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Abstract

Multiclass learning is an area of growing practical relevance, for which the currently avail-
able theory is still far from providing satisfactory understanding. We study the learn-
ability of multiclass prediction, and derive upper and lower bounds on the sample com-
plexity of multiclass hypothesis classes in different learning models: batch/online, real-
izable/unrealizable, full information/bandit feedback. Our analysis reveals a surprising
phenomenon: In the multiclass setting, in sharp contrast to binary classification, not all
Empirical Risk Minimization (ERM) algorithms are equally successful. We show that there
exist hypotheses classes for which some ERM learners have lower sample complexity than
others. Furthermore, there are classes that are learnable by some ERM learners, while
other ERM learner will fail to learn them. We propose a principle for designing good ERM
learners, and use this principle to prove tight bounds on the sample complexity of learn-
ing symmetric multiclass hypothesis classes (that is, classes that are invariant under any
permutation of label names). We demonstrate the relevance of the theory by analyzing
the sample complexity of two widely used hypothesis classes: generalized linear multiclass
models and reduction trees. We also obtain some practically relevant conclusions.

Keywords: List of keywords

1. Introduction

The task of multiclass learning, that is learning to classify an object into one of many can-
didate classes, surfaces in many domains including document categorization, object recog-
nition in computer vision, and web advertisement.

The centrality of the multiclass learning problem has spurred the development of various
approaches for tackling the task. Many of the methods define a set of possible multiclass
predictors, H ⊆ YX (where X is the data domain and Y is the set of labels), called the
hypothesis class, and then use the training examples to choose a predictor from H (for
instance Crammer and Singer, 2003). In this paper we study the sample complexity of
such hypothesis classes, namely, how many training examples are needed for learning an
accurate predictor. This question has been extensively studied and is quite well understood
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for the binary case, where |Y| = 2. In contrast, the existing theory of the multiclass case,
where |Y| > 2, is much less complete.

We study multiclass sample complexity in several learning models. These models vary
in three aspects:

• Interaction with the data source (batch vs. online protocols): In the batch protocol, we
assume that the training data is generated i.i.d. by some distribution D over X × Y.
The goal is to find a predictor h with a small probability to err, Pr(x,y)∼D(h(x) 6=
y), with a high probabilty over training samples. In the online protocol we receive
examples one by one and are asked to predict the labels on the fly. Our goal is to
make as few prediction mistakes as possible in the worst case (see Littlestone (1987)).

• The underlying labeling mechanism (realizable vs. agnostic): In the realizable case,
we assume that the labels of the instances are determined by some h? ∈ H. In the
agnostic case no restrictions on the labeling rule are imposed, and our goal is to make
predictions which are not much worse than the best predictor in H.

• The type of feedback (full information vs. bandits): In the full information setting,
each example is revealed to the learner along with its correct label. In the bandit
setting, the learner first sees an unlabeled example, and then outputs its guess for
the label. Then a binary feedback is received, indicating only whether the guess was
correct or not, but not revealing the correct label in the case of a wrong guess (see
for example Auer et al. (2003, 2002); Kakade et al. (2008)).

In Section 2 we consider multiclass sample complexity in the PAC model (namely, the
batch protocol with full information). Natarajan (1989) provides a characterization of
multiclass PAC learnability in terms of a parameter of H known as the Natarajan dimension
and denoted dN (H) (see section 2.2 for the relevant definitions). For the realizable case we
show in Section 2.3 that there are constants C1, C2 such that the sample complexity of
learning H with error ε and confidence 1− δ satisfies

C1

(
d+ ln(1

δ )

ε

)
≤ mH(ε, δ) ≤ C2

(
d
(
ln(1

ε ) + ln(|Y|) + ln(d)
)

+ ln(1
δ )

ε

)
, (1)

where d = dN (H). This improves the best previously known upper bound (theorem 5), in
which there is a dependence on ln(|Y|) · ln(1

ε ).
The Natarajan dimension is equal to the VC dimension when |Y| = 2. However, for

larger label sets Y, the bound on the sample complexity is not as tight as the known bound
for the binary case, where the gap between the lower and upper bounds is only logarithmic
in 1/ε. This invokes the challenge of tightening these sample complexity bounds for the
multiclass case. A common approach to proving sample complexity bounds for PAC learning
is to carefully analyze the sample complexity of ERM learners. In the case of PAC learning,
all ERM learners have the same sample complexity (up to a logarithmic factor, see (Vapnik,
1995)). However, rather surprisingly, this is not the case for multiclass learning1.

1. Note that Shalev-Shwartz et al. (2010) established gaps between ERM learners in the general learning
setting. However, here we consider multiclass learning, which seems very similar to binary classification.
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In Section 2.4 we describe a family of concept classes for which there exist “good”
ERM learner and “bad” ERM learner with a large gap between their sample complexities.
Analyzing these examples, we deduce a rough principle on how to choose a good ERM
learner. We also determine the sample complexity of the worst ERM learner for a given
concept class, H, up to a multiplicative factor of O(ln(1

ε )). We further show that if |Y| is
infinite, then there are hypotheses classes that are learnable by some ERM learners but
not by all ERM learners. In Section 2.5 we employ the suggested principle to derive an
improved sample complexity upper bound for symmetric classes (H is symmetric if φ◦f ∈ H
whenever f ∈ H and φ is a permutation of Y). Symmetric classes are useful, since they are
a natural choice when there is no prior knowledge about the relations between the possible
labels. Moreover, many popular hypothesis classes that are used in practice are symmetric.

We conjecture that the upper bound obtained for symmetric classes holds for the sample
complexity of non-symmetric classes as well. Such a result cannot be implied by uniform
convergence alone, since, by the results mentioned above, there always exist bad ERM
learners whose sample complexity is higher than this conjectured upper bound. It therefore
seems that a proof for our conjecture will require the derivation of new learning rules. We
hope that this would lead to new insights in other statistical learning problems as well.

In Section 3 we study multiclass learnability in the online model. We describe a simple
generalization of the Littlestone dimension, and derive tight lower and upper bounds on
the number, in terms of that dimension, of mistakes the optimal online algorithm will make
in the worst case. Section 4 is devoted to a discussion of sample complexity of multiclass
learning in the Bandit settings. Finally, in Section 5 we calculate the sample complexity of
some popular families of hypothesis classes, which include linear multiclass hypotheses and
filter trees, and discuss some practical implications of our bounds.

