number of calls to EX(f, %) required to learn in the
Valiant model is O(d/o? log(1/8)).

Note that in the statement of Theorem 1, the sample size dependence on € is
hidden in the sense that we expect a and possibly the query class to depend on e.

Theorem 1 shows that the statistical query model identifies one approach to
learning in the noise-free Valiant model. We now derive a less obvious and
considerably more useful result: namely, that algorithms for learning from
statistical queries can in fact be reliably and efficiently simulated given access
only to the noisy example oracle EX@yn(f, @). The key to this result is the
following lemma, which describes how any probability Prgy;4)[x = 1] can be
expressed in terms of probabilities over the sample space generated by EX{y( f,
P@).

LEMMA 2. Let x: X X {0, 1} — {0, 1}. Then, for any 0 = n < 1/2, the
probability Prpy ;q)[x = 1] can be written as an expression involving only m and
probabilities over the sample space generated by EXJnN(f, D).

Proor. The key idea of the proof is to define a partition of the input space X
into two disjoint regions X, and X, as follows: X consists of those points x € X
such that x(x, 0) # x(x, 1), and X, consists of those points x € X such that
x(x, 0) = x(x, 1). Thus, X, is the set of all inputs such that the label matters in
determining the value of y, and X, is the set of all inputs such that the label is
irrelevant in determining the value of y. Note that X, and X, are disjoint and
X, UX, =X

Having defined the regions X; and X,, we can now define the induced
distributions on these regions. Thus, if we let p; = @9[X,] and p, = D[X,] (so
pi1 + p, = 1), then for any subset § C X, we define 9,[S] = @[S]/p, and for
any subset S C X, we define 9,[S] = 9[S]/p,. Throughout the proof, we will
use the following abbreviated notation: P, will denote Prpy;q)[x = 1], PSN
will denote Prpx™ (ra)[x = 1], P;( will denote Prpy (/o )[x = 1], and Pi will
denote Prpy ;4 ,)[x = 1]. Notice that for PSN, the label given as the second
input to y is potentially noisy.

In a moment we will derive an expression for P, (which is the quantity we
would like to estimate) involving only 1, p, p», PSN, and Pi. We first argue that
all these quantities (excluding m, which we shall deal with separately) can in fact
be estimated from the noisy oracle EX¢n(f, D).
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First, note that it is easy to estimate PfN from calls to EXZn(f, @), because
this probability is already defined with respect to the noisy oracle.

Next, note that it is easy to estimate p,; (and therefore p, = 1 — p,) using
only calls to EXZx(f, @): given a potentially noisy example (x, €) from EX{y(f,
%), we ignore the label € and test whether x(x, 0) # x(x, 1). If so, thenx €
X, otherwise x € X,. Thus, for a large enough sample the fraction of the x
falling in X, will be a good estimate for p; via a standard Chernoff bound
analysis.

Finally, P)Z( can be estimated from EX &y (f, @): we simply sample pairs (x, €)
returned by the noisy oracle, keeping only those inputs x that fall in X, (using the
membership test x(x, 0) = x(x, 1)). For such an x, the value of y is invariant to
the label, so we can just compute the fraction of the sampled x € X, for which
x(x, 0) = x(x, 1) = 1 as our estimate for P)Z(.

Now to derive the desired expression for P, consider the probability that x is
1 when the input to y is obtained from the noisy oracle EX ¢ (f, @) with noise
rate . We may write

PgN = (1 - TI)PX + TI(PlPrxe@],(eﬂf(x)[X(X, €) = 1]
+p2PergAz,(e—|f(x)[X(x7 €)= 1]) (1)

The intuition behind this expression is as follows: On a call to EXZnN(f, D),
with probability 1 — m there is no misclassification, in which case the call to
EXJn(f, 9) behaves identically to a call to EX(f, 9). With probability m,
however, there is a misclassification. Now given that a misclassification occurs,
the label provided is = f(x), and there is probability p, that the input is drawn
from X, (and thus is distributed according to %,), and probability p, that the
input is drawn from X, (and thus is distributed according to %,). We now derive
alternative expressions for three of the terms in Eq. (1) for substitution.

First, note that we may write Prycq ¢ pnlx = 1] = PrEX(f aplx = 0] =
1 - P because in X, reversing the label and computing x is equivalent to
leaving the label unaltered and reversing the value of y.

Second, we may also write Procqg, ¢ po[x = 1] = P)z( because in X, the
label is unimportant for the value of y.

Third, we may make the expansion P, = P1P>l( + sz)z(.

Making these substitutions into Eq. (1), some simple algebra yields

PEN =(1- ﬂ)(PlP)l( +P2P)2()
+ n(p(1 = P}) + p,P3)
= (1 —=2n)p,P, + p,P} + np,. (2)

By solving Eq. (2) for P}, we obtain:

Pl =

X (WW)(PgN—PzPi—WM)- (3)

Finally, again using the expansion P, = p1P}( + szi and substituting for P)l(
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using Eq. (3) we obtain
P L P e
= +
Tlr—2g) T T2

n
- (1_2"’1)191' 4)

Equation (4) has the desired form: an expression for P, in terms of P , D15 Das
P2 and m. This completes the proof of Lemma 2. [J]

Equation (4) suggests an approach for simulating the oracle STAT(f, %)
using only the noisy oracle EX{y(f, 9): given any query (x, «) for STAT(f, 9),
use EXZn(f, D) to obtain sufficiently accurate estimates of each quantity on the
right-hand side of Eq. (4), and then solve to get an accurate estimate for P, . This
is exactly the approach taken in the theorem that follows, which is one of our
main results. The main details to be worked out are a sensitivity analysis of Eq.
(4) to ensure that additively accurate estimates of each quantity on the right-
hand side provide a sufficiently accurate estimate of P,, the related issue of
guessing a good approximation to the noise rate, and an analysis of the required
sample sizes.

THEOREM 3. Let & be a class of concepts over X, and let ¥ be a class of
representations of concepts over X. Suppose that F is efficiently learnable from
statistical queries using ¥ by algorithm L. Then % is efficiently learnable with noise
using ¥, and furthermore:

—(Finite 9 case). If L uses a finite query space 2 and « is a lower bound on the
allowed approximation error for every query made by L, then the number of calls
to EXQn(f, D) required to learn with noise is

o 1 21 |91|) 11 ( 1 )
a(l —2m,) 08 5 +Z 08 da(l —2m,) ) )"

—(Finite VC dimension case). If L uses a query space 9 of Vapnik—Chervonenkis
dimension d and o is a lower bound on the allowed approximation error for every
query made by L, then the number of calls to EXZn(f, D) required to learn with

noise is
[z o)+ ol )
o\d| —————| log| o) +—logl ———1].
a(l —2m,) 8/ € da(l — 2m,)

PrOOF. Let 7, be the given bound on m, and suppose we wish to simulate a
query (x, «) for the oracle STAT(f, @). What is needed first is a sensitivity
analysis of the right hand side of Eq. (4). We have already sketched in the proof
of Lemma 2 how to obtain estimates with small additive error for py, p,, P} CN,
and P2 We will use m, to get a good estimate 7 for m in a way to be descrlbed
momentarlly, for now, we analyze how accurate 7) must be in order to allow
substituting 1/(1 — 2#) for 1/(1 — 2n) without incurring too much error in Eq.

4).
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LEMMA 4. Let0=m, N <1/2and 0 = A= 1satisfyn—A=9H=mn+ A Let
0 = a = 1. Then there exists a constant ¢ such that if A < (ca/2)(1 — 2m)?, then

1 1 1

o= =
1-2n 1-27 1-2q

+ a. %)

ProOF. Taking the extreme allowed values for 7 gives

1 1 1
= = .
1-2(n—4A) 1-27 1-2n+A4)

Taking the leftmost inequality of this equation, we see that the leftmost
inequality of Eq. (5) will be satisfied if we have 1/(1 — 2n) — a« = 1/(1 — 2(n —
A)). Solving for constraints on A gives

1
A= )
(1/(1 =27m) —a) — (1 — 27)

If we setx = 1/(1 — 27m) and f(x) = 1/x, we obtain 2A = f(x — «a) — f(x).
This suggests analysis via the derivative of f. Now f'(x) = —1/x* and we may
write f(x — a) = f(x) + ca/x* for some constant ¢ > 0, for all x € [1, ].
(This is the range of interest forx = 1/(1 — 27), corresponding to n = 0 and
n = 1/2.) This gives A = ca/2x* = (ca/2)(1 — 2m)?. An identical analysis gives
the same bound on A for achieving the rightmost inequality in Eq. (5). This
concludes the proof of Lemma 4. [J

Thus, assume for the moment that we have found a value 9 satisfying n — A <
7 =mn + A where A = (ca/2)(1 — 2m,)* = (ca/2)(1 — 2m)* as in the
statement of Lemma 4. Then provided we have estimates for p, p,, P{" and P}
that have additive error bounded by a(1 — 2m,,), it can be shown using Lemma
4 and some algebra that solution of Eq. (4) using these estimates provides an
estimate PX of P, with additive error O(«). As in Theorem 1, we can use a single
shared sample to estimate all queries made to STAT(f, %), resulting in only
logarithmic dependence on the query space cardinality or linear dependence on
its Vapnik—Chervonenkis dimension; this dependence is obtained via standard
techniques [Blumer et al. 1989].

To find the assumed value 7, we simply try all values ) = iA fori = 1,2, ...,
1/2A.% Clearly for one of these tries, n will be within A of the true noise rate 7,
and the above simulation will yield (with high probability) estimates for all
queries to STAT( f, @) accurate to within the desired additive error a. Also note
that for each y, the quantities p,, p,, P{" and P do not depend on m, so our
simulation needs to estimate these quantities only once. Given these estimates,
we then run L repeatedly, each time using the same fixed estimates but a
different guess for 9 to solve Eq. (4) on each query. This will result in a series of
hypotheses &, ..., hy,, output by the runs of L, one of which has error
smaller than e with high probability. It is not difficult to show that given a

3 An improved method for finding 4 has recently been given by Aslam and Decatur [1995].
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sufficiently large sample from EX &y (f, D), the h; that best agrees with the noisy
examples has error smaller than e. This completes the proof of Theorem 3. [J

We again note that the assumption of an upper bound n, on the noise rate can
be eliminated [Laird 1988].