2. Multiclass Learning in the PAC Model

2.1. Problem Setting and Notation

For a distribution D over X × Y, the error of a function f ∈ H with respect to D is
Err(f) = ErrD(f) = Pr(x,y)∼D(f(x) 6= y). A learning algorithm for a class H is a function,
A : ∪∞n=0(X ×Y)n → H. We denote a training sequence by Sm = (x1, y1), . . . , (xm, ym). An
ERM learner for class H is a learning algorithm that for any sample Sm returns a function
f ∈ H that minimizes the number of sample errors |{i ∈ [m] : f(xi) 6= yi}|. This work
focuses on statistical properties of the learning algorithms and ignores computatational
complexity aspects.

The (agnostic) sample complexity of an algorithm A is the function ma
A defined as

follows: For every ε, δ > 0, ma
A(ε, δ) is the minimal integer such that for every m ≥ ma

A(ε, δ)
and every distribution D on X × Y,

Pr
Sm∼Dm

(
Err
D

(A(Sm)) > inf
f∈H

Err
D

(f) + ε

)
≤ δ. (2)

If there is no integer satisfying these requirements, define ma
A(ε, δ) = ∞. The (agnostic)

sample complexity of a class H is

ma
H(ε, δ) = inf

A
ma
A(ε, δ) ,
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where the infimum is taken over all learning algorithms.
We say that a distribution D is realizable by a hypothesis class H if there exists some

f ∈ H such that ErrD(f) = 0. The realizable sample complexity of an algorithm A for a
class H, denoted mr

A, is the minimal integer such that for every m ≥ mr
A(ε, δ) and every

distribution D on X × Y which is realizable by H, Equation. (2) holds. The realizable
sample complexity of a class H is mr

H(ε, δ) = infAm
r
A(ε, δ) where the infimum is taken over

all learning algorithms.

2.2. Known Sample Complexity Results

We first survey some known results regarding the sample complexity of multiclass learning.
We start with the realizable case and then discuss the agnostic case. Given a subset S ⊆ X ,
we denoteH|S = {f |S : f ∈ H}. Recall the definition of the Vapnik-Chervonenkis dimension
(Vapnik, 1995):

Definition 1 (VC dimension) Let H ⊆ {0, 1}X be a hypothesis class. A subset S ⊆ X is
shattered by H if H|S = {0, 1}S. The VC-dimension of H, denoted VC(H), is the maximal
cardinality of a subset S ⊆ X that is shattered by H.

The VC-dimension is cornerstone in statistical learning theory as it characterizes the sample
complexity of a binary hypothesis class. Namely

Theorem 2 (Vapnik, 1995) There are absolute constants C1, C2 > 0 such that the real-
izable sample complexity of every hypothesis class H ⊆ {0, 1}X satisfies

C1

(
VC(H) + ln(1

δ )

ε

)
≤ mr

H(ε, δ) ≤ C2

(
VC(H) ln(1

ε ) + ln(1
δ )

ε

)
.

Moreover, the upper bound is attained by any ERM learner.

It is natural to seek a generalization of the VC-Dimension to hypothesis classes of non-binary
functions. A straightforward attempt is to redefine shattering of S ⊂ X by the property
H|S = YS . However, this requirement is too strong and does not lead to tight bounds
on the sample complexity. Instead, we recall two alternative generalizations, introduced
by Natarajan (1989). In both definitions, shattering is redefined to require that for any
partition of S into T and S \ T , there exists a g ∈ H whose behavior on T differs from its
behavior on S \ T . The two definitions differ in how “different behavior” is defined.

Definition 3 (Graph dimension and Natarajan dimension) Let H ⊆ YX be a hy-
pothesis class and let S ⊆ X . We say that H G-shatters S if there exists an f : S → Y
such that for every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f(x), and ∀x ∈ S \ T, g(x) 6= f(x).

We say that H N-shatters S if there exist f1, f2 : S → Y such that ∀y ∈ S, f1(y) 6= f2(y),
and for every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S \ T, g(x) = f2(x).

The graph dimension of H, denoted dG(H), is the maximal cardinality of a set that is G-
shattered by H. The Natarajan dimension of H, denoted dN (H), is the maximal cardinality
of a set that is N-shattered by H.
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Both of these dimensions coincide with the VC-dimension for |Y| = 2. Note also that we
always have dN ≤ dG.

By reductions from and to the binary case, it is not hard to show, similarly to Natarajan
(1989) and Ben-David et al. (1995) (see Appendix A for a full proof), that

Theorem 4 For the constants C1, C2 from theorem 2, for every H ⊆ YX we have

C1

(
dN (H) + ln(1

δ )

ε

)
≤ mr

H(ε, δ) ≤ C2

(
dG(H) ln(1

ε ) + ln(1
δ )

ε

)
.

Moreover, the upper bound is attained by any ERM learner.

From this theorem it follows that the finiteness of the Natarajan dimension is a necessary
condition for learnability, and the finiteness of the graph dimension is a sufficient condition
for learnability. In Ben-David et al. (1995) it was proved that for every concept class
H ⊆ YX ,

dN (H) ≤ dG(H) ≤ 4.67 log2(|Y|)dN (H) . (3)

It follows that if |Y| <∞ then the finiteness of the Natarajan dimension is a necessary and
sufficient condition for learnability. Incorporating Equation. (3) into theorem 4, it can be
seen that the Natarajan dimension, as well as the graph dimension, characterize the sample
complexity of H ⊆ YX up to a multiplicative factor of O(log(|Y|) log(1

ε )). Precisely,

Theorem 5 (Ben-David et al., 1995) For the constants C1, C2 from theorem 2,

C1

(
dN (H) + ln(1

δ )

ε

)
≤ mr

H(ε, δ) ≤ C2

(
dN (H) · ln(|Y|) · ln(1

ε ) + ln(1
δ )

ε

)
.

Moreover, the upper bound is attained by any ERM learner.

A similar analysis can be performed for the agnostic case. For binary classification we
have that for every hypothesis class H ⊆ {0, 1}X ,

ma
H(ε, δ) = Θ

(
1

ε2

(
V C(H) + ln(

1

δ
)

))
, (4)

and this is attained by any ERM learner. Here too it is possible to obtain by reduction
from and to the binary case that for every hypothesis class H ⊆ YX ,

Ω

(
1

ε2

(
dN (H) + ln(

1

δ
)

))
≤ ma

H(ε, δ) ≤ O
(

1

ε2

(
dG(H) + ln(

1

δ
)

))
. (5)

By Equation. (3) we have

ma
H(ε, δ) = O

(
1

ε2

(
log(|Y|) · dN (H) + ln(

1

δ
)

))
. (6)

Thus in the agnostic case as well, the Natarajan dimension characterizes the agnostic sample
complexity up to a multiplicative factor of O(log(|Y|)). Here too, all of these bounds are
attained by any ERM learner.
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2.3. An Improved Result for the Realizable Case

The following theorem provides a sample complexity upper bound which can be better
than Theorem 5 when ln(dN (H)) � ln(|Y|) · ln(1

ε ). The proof of the theorem is given in
Appendix A. While the proof is a simple adaptation of previous results, we find it valuable
to present this result here, as we could not find it in the research literature.

Theorem 6 For every concept class H ⊆ YX ,

mr
H(ε, δ) = O

(
dN (H)

(
ln(1

ε ) + ln(|Y|) + ln(dN (H))
)

+ ln(1
δ )

ε

)
.

Moreover, the bound is attained by any ERM learner.

Theorem 6 is the departure point of our research. As indicated above, one of our objectives is
to prove sample complexity bounds for the multiclass case with a ratio of O(ln(1

ε )) between
the upper bound and the lower bound, as in the binary case. In the next section we show
that such an improvement cannot be attained by uniform convergence analysis, since the
ratio between the sample complexity of the worst ERM learner and the best ERM learner
of a given hypothesis class might be as large as ln(|Y|).

2.4. The Gap between “Good ERM” and “Bad ERM”

The tight bounds in the binary case given in Theorem 2 are attained by any ERM learner.
In contrast to the binary case, we now show that in the multiclass case there can be a
significant sample complexity gap between different ERM learners. Moreover, in the case
of classification with an infinite number of classes, there are learnable hypothesis classes
that some ERM learners fail to learn. We begin with showing that the graph dimension
determines the sample complexity of the worst ERM learner up to a multiplicative factor
of O(ln(1

ε )).

Theorem 7 There are absolute constants C1, C2 > 0 such that for every hypothesis class
H ⊆ YX and every ERM learner A,

mr
A(ε, δ) ≤ C2

(
dG(H) ln(1

ε ) + ln(1
δ )

ε

)
.

Moreover, there is an ERM learner Abad such that

mr
Abad

(ε, δ) ≥ C1

(
dG(H) + ln(1

δ )

ε

)
. (7)

Proof The upper bound on mr
A is just a restatement of theorem 4. It remains to prove

that there exists an ERM learner, Abad, satisfying (7). We shall first consider the case
where d = dG(H) <∞.

Let S = {x0, . . . , xd−1} ⊆ X be a set which is G-Shattered by H using the function f0.
Let Abad be an ERM learner with the property that upon seeing a sample whose instances
are in T ⊆ S, and whose labels are determined by f0, it returns f ∈ H such that f equals
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to f0 on T and f is different from f0 on S \ T . The existence of such an f follows form the
assumption that S is G-shattered using f0.

Fix δ < e−1/6 and let ε small enough such that 1 − 2ε ≥ e−4ε. Define a distribution
on X by setting Pr(x0) = 1 − 2ε and for all 1 ≤ i ≤ d − 1, Pr(xi) = 2ε

d−1 . Suppose that
the correct hypothesis is f0 and let the sample size be m. Clearly, the hypothesis returned
by Abad will err on all the examples from S which are not in the sample. By Chernoff’s
bound, if m ≤ d−1

6ε , then with probability ≥ e−
1
6 ≥ δ, the sample will include no more than

d−1
2 examples from S. Thus the returned hypothesis will have error ≥ ε. Moreover, the

probability that the sample includes only x0 (and thus Abad will return a hypothesis with
error 2ε) is (1 − 2ε)m ≥ e−4εm, which is more than δ if m ≤ 1

4ε ln(1
δ ). We therefore obtain

that

mr
Abad

(ε, δ) ≥ max

{
d− 1

6ε
,

1

2ε
ln(1/δ)

}
≥ d− 1

12ε
+

1

4ε
ln(1/δ) ,

as required. If dG(H) = ∞ then the argument above can be repeated for a sequence of
pairwise disjoint G-shattered sets Sn, n = 1, 2, . . . with |Sn| = n.

The following example shows that in some cases there are learning algorithms that are
much better than the worst ERM:

Example 1 (A Large Gap Between ERM Learners) Let X0 be any finite or countable do-
main set and let X be some subset of X0. Let Pf (X ) denote the collection of finite and
co-finite subsets A ⊆ X . For every A ∈ Pf (X ), define fA : X0 → Pf (X ) ∪ {∗} by

fA(x) =

{
A if x ∈ A
∗ otherwise,

and consider the concept family HX = {fA : A ∈ Pf (X )}. We first note that any ERM
learner that sees an example of the form (x,A) for some A ⊆ X must return the hypothesis
fA, thus to define an ERM learner we only have to specify the hypothesis it returns upon
seeing a sample of the form Sm = {(x1, ∗), . . . , (xm, ∗)}. Note also that X is G-shattered
using the function f∅, and therefore dG(HX ) ≥ |X | (it is easy to see that, in fact dG(HX ) =
|X |).

We consider two ERM learners – Agood, which on a sample of the form Sm returns
the hypothesis f∅, and Abad, which, upon seeing Sm, returns f{x1,...,xm}c, thus satisfying
the specification of a bad ERM algorithm from the proof of Theorem 7. It follows that the

sample complexity of Abad is Ω
(
|X |
ε + 1

ε ln(1
δ )
)

. On the other hand,

Claim 1 The sample complexity of Agood is at most 1
ε ln 1

δ .