To summarize, Theorem 3 shows that if we can find an algorithm for efficient
learning in the statistical query model, we immediately obtain an algorithm for
efficient learning in the noise model. Furthermore, examination of the proof
shows that the theorem holds even with respect to specific distributions (that is,
efficient statistical query learning for a particular distribution implies efficient
learning with noise for the same distribution), and also for the variant of the
statistical query model in which the learner is given access to an oracle for
unlabeled inputs from % in addition to access to the oracle STAT(f, ¥). These
stronger statements of the theorem will both be used in the applications given in
the following section.

6. Efficient Noise-Tolerant Learning Algorithms

In this section, we give evidence of the power of Theorem 3 by outlining some of
its many applications. Perhaps the most important message to be gleaned is that
the model of learning from statistical queries appears to be quite general, in the
sense that it encompasses practically all of the concept classes known to be
efficiently learnable in the Valiant model (and the Valiant model with restricted
distributions). Thus, practically every class known to be efficiently learnable is in
fact efficiently learnable with noise. One of the few and notable apparent
exceptions to this phenomenon is examined in the following section.

We first give a partial list of the many algorithms in the Valiant model
literature that can be modified to obtain algorithms in the statistical query model
with relatively modest effort. Among others, the list includes Valiant’s algorithm
for conjunctions [Valiant 1984] and Angluin and Laird’s [1988] noise-tolerant
variant of it; the algorithm of Linial et al. [1989] for learning AC" in time
O(nP°{°e Yy with respect to the uniform distribution in the Valiant model (and
its subsequent generalization with respect to product distributions due to Furst et
al. [1991], several efficient algorithms for learning restricted forms of DNF with
respect to the uniform distribution in the Valiant model [1987]; and efficient
algorithms for learning unbounded-depth read-once formulas with respect to
product distributions in the Valiant model [Schapire 1990; Hancock and Man-
sour 1991]. For all of these classes we can obtain efficient algorithms for learning
with noise by Theorem 3; in this list, only for conjunctions [Angluin and Laird
1988] and Schapire’s work on read-once circuits [Schapire 1990] were there
previous noise analyses.

As further evidence for the generality of the statistical query model and to give
a flavor for the methods involved, we now spend the remainder of this section
describing in high-level detail three cases in which new statistical query algo-
rithms can be obtained with more involved analysis than is required for the above
algorithms. As mentioned earlier, without loss of generality we assume these
algorithms can obtain estimates for conditional probabilities (see Remark 2
following Definition 3).
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6.1. COVERING ALGORITHMS AND FEW RELEVANT VARIABLES. A number of
algorithms for learning in the Valiant model use some variant of a fundamental
approach that we shall call the covering method. Very briefly and informally, the
basic idea is to construct an approximation to the target gradually concept by
finding a small set of candidate subfunctions with the property that each
candidate covers a significant fraction of the current sample, while not incurring
too much error on the portion covered. The hypothesis is then obtained by
greedy selection of candidate subfunctions. We will see a somewhat detailed
example of this approach momentarily.

A partial list of the efficient algorithms employing some version of this
approach is: Rivest’s algorithm for learning decision lists [Rivest 1987]; Haus-
sler’s [1988] algorithm for learning Boolean conjunctions with few relevant
variables; the algorithm of Blumer et al. [1989] for learning a union of axis-
aligned rectangles in the Euclidean plane; and the algorithm of Kearns and Pitt
[1989] for learning pattern languages with respect to product distributions.

In its original form, the covering method is not noise-tolerant, and indeed with
the exception of decision lists [Kearns and Schapire 1994; Sakakibara 1991] until
now there have been no known efficient noise-tolerant algorithms for the above
classes. It is possible to give a general variant of the covering method that works
in the statistical query model, thus yielding efficient noise-tolerant learning
algorithms for all of these problems. For brevity here, we outline only the main
ideas for the particular but representative problem of efficiently learning Bool-
ean conjunctions with few relevant variables.

In this problem, the target concept f is some conjunction of an unknown subset
of the Boolean variables x,, . . ., x,, (we assume that f is a monotone conjunction
without loss of generality [Kearns et al. 1987]. The expectation is that the
number of variables k£ (not necessarily constant) appearing in f is considerably
smaller than the total number of variables n (k << n), and we would like to find
an efficient algorithm whose sample complexity has the mildest possible depen-
dence on n (note that we cannot avoid time complexity that is at least linear in n
since it takes this much time just to read an example).

A solution to this problem in the Valiant model was given by Haussler [1988],
who made use of the covering method and obtained a sample size with only
logarithmic dependence on n. This is of some philosophical interest, since it
demonstrates that explicit external mechanisms for “focusing the attention” of
the learning algorithm on the relevant variables are not required to learn
efficiently with small sample sizes. We are interested in knowing if the same
statement holds in the presence of large amounts of noise.

The idea of Haussler’s covering approach is to take sufficiently large sets S
and S~ of positive and negative examples of f, respectively. The algorithm
proceeds in two phases, the first to guarantee consistency with S and the second
to guarantee consistency with .

In the first phase, the candidate set of variables, which is initially all variables,
is pruned to eliminate any x; which is set to 0 in some positive example in S;
such a variable directly contradicts the data. This phase ensures that any
conjunction of candidate variables will be consistent with the set S™.