Proof Let D be a distribution over X0 and suppose that the correct labeling is fA. Let m
be the size of the sample. For any sample, Agood returns either f∅ or fA. If it returns fA
then its generalization error is zero. Thus, it returns a hypothesis with error ≥ ε only if
PrD(A) ≥ ε and all the m examples in the sample are from Ac. Assume m ≥ 1

ε ln(1
δ ), then

probability of the latter event is no more than (1− ε)m ≤ e−εm ≤ δ.
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Since X can be infinite in the above example we conclude that

Corollary 8 There exist sets X , Y and a hypothesis class H ⊆ YX , such that H is learnable
by some ERM learner but is not learnable by some other ERM learner.

What is the crucial feature that makes Agood better than Abad? If the correct labeling
is fA ∈ HX , then for any sample, Agood might return at most one of two functions – namely
fA or f∅. On the other hand, if the sample is labeled by the function f∅, Abad might return
every function in HX . Thus, to return a hypothesis with error ≤ ε, Agood needs to reject
only one hypothesis while Abad needs to reject many more. We conclude the following
(rough) principle: A good ERM is an ERM that, for every target hypothesis, consider a
small number of hypotheses.

Next, we formalize the above intuition by proving a general theorem that enables us
to derive sample complexity bounds for ERM learners that are designed using the above
principle. Fix a hypothesis class H ⊆ YX . We view an ERM learner as an operator
that for any f ∈ H, S ⊆ X takes the partial function f |S as input and extends it to a
function g = A(f |S) ∈ H such that g|S = f |S . For every f ∈ H, denote by FA(f) the set
of all the functions that the algorithm A might return upon seeing a sample of the form
{(xi, f(xi))}mi=1 for some m ≥ 0. Namely,

FA(f) = {A(f |S) : S ⊆ X , |S| <∞}

To provide an upper bound on mr
A(ε, δ), it suffices to show that for every f ∈ H, with

probability at least 1 − δ, all the functions with error at least ε in FA(f) will be rejected
after seeing m examples. This is formalized in the following theorem.

Theorem 9 Let A be an ERM learner for a hypothesis class H ⊆ YX . Define the growth
function of A by ΠA(m) = supf∈HΠFA(f)(m), where for F ⊆ YX , ΠF (m) = sup{|F |S | :
S ⊆ X , |S| ≤ m}. Then

mr
A(ε, δ) ≤ min{m : ΠA(2m) 21− εm

2 < δ} .

The theorem immediately follows from the following lemma.

Lemma 10 (The Double Sampling Lemma) Let A be an ERM learner. Fix a distri-
bution D over X and a function f0 ∈ H. Denote by Am the event that, after seeing m i.i.d.
examples drawn from D and labeled by f0, A returns a hypothesis with error at least ε. Then
Pr(Am) ≤ 2 ·ΠA(2m)2−

εm
2 .

Proof Let S1 and S2 be two samples of m i.i.d. examples labeled by f0. Let Bm be
the event that there exists a function f ∈ H with error at least ε, such that (1) f is not
rejected by S1 (i.e. f0(x) = f(x) for all examples x in S1), and (2) there exist at least εm

2
examples (x, f0(x)) in S2 for which f(x) 6= f0(x). By Chernoff’s bound, for m = Ω(1

ε ),
Pr(Bm) = Pr(Bm|Am) Pr(Am) ≥ 1

2 Pr(Am). W.l.o.g., we can assume that S1, S2 are gener-
ated as follows: First, 2m examples are drawn to create a sample U . Then S1 and S2 are
generated by selecting a random partition of U into two samples of size m. Now, Pr(Bm)
is bounded by the probability that there is an f ∈ H|U such that (1) there are at least
εm
2 examples in U such that f disagrees with f0 on these examples and (2) all of these

214



Multiclass Learnability and the ERM principle

examples are located in S2. For a single f ∈ H|U that disagrees with f0 on l ≥ εm
2 samples,

the probability that all these examples are located in S2 is
(
m
l

)
/
(

2m
l

)
≤ 2−l ≤ 2−

εm
2 . Thus,

using the union bound we obtain that Pr(Bm) ≤ |H|U | 2−
εm
2 ≤ Π(2m)2−

εm
2 .

The bound in theorem 6 is based on the (trivial) inequality ΠA ≤ ΠH. However, as
Example 1 shows, ΠA can be much smaller than ΠH. As we shall see in the sequel, we can
apply the double sampling lemma to get better sample complexity bounds for “good” ERM
learners. The key tool for these sample complexity bounds is Lemma 12, that is, in turn,
based on the following combinatorial result:

Lemma 11 (Natarajan, 1989) For every hypothesis class H ⊆ YX , |H| ≤ |X |dN (H)|Y|2dN (H).

Lemma 12 Let H ⊆ YX be a class of functions. Assume that for some number r, for every
h ∈ H, the size of the range of h is at most r. Let A be an algorithm such that, for some set
of values Y ′ ⊆ Y, for every f ∈ H, and every sample Sm = ((x1, f(x1)), . . . (xm, f(xm))),
the function returned by A on input Sm is consistent with Sm and has its values in the set
{f(x1), . . . , f(xm)} ∪ Y ′. Then,

mr
A(ε, δ) = O

(
dN (H)(ln(1

ε ) + ln(max{r, |Y ′|})) + ln(1
δ )

ε

)
.

Proof The assumptions of the lemma imply that, for every f ∈ H, the range of the functions
in FA(f) is contained in the union of Y ′ and the range of f . Therefore, using Lemma 11 we
obtain that ΠA(2m) ≤ (2m)dN (H)(|Y ′|+r)2dN (H), and the bound follows from Theorem 9.

Note that classes in which each function h ∈ H uses at most r values, for some r <
dN (H) log(|Y|), can have a large range Y and a graph dimension that is significantly larger
than their Natarajan dimension. In such cases, we may be able to show a gap between
the sample complexity of bad and good ERM learners, by applying the lower bound from
Theorem 7. In particular, we get such a result for the following family of hypotheses classes,
which generalizes Example 1.

Corollary 13 Let H be a class of functions from X to some range set Y, such that, for
some value y0 ∈ Y, for every h ∈ H, the range of h contains at most one value besides
y0. Assume also that H contains the constant y0 function. Let d denote the Natarajan
dimension of H. Then there exists an ERM learning algorithm A for H such that the (ε, δ)
sample complexity of A is

O

(
d · ln(1/ε) + ln(1/δ)

ε

)
.