In the second phase, a subset of the remaining candidates is chosen that
“covers” S . To do this, we associate with each candidate x; the set §; = {x €
S :x; = 0}. Note that by conjuncting x; to our hypothesis, we guarantee that our
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hypothesis will correctly label the examples in S; negatively (that is, we cover
S; ), and thus these can now be removed from S~ . Haussler’s algorithm simply
greedily covers S~ using the §;; note that the smallest cover has at most k
elements. The sample size bound of his analysis depends linearly on k, but only
logarithmically on n.

Our goal is to obtain a similar sample size bound even in the presence of noise;
to do this we provide an algorithm for learning from statistical queries along with
an analysis of the number of queries required and their allowed approximation
error (since it is these two quantities that dictate how many noisy examples are
required to simulate the statistical query algorithm).

To modify Haussler’s algorithm for the statistical query model, note that the
first phase of the algorithm may be thought of as computing a coarse estimate of
the probability that x; = 0 in a positive example; Haussler’s algorithm eliminates
any variable with a non-zero estimate. This almost but does not quite fall into the
statistical query model, since the implicit allowed approximation error is too
small. Instead, we will make calls to STAT(f, ¥) to estimate for each i the
conditional probability Pryyq)[x; = 0|f(x) = 1] with allowed approximation
error O(e/r), where r will be determined by the analysis. Only variables for which
the returned estimate is O(e€/r) are retained as candidates.

To obtain such estimates, we take the ratio of estimates in the conditional
expansion. Note that we may assume without loss of generality that the denomi-
nator Prpy(;q)[f(x) = 1] is at least € (otherwise, the trivial hypothesis that
always outputs 0 is already sufficiently accurate). After estimating this denomi-
nator within approximation error O(e), it suffices to estimate the numerator
Prey(ray[x; = 0, f(x) = 1] within approximation error O(€*/r). Thus, in the
first phase of the algorithm we require 1 query of approximation error O(e€) and
n queries of approximation €?/r; of course, in the simulation of the latter queries
from noisy examples we may use a single sample as suggested in Theorem 3.

To modify the second phase, note that if at stage i Haussler’s algorithm has
already chosen variables x,, ..., x; then for each j > i the fraction of the
remaining elements of §— that are covered by §;” can be thought of as an
estimate of the probability

Pji = PrEX(f,Qo)[xj = 0|f(x) =0,x,="-=x;=1]

(i.e., the probability that x; = 0 given that f is negative but the current hypothesis
is positive; note that if the conditioning event has too small a probability, then
the current hypothesis already suffices). This probability has a natural interpre-
tation: it is the fraction of the currently “uncovered” distribution of negative
examples that would become covered if we added x; to the conjunction. Since we
know there are at most k variables that would completely cover the distribution
of negative examples (namely, the variables appearing in the target conjunction),
there must always be a choice of x; for which this probability p; ; is at least 1/k.
As long as we choose to add an x; for which p; ; is at least some constant times
1/k, we will make rapid progress towards covering the negative distribution.
Thus, it suffices to estimate the p;,; within approximation error O(1/k). Note
that in the simulation from noisy examples, we can use a common sample to
simultaneously estimate all of the p;, for a fixed value of i, but since the
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conditioning event depends on the variables selected so far, we must draw a fresh
sample for each i.

How many variables must we select in the second phase before all but € of the
negative distribution is covered? Since we cover at least a fraction 1/k with each
variable added, we solve (1 — (1/k))" < € to give r = O(k log(1/e)). To
determine the sample complexity of simulating this statistical query algorithm
from noisy examples, we apply Theorem 3 to the following accounting of the
required queries:

—In the first phase, one query of approximation error € and n queries of
approximation error €*/r, where r = O(k log(1/€)). These queries may all be
estimated from a common noisy sample, as in Theorem 3.

—In the second phase, at most r stages, each of which requires at most n queries
of approximation error 1/k. The queries within a phase may be simulated from
a common noisy sample.

Applying Theorem 3 to just the queries from the first phase, we obtain a sample
size whose dependence on n is only log(n), on k is k%, and on e is 1/€*. (The
dependence on the noise rate and confidence parameters are simply those given
in Theorem 3.) For the second stage, the dependence on 7 is log(n), and on k is
k*. The important aspect of the overall bound is its modest logarithmic depen-
dence on the total number of variables. However, despite the logarithmic
dependence on n, our algorithm depends cubically on k, as opposed to Haus-
sler’s linear bound. It would be interesting to improve our bound, or prove that it
is optimal in the noisy computationally bounded setting. The same remarks apply
to the strong dependence on e.

6.2. LEARNING PERCEPTRONS ON SYMMETRIC DISTRIBUTIONS. Here the class
%, consists of all linear half-spaces passing through the origin in R". Thus,
without loss of generality, the target concept can be represented by its normal
vector # € R” lying on the unit sphere, and X € R” is a positive example of @ if
and only if & - ¥ = 0 (this is simply the class of perceptrons with threshold 0).
The distribution % we consider is the uniform distribution on the unit sphere (or
any other radially symmetric distribution). There is a voluminous literature on
learning perceptrons in general (see the work of Minsky and Papert [1988] for a
partial bibliography) and with respect to this distribution in particular [Seung et
al. 1992; Baum and Lyuu 1991; Gardner and Derrida 1989]. Here we give a very
simple and efficient algorithm for learning from statistical queries (and thus an
algorithm tolerating noise). Recent papers have provided more general solutions,
again in the statistical query setting [Blum et al. 1994; Cohen 1997].

The sketch of the main ideas is as follows: for any vector ¥ € R”, the error of
v with respect to the target vector 4 is simply error(v) = Prpy; o)[sign(v - X) #
sign(u - X)]. The estimation of such a probability clearly falls into the statistical
query model by setting x;(X, £) = 1 if and only if sign(v - ¥) agrees with the
label €. Now it is not difficult to show that for radially symmetric distributions,
error(v) = p(u, v)/m, where p(u, v) is the angle between & and v. Thus by
obtaining accurate estimates of error(v) we obtain accurate estimates of the
projection of the target & onto v. Thus, our algorithm is to choose n linearly
independent vectors v, ..., v, and use the oracle STAT(it, @) to estimate the
coordinates of & in the v, system in the way suggested. It is not hard to show that
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if our estimates are accurate within an additive factor of €/n, then the resulting
hypothesis vector &’ will satisty error(ii’) < €. Since this is an efficient algorithm
for learning from statistical queries, we immediately have an efficient algorithm
for learning with noise.

6.3. LEARNING RECTANGLES IN HIGH DIMENSION. We now give an efficient
statistical query algorithm for the class of axis-aligned rectangles in n-dimen-
sional space. This class was first studied by Blumer et al. [1989] who analyzed the
algorithm that takes the smallest axis-aligned rectangle consistent with a large
sample. Note that this algorithm is not noise-tolerant, since in the presence of
noise there may be no axis-aligned rectangle separating the positive examples
from the negative examples.

Here we need to use the variant of the statistical query model in which we are
given access to 9 in addition to STAT(f, ¥) (see the comments following the
proof of Theorem 3). Our algorithm begins by sampling % and using the inputs
drawn to partition n-dimensional space. More precisely, for each dimension i, we
use the sample to divide the x;-axis into d/e intervals with the property that the x;
component of a random point from % is approximately equally likely to fall into
any of the intervals. This can be done using methods similar to those of Kearns
and Schapire [1994].

We now estimate the boundary of the target rectangle separately for each
dimension using STAT(f, 9). Note that if the projection of the target rectangle
onto the x;-axis does not intersect an interval I of that axis, then the conditional
probability p; that the label is positive given that the input has its x; component
in I is 0. On the other hand, if the target’s projection onto [ is nonzero and there
is significant probability that a positive example of the target has its x; compo-
nent in /, then p; must be significantly larger than 0. Thus, our algorithm can
start from the left, and moving to the right, place the left x;-boundary of the
hypothesis rectangle at the first interval / such that p, is significant (at least
polynomial in €/n); note that estimating p; can be done solely with calls to
STAT(f, @) once the intervals are defined for each coordinate. The analogous
computation is done from the right, and for each dimension. The result is an
efficient (polynomial in 1/e and n) algorithm for learning n-dimensional rectan-
gles from statistical queries, immediately implying a noise-tolerant learning
algorithm.

A combination of the ideas given here and those in the subsection above on
covering algorithms yields an efficient noise-tolerant learning algorithm for
unions of rectangles in the Euclidean plane.

7. A Hard Class for Learning from Statistical Queries

The results of the last section might tempt us to conjecture that any class
efficiently learnable in the Valiant model is efficiently learnable from statistical
queries. In this section, we prove this conjecture to be false, by showing that the
class of all parity concepts (where each potential target concept is the parity of
some unknown subset of the Boolean variables x, ..., x,,), which is known to
be efficiently learnable in the Valiant model via the solution of a system of linear
equations modulo 2 [Fischer and Simon 1992; Helmbold et al. 1992], is not
efficiently learnable from statistical queries. The fact that the separation of the
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two models comes via this class is of particular interest, since the parity class has
no known efficient noise-tolerant algorithm.

THEOREM 5. Let &, be the class of all parity concepts over n Boolean variables,
and let ¥ = U, _, F,. Then F is not efficiently learnable from statistical queries.

ProOOF. We prove that it is impossible to learn &, from statistical queries in
time polynomial in n even in the case that the target concept f is drawn randomly
from %, and the target distribution % is uniform over {0, 1}".

We begin by fixing any mapping x: {0, 1}" X {0, 1} — {0, 1}. Our
immediate goal is to show that a query for STAT(f, @) on any such x reveals
essentially no information about f; this will be accomplished by computing an
upper bound on the variance of P (f). Let us use P,(f) to denote
Prey(ra)[x = 1] in order to make explicit the dependence of P, on f; in the
case of the uniform distribution, we simply have P,(f) = (1/2") 2,013 x(x,
J(x)). Now let E[P,(f)] denote the expected value of P, (f), where the
expectation is taken over the random draw of a parity concept f uniformly from
% ,. Then, by additivity of expectations we may write

1
Ef[PX(f)]=(n) > Elx(x, f(x)]

2 x€{0,1}"

1
=<) > 0), (6)

n
2 x&{0,1}"

where we define Q(x) = 0 if y(x, 0) = x(x, 1) = 0 (let Q, denote the set of
all suchx), Q(x) = 1if x(x, 0) = x(x, 1) = 1 (let O, denote the set of all such
x),and O(x) = 1/2 if x(x, 0) # x(x, 1) (let Q,,, denote the set of all such x).
Equation (6) follows from the fact that for any fixed x € {0, 1}", a randomly
chosen parity concept f is equally likely to satisfy f(x) = 0 and f(x) = 1. Now
let gy, g1, and q,,, denote the cardinalities of Q,, O, and Q,,, respectively, so
qo + q1 + q1» = 2". Then, from Eq. (6) and the definition of Q(x), we may

write
1 1
E[P, (f)]= (2,,)(% + (2)611/2)- (7)