Every class in that family that has a large graph dimension will therefore realize a gap
between the sample complexities of different ERM learners.

Example 2 Consider the set of all balls in Rn and, for each such ball, B = B(z, r) with
center z and radius r, let hB be the function defined by hB(x) = z if x ∈ B and hB(x) = ?
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otherwise. Let HBn = {hB : B = B(z, r) for some z ∈ Rn, r ∈ R} ∪ {h?} (where h? is the
constant ? function). It is not hard to see that dN (HBn) = 1 and dG(HBn) = n+1. Further-
more, let Agood be the ERM learner that for every sample S = (x1, f(x1)), . . . (xm, f(xm)),
returns hBS , where BS is the minimal ball that is consistent with the sample. Note that this
algorithm uses, for every f ∈ HBn and every sample S labeled by such f , at most one value
(the value ?) on top of the values {f(x1), . . . , f(xm)}.

In this case, Theorem 7 implies that for some constant C1, there exists a bad ERM
learner, Abad such that

mr
Abad

(ε, δ) ≥ C1

(
n+ ln(1/δ)

ε

)
.

On the other hand, Lemma 12 implies that there is a good ERM learner, Agood and a
constant C2 for which

mr
Agood

(ε, δ) ≤ C2

(
ln(1/ε) + ln(1/δ)

ε

)
.

Note that, if one restricts the hypothesis class to allow only balls that have their centers
in some finite set of grid points, the class uses only a finite range of labels. However, if such
a grid is sufficiently dense, the sample complexities of both algorithms, Abad and Agood,
would not change.

2.5. Symmetric Classes

The principle for choosing a good ERM leads to tight bounds on the sample complexity
of symmetric classes. Recall that a class H is called symmetric if for any f ∈ H and any
permutation φ on labels, we have that φ ◦ f ∈ H as well.

Theorem 14 There are absolute constants C1, C2 such that for every symmetric hypothesis
class H ⊆ YX

C1

(
dN (H) + ln(1

δ )

ε

)
≤ mr

H(ε, δ) ≤ C2

(
dN (H)

(
ln(1

ε ) + ln(dN (H))
)

+ ln(1
δ )

ε

)

A key observation that enables us to employ our principle in this case is:

Lemma 15 Let H ⊆ YX be a symmetric hypothesis class of Natarajan dimension d. Then,
the range of any f ∈ H is of size at most 2d+ 1.

Proof If |Y| ≤ 2d + 1 we are done. Thus assume that there are 2d + 2 distinct elements
y1, . . . , y2d+2 ∈ Y. Assume to the contrary that there is a hypothesis f ∈ H with a range
of more than d values. Thus there is a set S = {x1, . . . , xd+1} ⊆ X such that f |S has d+ 1
values in its range. It follows that H N-shatters S, thus reaching a contradiction. Indeed,
since H is symmetric, there are functions f0, f1 ∈ H such that fj(xi) = yj(d+1)+i. Similarly,
for every T ⊆ S, there is a g ∈ H such that g(x) = f0(x) for every x ∈ T and g(x) = f1(x)
for every x ∈ S \ T .

We are now ready to prove Theorem 14.
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Proof (of Theorem 14) The lower bound is a restatement of Theorem 4. For the upper
bound, we define an algorithm A that conforms to the conditions in Lemma 12: Fix a set
Y ′ ⊆ Y of size |Y ′| = min{|Y|, 2dN (H) + 1}. Given a sample (x1, f(x1)), . . . , (xm, f(xm)),
A returns a hypothesis that is consistent with the sample and that attains only values in
{f(x1), . . . , f(xm)} ∪ Y ′. It is possible due to symmetry and Lemma 15.

A similar analysis can be performed for the agnostic case. Let H ⊆ YX be a symmetric
hypothesis class. Let Y ′ ⊆ Y be an arbitrary set of size min{|Y|, 4dN (G)+2}. Denote H′ =
{f ∈ H : f(X ) ⊆ Y ′}. Using lemma 15 and symmetry, it is easy to see that dG(H) = dG(H′)
and dN (H) = dN (H′). By equation 3, we conclude that dG(H) = O(log(dN (H)) · dN (H)).
Using equation 5 we obtain a sample complexity bound of

ma
H(ε, δ) = O

(
1

ε2

(
log(min{dN (H), |Y|}) · dN (H) + ln(

1

δ
)

))
,

which is better than Equation. (6). Moreover, the ratio between this bound and the lower
bound (Equation. (5)) is O(log(dN (H))) regardless of |Y|. Note that this bound is attained
by any ERM. We present the following open question:

Open question 16 Examples 1 and 2 show that there are (non-symmetric) hypothesis
classes with a ratio of Ω(ln(|Y|)) between the sample complexities of the worst ERM learner
and the best ERM learner. How large can this gap be for symmetric hypothesis classes?

3. Multiclass Learning in the Online Model

Learning in the online model is conducted in a sequence of consecutive rounds. On each
round t = 1, 2, . . ., the environment presents a sample xt ∈ X , the algorithm should predict
a value ŷt ∈ Y, and then the environment reveals the correct value yt ∈ Y. The prediction at
time t can be based only on the examples x1, . . . , xt and the previous outcomes y1, . . . , yt−1.
We start with the realizable case, in which we assume that for some function f ∈ H, all
the outcomes are evaluations of f , namely, yt = f(xt). Given an online learning algorithm,
A, define its (realizable) sample complexity, M(A), to be the maximal number of wrong
predictions that it might make on a legal sequence of any length.

The sample complexity of online learning has been studied by Littlestone (1987), who
showed that a combinatorial measure, called the Littlestone dimension, characterizes the
sample complexity of online learning. We now propose a generalization of the Littlestone
dimension to classes of non-binary functions.

Consider a rooted tree T whose internal nodes are labeled by X and whose edges are
labeled by Y, such that the labels on edges from a parent to its child nodes are all different
from each other. The tree T is shattered by H if, for every path from root to leaf x1, . . . , xk,
there is a function f ∈ H such that f(xi) equals the label of (xi, xi+1). The Littlestone
dimension, L-dim(H), of H is the maximal depth of a complete binary tree that is shattered
by H.