We may also write

1
Ef[PX(f)2]=<22n) > Elx(G, f))x(y, fy)].

x,yef0, 1"

For aset S C {0, 1}", let us introduce the shorthand notation

I = > Elx, f(x)x(y, fy)].

x€8,ye{0,1}"
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Then, we may further decompose the above sum by writing

1
22n

Ef[PX(f)z] = ( )(F(Qo) + I'(Q)) + F(QI/Z))-

The summation I'(Q,) is simply 0, since x(x, f(x)) = 0 here. I'(Q,) simplifies
to g 2,013 Edx(y, f(¥))] since x(x, f(x)) = 1, and this simplifies further
to be g,(q; + (1/2)g,,,) by Egs. (6) and (7). For the summation I'(Q,,,), we
also need to consider the possible cases of y. If y = x (which occurs for only a
single value of y), then x(x, f(x))x(y, f(¥)) = x(x, f(x))* will be 1 if and only
if f(x) = b, for the value b, € {0, 1} such that y(x, b) = 1. This will occur
with probability 1/2 for randomly drawn parity concept f. If y falls in Q, (which
occurs for g, values of y), x(x, f(x))x(y, f(y)) = 0. If y falls in Q; (which
occurs for g, of the values of y), then x(x, f(x))x(y, f(»)) = x(x, f(x)) and
again this is 1 if and only if f(x) = b,, which again will occur with probability 1/2
for a random parity concept f. Finally, if y falls into Q,, but is not the same as
x (which occurs for g,, — 1 of the values of y), then x(x, f(x))x(y, f(y)) =1
if and only if f(x) = b, and f(y) = b,, where b, is as before and b, € {0, 1} is
the value satisfying x(y, b,) = 1. Since for any fixed x and y, all four labelings of
x and y are equally likely for a randomly chosen parity concept f, this will occur
with probability 1/4.
Putting this all together, we write

E{P,(f)*]= (1/2*")(q:(q: + (1/2)q1/»)
+C]1/2(1/2 + (1/2)611 + (1/4)(Q1/2 - 1)). (8)

Now from Eq. (7) we may write

1 1 ?
E[P,(f)]) = (22,,) (111 + (2)‘]1/2) .

By combining this equality with Eq. (8), some simple algebra then gives

Val'f[PX(f)] = Ef[PX(f)Z] - Ef[PX(f)]z
_ qi/2
(422
1
(2n+2) ’

=

since q,,, = 2". Thus we have shown that for any y, the variance of P, is
exponentially small with respect to the random draw of target concept. Now
suppose for contradiction that parity concepts are efficiently learnable from
statistical queries by an algorithm L. Fix € to be any constant smaller than 1/4
(note that with respect to the uniform distribution, any two parity concepts differ
with probability 1/2). Assume without loss of generality that « is a lower bound
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on the allowed approximation error of L’s queries, where a = 1/p(n) for some
polynomial p(-) since € is constant.

Although the queries made by L may be dynamically chosen, L makes some
first query (x;, «). Let Xy, - .., X,(n) b€ the sequence of queries made by L when
the answer returned to each query (x;, @) is simply E/[P,,(f)]. Here r(n) is
polynomial since L is efficient. Then it is not hard to show using Chebyshev’s
inequality and the above bound on Var/P,,(f)] that with high probability, a
randomly chosen parity concept f° will be consistent with the query responses
received by L—that is, with high probability f’ satisfies

Pr{P(f)] —a=P(f)=PriP,(f)]+ «

for all 1 = i = r(n). Since many parity concepts are consistent with the
responses received by L, the error of L’s hypothesis must be large with respect to
the random draw of the target f'; this follows from the fact if 4 agrees with one
parity concept with probability at least 1 — €, it must disagree with any other
parity concept with probability at least 1/2 — e. This concludes the proof of
Theorem 5. [J

Note that the proof of Theorem 5 shows that the class of parity concepts is not
efficiently learnable from statistical queries for information-theoretic reasons.
Thus, while it can be shown that in the absence of constraints on computation
time or the allowed approximation accuracy, the Valiant and statistical query
models are equivalent, Theorem 5 demonstrates that the requirement that an
algorithm make only a polynomial number of queries, each of at least inverse
polynomial allowed approximation error, separates the models with no unproven
complexity assumptions.

Theorem 5 has recently been strengthened and generalized [Blum et al. 1994]
to show that the number of statistical queries required for learning any class is
determined by the number of “nearly orthogonal” concepts contained in the
class.

8. A Lower Bound on Query Complexity

The proof of Theorem 5 is of particular interest because it demonstrates that
while the Vapnik—Chervonenkis dimension of a concept class characterizes the
number of random examples required for learning in the Valiant model [Blumer
et al. 1989], it cannot provide even a rough characterization of the number of
queries required for learning in the statistical query model: the Vapnik—Cher-
vonenkis dimension of the class of parity concepts is ®(n), and we have shown
that the number of statistical queries required is exponential in n. This demon-
strates that the Vapnik-Chervonenkis dimension cannot provide good general
upper bounds on query complexity, but the possibility of a good general lower
bound remains, and is the subject of this section.

It is important to carefully specify what we desire from a lower bound on the
number of statistical queries, due to the potential trade-off between the number
of queries made and the allowed approximation error of those queries. More
precisely, from Theorem 1 and the lower bound on sample sizes for the Valiant
model given by Ehrenfeucht et al. [1989], we can easily derive an initial but
unsatisfying bound on the number of queries required in the statistical query
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model: since we know that an algorithm using r queries, each of allowed
approximation error at least a, can be simulated to obtain an algorithm in the
Valiant model using r/a? examples (ignoring the dependence on §), the Ehren-
feucht et al. bound indicates that r/a® = Q(d/e) must hold, where d is the
Vapnik—Chervonenkis dimension of the concept class. Thus, we have r =
Q(da?/€). This bound allows the possibility that there is a concept class of VC
dimension d which can be learned from just a single statistical query of
approximation error Ve/d. Similarly, since we have a = O(V'er/d) the bound
also allows the possibility that d/e queries of allowed approximation error 1
could always suffice for learning. This latter possibility is ludicrous, since allowed
approximation error 1 allows the oracle STAT( f, @) to return arbitrary values in
[0, 1], rendering learning impossible in any number of queries.

We now give a considerably better bound, in which the number of queries
made is bounded from below and the allowed approximation error of these
queries is bounded from above simultaneously.

THEOREM 6. Let & be any concept class, let d be the Vapnik—Chervonenkis
dimension of F, and let L be an algorithm for learning F from statistical queries.
Then for any e, there is a distribution %9 such that L must make at least Q(d/log d)
queries with allowed approximation error O(e) to the oracle STAT(f, D) in order to
find a hypothesis h satisfying error(h) = e.

ProOE. The proof begins by using the standard hard distribution for learning
in the Valiant model [Blumer et al. 1989; Ehrenfeucht et al. 1988]. Thus, given
the target error value €, we let {x,, x;, ..., x, } be a shattered set (where d' =
d — 1), and let 9 give weight 1 — 2e to x, and weight 2¢€/d’ to each of x, ...,
Xx4. We let ¥ be a finite subclass of & in which f(x,) = 0 for all f € F’, and for
each of the 2" labelings of x,, ..., x, there is exactly one representative
concept in &’. The target concept f will be chosen randomly from F'.

Now under these settings, a number of simplifying assumptions regarding the
nature of L’s queries to STAT(f, @) can be made. First, for any y we must have
either P, = 2e or P, = 1 — 2e regardless of the target f due to the large weight
given to x,. Thus we can immediately conclude that any query (x, «) made by L
in which o = 2e reveals no information about f (since an adversary generating
the answers of STAT(f, @) can always return either the value 2e or the value
1 — 2e on such queries).

Secondly, if we regard the target concept f as a length d’ bit vector f =
(f(xy), ..., f(xz)), and we even allow L to make queries with allowed
approximation error a = 0, then P, is determined by the Hamming distances
p(f, g°) and p(f, g'), where g” is the vector of length d’ in which the ith bit is
1 if and only if x(x;, b) = 1 and x(x;, = b) = 0.

We can thus reduce the problem of learning from statistical queries in this
setting to the following simpler learning problem: the target is a d'-dimension bit
vector f, and the learner L makes vector queries g and receives the Hamming
distance p(f, g) from f to g. The learner must eventually output another bit
vector h satisfying (2¢e/d") =¢_, f; ® h; = €. To prove the theorem, it suffices to
lower bound the number of vector queries made by L in this model.

Let &;_; denote the class of concepts consistent with the answers received by
L on its first i — 1 query vectors g', ..., g ', so F,_, = {f € F": p(f,
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g) =p(f,g),1 =j=i— 1}. Then the ith query vector g’ partitions %,_, into
d + 1 =dpiecesF._, = {f € F_: p(f,g) =jtfor0=j=4d.

Now it is easy to show using a Bayesian argument that rather than choosing the
target concept f randomly from ' before L makes its vector queries, it is
equivalent to choose a new target concept f' after every vector query g'~ ' by
drawing f' randomly from %;_, (in the sense that for all i, the expected error of
L’s hypothesis after i vector queries with respect to the current target is the same
in both cases). In the latter model, based on the random draw of f*, the class ¥,
is ¥/ _, with probability |F_,|/|F;_,].

It is not hard to see that for any natural number r = 1, we have Pr[|%;| =
(1/dr)|%;_4|] = 1 — 1/r, where this probability is taken over the random choice
of f'. Thus, we have that for any sequence of r vector queries, with probability at
least (1 — 1/r)" (which is lower bounded by a constant for r sufficiently large) we
have |%,| = (1/dr)"2¢". Solving for conditions on r to satisfy 2¢7? = |F,| =
(1/dr) 2% yields r = Q(d/log d). For r smaller, the final target concept "' is
drawn randomly from a set of vectors whose size is (with constant probability) at
least 2¢"/2. Tt can then be shown by a simple counting argument that the expected
Hamming distance between L’s final hypothesis / and the final target f = f"*! is
Q(d) (here the expectation is taken over the draw of f"*! from &,). This implies
that the expected error of 4 is at least a constant times €, so learning cannot be
complete. This completes the proof of Theorem 6. [

9. Handling a Variable Noise Rate

One objection to the classification noise model we have investigated is its
assumption of the existence of a fixed noise rate m: independent of any previous
misclassifications, the probability of the next example being misclassified is
always exactly n. In this section, we would like to formalize a more realistic
model in which the noise rate m may fluctuate over time, but in which it is still
fair to regard any misclassifications as noise in the sense that they are indepen-
dent of the input drawn. It appears that relaxing this latter condition severely
limits the cases for which efficient learning is possible, and results in a perhaps
overly pessimistic noise model [Sloan 1988; Kearns and Li 1993], unless the
dependence of the noise on the input has natural structure that can be exploited
by the learner [Kearns and Schapire 1994].