It is not hard to see that, given a shattered tree of depth l, the environment can force
any online learning algorithm to make l mistakes. Thus, for any algorithm A, M(A) ≥
L-Dim(H). We shall now present an algorithm whose sample complexity is upper bounded
by L-Dim(H).
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Algorithm: Standard Optimal Algorithm (SOA)
Initialization: V0 = H.
For t = 1, 2 . . .,

receive xt

for y ∈ Y, let V
(y)
t = {f ∈ Vt−1 : f(xt) = y}

predict ŷt ∈ arg maxy L-Dim(V
(y)
t )

receive true answer yt

update Vt = V
(tt)
t

Theorem 17 M(SOA) = L-Dim(H).

The proof is a simple adaptation of the proof of the binary case (see Littlestone, 1987). The

idea is to note that for each t there is at most one y ∈ Y with L-Dim(V
(y)
t ) = L-Dim(Vt), and

for the rest of the labels we have L-Dim(V
(y)
t ) < L-Dim(Vt). Thus, whenever the algorithm

errs, the Littlestone dimension of Vt decreases by at least 1, so after L-Dim(H) mistakes,
Vt is composed of a single function.

Note that we only considered deterministic algorithms. However, allowing the algorithm
to make randomized predictions does not substantially improve its sample complexity. It
is easy to see that given a shattered tree of depth l, the environment can enforce any
randomized online learning algorithm to make at least l/2 mistakes on average.

In the agnostic case, the sequence of outcomes, y1, . . . , ym, is not necessarily realizable
by some target function f ∈ H. In that case, our goal is to have a regret of at most ε, where
the regret is defined as

1

m
|{t ∈ [m] : ŷt 6= yt}| −min

f∈H

1

m
|{t ∈ [m] : f(xt) 6= yt}| .

We denote by ma
A(ε) the number of examples required so that the regret of an algorithm A

will be at most ε and by ma(ε) the infimum, over all algorithms A, of ma
A(ε).

Online learnability in the agnostic case, for classes of binary-output functions, has been
studied in Ben-David et al. (2009), who showed that the Littlestone dimension characterizes
the sample complexity in the agnostic case as well. The basic idea is to construct a set of
experts by running the SOA algorithm on all sub-sequences of the examples whose length
is at most L-Dim(H), and then to run an online algorithm for learning with experts. This
idea can be generalized to the multiclass case, but we leave this generalization to a longer
version of this manuscript.

4. The Bandit Setting

So far we have assumed that each learning example is comprised of an instance and its
corresponding label. In this section we deal with the so-called bandit setting. In the bandit
model, the learner does not get to see the correct label of a training example. Instead,
the learner first receives an instance x ∈ X , and should guess a label, ŷ. The learner then
receives a binary feedback, indicating whether its guess is correct or not.
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4.1. Bandit vs Full Information in the Batch Model

Let H ⊆ YX be a hypothesis class. Our goal is to analyze the realizable bandit sample
complexity of H, which we denote by mr,b

H (ε, δ), and the agnostic bandit sample complexity

of H, which we denote by ma,b
H (ε, δ). The following theorem provides upper bounds on the

sample complexity.

Theorem 18 Let H ⊆ YX be a hypothesis class. Then,

mr,b
H (ε, δ) = O

(
|Y| ·

dG(H) · ln
(

1
ε

)
+ ln(1

δ )

ε

)
and ma,b

H (ε, δ) = O

(
|Y| ·

dG(H) + ln(1
δ )

ε2

)
.

Proof Since the claim is trivial if |Y| = ∞, we can assume that k := |Y| < ∞. Let
Afull be a (full information) ERM learner for H. Consider the following algorithm for the
bandit setting: Given a sample (xi, yi)

m
i=1, for each i the algorithm guesses a label ŷi ∈ Y

drawn uniformly at random. Then the algorithm returns the hypothesis returned by Afull

with the input sample which consists of the pairs (xi, yi) for which ŷi = yi. We claim that
mAbandit

(ε, δ) ≤ 3k·mAfull
(ε, δ2) (for both the agnostic and the realizable case), so the theorem

is implied by the bounds in the full information setting (theorem 7 and equation 5). Indeed,
suppose that m examples suffice for Afull to return, with probability at least 1− δ

2 a hypoth-
esis with regret at most ε. Let (xi, yi)

3km
i=1 be a sample for the bandit algorithm. By Chernoff

bound, with probability at least 1 − δ
2 , the sample Abandit transfers to Afull consist of at

least m examples. Note that the sample that Afull receives is an i.i.d. sample according to
the same distribution from which the original sample was sampled. Thus, with probability
at least 1− δ

2 , Afull (and, consequently, Abandit) returns a hypothesis with regret at most ε.

The price of bandit information in the batch model: Let H be a hypotheses

class. Define PBIH(ε, δ) =
mr,bH (ε,δ)

mrH(ε,δ) . By Theorems 18,4 and Equation 3 we see that,

PBIH(ε, δ) = O(ln(|Y|) · ln(1
ε ) · |Y|). This is essentially tight since it is not hard to see that

if both X ,Y are finite and we let H = YX , then PBIH = Ω(|Y|).
Using Theorems 18,4 and Equations 5,3 we see that, as in the full information case,

the finiteness of the Natarajan dimension is necessary and sufficient for learnability in the
bandit setting as well. However, the ratio between the upper and the lower bounds is
Ω(ln(|Y|) · |Y|). It would be interesting to find a more tight characterization of the sample
complexity in the bandit setting. The Natarajan dimension (as well as the graph dimension
and other known notions of dimension defined in (Ben-David et al., 1995), as they are all
closely related to the Natarajan dimension) is deemed to fail for the following reason: For
every k, d, there are classes H ⊆ [k][d] of Natarajan dimension d where the realizable bandit

sample complexity is O(dε +
ln( 1

δ
)

ε ) (e.g. every class H such that dN (H) = d and for every
x ∈ [d], #{f(x) : f ∈ H} = 2). On the other hand, the realizable bandit sample complexity

of [k][d] is Ω
(
k ·
(
d
ε +

ln( 1
δ

)

ε

))
.

4.2. Bandit vs Full Information in the Online Model

We now consider Bandits in the online learning model. We focus on the realizable case, in
which the feedback provided to the learner is consistent with some function f0 ∈ H. We
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define a new notion of dimension of a class, that determines the sample complexity in this
setting. Let H ⊆ YX be a hypothesis class and denote k = |Y|. Consider a rooted tree T
whose internal nodes are labeled by X and such that the labels on edges from a parent to its
child nodes are all different from each other. The tree T is BL-shattered by H if, for every
path from root to leaf x1, . . . , xk, there is a function f ∈ H such that for every i, f(xi) is
different from the label of (xi, xi+1). The bandit Littlestone dimension of H, denoted
BL-dim(H), is the maximal depth of a complete k-ary tree that is BL-shattered by H.

Theorem 19 Let H be a hypothesis class with L = BL-Dim(H). The sample complexity
of every deterministic online learning algorithm for H is at least L. Moreover, there is an
online learning algorithm whose sample complexity is exactly L.

Proof First, let T be a BL-shattered tree of depth L. We first show that for every
deterministic learning algorithm there is a sequence x1, . . . , xL and a labeling function
f0 ∈ H such that the algorithm makes L mistakes on this sequence. The sequence consists
of the instances attached to nodes of T , when traversing the tree from the root to one of
its leaves, such that the label of each edge (xi, xi+1) is equal to the algorithm’s prediction
ŷi. The labeling function f0 ∈ H is one such that for all i, f0(xi) is different from the label
of edge (xi, xi+1). Such a function exists since T is BL-shattered.

Second, the following online learning algorithm makes at most L mistakes.

Algorithm: Bandit Standard Optimal Algorithm (BSOA)
Initialization: V0 = H.
For t = 1, 2 . . .,

receive xt

for y ∈ Y, let V
(y)
t = {f ∈ Vt−1 : f(xt) 6= y}

predict ŷt ∈ arg miny BL-Dim(V
(y)
t )

receive an indication whether ŷt = f(xt)

if the prediction is wrong, update Vt = V
(ŷt)
t

To see that M(BSOA) ≤ L, note that at each time t, there is at least one V
(y)
t with

BL-Dim(V
(y)
t ) < BL-Dim(Vt−1). Thus, whenever the algorithm errs, the dimension of Vt

decreases by one. Thus, after L mistakes, the dimension is 0, which means that there is a
single function that is consistent with the sample, so no more mistakes can occur.

We conclude with an open question on the price of bandit information in the online
model:

Open question 20 Let PBI(H) = BL-Dim(H)
L-Dim(H) and fix k ≥ 2. How large can PBI(H) be

when H is a class of functions from a domain X to a range Y of cardinality k?

5. The Sample Complexity of Known Multiclass Hypothesis Classes

In this section we analyze the sample complexity of two families of hypothesis classes for
multiclass classification: the generalized linear construction (Duda and Hart, 1973; Vapnik,
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1998; Hastie and Tibshirani, 1995; Freund and Schapire, 1997; Schapire and Singer, 1999;
Collins, 2002; Taskar et al., 2003), and multiclass reduction trees (Beygelzimer et al., 2007,
2009; Fox, 1997). In particular, a special case of the generalized linear construction is the
multi-vector construction (e.g. Crammer and Singer, 2003; Fink et al., 2006). We show that
the sample complexity of the multi-vector construction and the reduction trees construction
is similar and depends approximately linearly on the number of class labels. Due to the
lack of space, proofs are omitted and can be found in the appendix.

5.1. The Generalized Linear Multiclass Construction

A generalized linear multiclass hypothesis class is defined with respect to a class specific
feature mapping φ : X × Y → Rt, for some integer t. For any such φ define the hypothesis
class Mt

φ = {h[w] | w ∈ Rt}, where

h[w](x) = argmax
y∈Y

〈w, φ(x, y)〉,

where we ignore tie-breaking issues w.l.o.g. . A popular special case is the linear construc-
tion used in multiclass SVM (Crammer and Singer, 2003) where X = Rd, Y = [k], t = dk,
and φ = ψd,k, defined by

ψd,k(x, i) , (0, . . . , 0, x[1], . . . , x[d], 0, . . . , 0),

where x[1] is in coordinate d(i − 1) + 1. We abbreviate Lkd ,Mdk
ψd,k

. We first consider a
general φ and show that the sample complexity for any φ is upper-bounded by a function
of t.

Theorem 21 Let dN be the Natarajan-dimension of Mt
φ. Then dN ≤ O(t log(t)).

For the linear construction a matching lower bound on the Natarajan dimension is shown
in the following theorem. Thus, as one might expect, the sample complexity of learning
with Ldk is of the order of dk.

Theorem 22 For d ≥ 0 and k ≥ 2, let dN be the Natarajan-dimension of Ldk. Then

Ω(dk) ≤ dN ≤ O(dk log(dk)).

5.2. Reduction trees

Reduction trees provide a way of constructing multiclass hypotheses from binary classifiers.
A reduction tree consists of a tree structure, where each internal node is mapped to a
binary classifier and each leaf is mapped to one of the multiclass labels. Classification of
an example is done by traversing the tree, starting from the root and ending in one of the
leaves, where in each node the result of the binary classifier determines whether to go left
or right.

It has been shown that by using appropriate learning algorithms, one can guarantee a
multiclass classification error of no more than log2(k)ε, where k is the number of classes, and
ε is the average error of the binary classifiers (Fox, 1997; Beygelzimer et al., 2009). However,
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this result does not directly provide sample complexity guarantees for these algorithms, since
the value of ε itself depends on the sample and on the learning algorithm.

In the following we analyze the sample complexity of any fixed reduction tree, under
the assumption that the binary classifiers all belong to some fixed hypothesis class with a
finite VC-dimension d. We provide bounds on the Natarajan dimension of the resulting
multiclass hypothesis class, and show that it can be as large as Ω(dk) for some hypothesis
classes. We further analyze the special case where the binary hypothesis class is the class
of linear separators in Rd, and show that a similar result, though slightly weaker, holds for
this class as well.