To formalize the new model, we allow an adversary to choose an infinite bias
sequence My, Mz, ..., M, -..; We require that this sequence be fixed in
advance, and thus not dependent on the actual examples drawn, as discussed
above. Each n; € [0, 1] is interpreted as the probability that the ith example
drawn by the learner has its label corrupted. The only restriction on the m); is that
for any value m we must have 1/m Z7L, n; = n, where 0 = n < 1/2 is the
effective noise rate. Thus, we simply demand that for any sample size m, the
effective noise rate for this sample size is bounded by 7. As usual, we assume
without loss of generality that a learning algorithm is given an upper bound n =
M, < 1/2 and is allowed time polynomial in 1/(1 — 2m,) and the usual
parameters. Now when learning a target concept f with respect to distribution 9,
for any i the ith example requested by the learner is chosen as follows: x is drawn
randomly according to 9%, and a coin with probability 1 — m; of heads is tossed.
If the outcome is heads, the example is (x, f(x)); otherwise, it is (x, = f(x)). We
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shall refer to this model as the variable noise rate model, and we say that & can be
learned in this model if there is an efficient algorithm tolerating any effective
noise rate n < 1/2.

Several comments regarding this model are in order. First of all, note that the
adversary may choose m; = 0, m; = 1, or any value in between. Thus, the
adversary may deterministically specify at which times there will be misclassifica-
tions. Secondly, it is no longer true that the probability of misclassification at a
given time is independent of the probability at other times, since the bias
sequence is arbitrary (subject to the averaging condition). These two properties
make variable noise rates a good model for noise bursts, in which a normally
functioning system will have no misclassifications, but an occasional malfunction
will cause a concentrated stream of consecutive misclassifications. Finally, how-
ever, note that despite these allowed dependences, the probability that any
particular input is misclassified at any particular time is the same for all inputs,
since the bias sequence must be specified by the adversary before the examples
are drawn.

The following theorem states that learning in the variable noise rate model is
in fact no more difficult than learning in the standard classification noise model.

THEOREM 7. Let & be a class of concepts over X, and let # be a class of
representations of concepts over X. Then F is efficiently learnable with noise using ¥
if and only if & is efficiently learnable with variable noise rate using ¥.

PrROOF. Variable noise rate learning trivially implies learning in the standard
noise model. For the converse, let L be an efficient algorithm for learning % in
the standard noise model. Let m be an appropriate sample size determined by
the analysis, and let us first flip m coins of biases nq, ..., m,, to determine the
noise bits by, ..., b,, used in generating the sample given to L. Now for m
sufficiently large, the number of 1’s (denoting misclassifications) generated in
this sequence is bounded by (n + (1 — 27)/4)m with overwhelming probability
via a standard Chernoff or Hoeffding bound analysis. Thus, we can immediately
reduce our analysis to that of a binary bias sequence with effective noise rate
bounded by (n + (1 — 27m)/4) < 1/2. Let 0 = r = m denote the actual number of
misclassifications in the bit sequence.

The main trick is to draw m examples for L (which are then given noisy labels
according to the bits b;), but to give L a random permutation of these m
examples. In this way, we almost simulate a standard classification noise process
with noise rate r/m. The only difference is that whereas such a process would be
binomially distributed with a mean of r misclassifications, we are generating only
the slice of this distribution with exactly r misclassifications. However, this slice
constitutes a significant fraction of the binomial distribution (the probability of
falling on the mean is easily seen to be lower bounded by an inverse polynomial
in m), and without loss of generality the dependence of L’s sample size on the
confidence parameter & is only log(1/8) via standard “confidence boosting”
arguments. We can thus set the confidence parameter value given to L to be
8" = O(8/m), which forces L to perform correctly on 1 — 6 of the r-slice of the
binomial distribution with a mean of r misclassifications. The modest log 1/8
dependence allows us to do this while keeping the required sample size m
polynomial. This concludes the proof of Theorem 7. [J
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As an immediate corollary, we obtain that efficient learning from statistical
queries implies efficient learning with variable noise rate. Note that the equiva-
lence given by Theorem 7 holds for distribution-specific learning as well.

10. Open Problems

In addition to the long-standing problems of finding efficient distribution-free
noise-tolerant learning algorithms for the classes of perceptrons and parity
concepts (or proving that none exist), several equivalences between the models
studied here are open. For instance, is efficient learning with noise equivalent to
efficient learning from statistical queries? Even stronger, is any class efficiently
learnable in the Valiant model also efficiently learnable with noise? Note that
any counterexamples to such equivalences should not depend on syntactic
hypothesis restrictions, but should be representation independent [Kearns 1990].
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