We now formally define a reduction tree and the hypothesis class related to it (see
Figure 1 in the appendix for illustration). Let X be the domain of examples and let [k] be
the set of possible labels. A reduction tree is a full binary tree T . Denote the head node of T
by H(T ). The sub-tree which is the left child of H(T ) is denoted by L(T ) and the sub-tree
which is the right child of H(T ) is denoted by R(T ). The set of internal nodes of T is denoted
by N(T ), and the set of leaf nodes of T is denoted by leaf(T ). A multiclass classifier is a
triplet [T, λ, C] where T is a reduction tree, λ is a one-to-one mapping λ[·] : leaf(T )→ [k],
and C[·] : N(T ) → {0, 1}X is a mapping from the internal nodes of T to binary classifiers
on the domain X . [T, λ, C] : X → [k] is defined recursively as follows:

[T, λ, C](x) =


[L(T ), λ, C](x) H(T ) /∈ leaf(T ) and C[H(T )](x) = 0,

[R(T ), λ, C](x) H(T ) /∈ leaf(T ) and C[H(T )](x) = 1,

λ[H(T )](x) H(T ) ∈ leaf(T ).

Unless otherwise mentioned, we assume a fixed λ, and identify T with the pair (T, λ).
Accordingly, [T, λ, C] is abbreviated to [T,C]. Let H ⊆ {0, 1}X be a hypothesis class of
binary classifiers on X . The hypothesis class induced by H on the tree T with label mapping
λ, denoted by H(T,λ), is the set of multiclass classifiers which can be generated on T using
binary classifiers from H. Formally,

H(T,λ) = {[T, λ, C] | ∀n ∈ N(T ), C[n] ∈ H}.

We abbreviate H(T,λ) to HT when the labeling λ is fixed.
Suppose that the VC-dimension ofH is d. What can be said about the sample complexity

of HT for a given tree T? First, a simple counting argument provides an upper bound
on the graph-dimension and the Natarajan-dimension of HT : Any hypothesis in HT is a
function of the values of |N(T )| = k− 1 binary hypotheses from H. Therefore, the number
of possible labelings of A by HT for any A ⊆ X is bounded by |H|A|k−1. By Sauer’s
lemma, |H|A| ≤ |A|d. Thus |HT |A| ≤ |A|d(k−1). If A is G-shattered or N-shattered by HT ,
then |HT |A| ≥ 2|A|. Thus 2|A| ≤ |A|d(k−1). It follows that |A| ≤ O(dk log(dk)), thus the
same upper bound holds for the graph-dimension and the Natarajan-dimension. A closely
matching lower bound is provided in the following theorem.

Theorem 23 Let k ≥ 2 and d ≥ 2 be integers. For any reduction tree T with k ≥ 2 leafs,
there exists a binary hypothesis class H with VC-dimension d such that HT has Natarajan
dimension d(k − 1).
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Theorem 23 shows that for every tree there exists a binary hypothesis class which in-
duces a high sample complexity on the resulting multiclass hypothesis class. The following
theorem shows that moreover, the popular hypothesis class of linear separators in Rd in-
duces reduction trees with a sample complexity which is almost as large, up to a logarithmic
factor.

Let Wd be the class of non-homogeneous linear separators in Rd, that is Wd = {x →
sign(〈x,w〉 + b) | w ∈ Rd, b ∈ R}. For a full binary tree T with k leaves, denote by n1(T )
the number of internal nodes with one leaf child and one non-leaf child, and by n2(T ) the
number of internal nodes with two leaf children.

Theorem 24 For any multiclass-to-binary tree T with k leaves, the graph dimension of
Wd
T is at least (d+ 1) · n2(T ) + d · n1(T ) ≥ dk/2. Consequently the Natarajan dimension is

Ω(dk/ log(k)).

We conclude that the sample complexity of different reduction trees is similar, and that
this sample complexity is also similar to that of the multi-vector construction. This implies
that when choosing between the different hypothesis classes, considerations other than the
sample complexity should determine the choice. One such important consideration is the
approximation error. Since sample complexity analysis bounds only the estimation error,
one wishes to have the approximation error as low as possible. Thus if there is some prior
knowledge on the match between the hypothesis class and the source distribution, this might
guide the choice of the hypothesis class. The following theorem shows, however, that for
fairly balanced reduction trees this match is highly dependent on the assignment of labels
to leaf nodes. For any reduction tree T denote by Λ the set of one-to-one mappings from
the leaf(T ) to [k], and let U be the uniform distribution over Λ.

Theorem 25 Let T be a full binary tree with k leaves, and let n be the number of leaves on
the left sub-tree. For any hypothesis class H with VC-dimension d, and for any distribution
D over X × [k] which assigns non-zero probability to each label in [k],

Pr
λ∼U

[H(T,λ) separates D] ≤
(
ek

d

)d(k
n

)−1

.

Thus if k � d and n is a constant fraction of k, this probability decreases exponentially with
k.

6. Conclusions and Open Problems

In this paper we have studied several new aspects of multiclass sample complexity. Many
interesting questions arise and some are listed below.

Consider the two example classes from section 2.4. It is interesting to note that, in both
cases, dN (H) = 1, and mr

H(ε, δ) = Θ(1
ε ln(1

δ )). It seems like the Natarajan dimension is the
parameter that controls the sample complexity for those examples. That is also the case for
symmetric classes as well as some other classes that we have examined but did not include
in this paper. We therefore raise:
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Conjecture 26 There exists a constant C such that, for every hypothesis class H ⊆ YX ,

mr
H(ε, δ) ≤ C

(
dN (H) ln(1

ε ) + ln(1
δ )

ε

)

In light of theorem 7 and the fact that there are cases where dG ≥ log2(|Y| − 1)dN , in
order to prove the conjecture we will have to find a learning algorithm that is not just an
arbitrary ERM learner. So far, all the general upper bounds that we are aware of are valid
for any ERM learner. Understanding how to select among ERM learners is fundamental
as it teaches us what is the correct way to learn. We suspect that such an understanding
might lead to improved bounds in the binary case as well. We hope that our examples from
section 2.4 and our result for symmetric classes will prove to be the first steps in the search
for the best ERM.

Another direction is the study of learnability conditions for additional hypotheses classes.
Section 5 shows that some well known multiclass constructions have surprisingly similar
sample complexity properties. It is of practical significance and theoretical interest to
study learnability conditions for other constructions, and especially to develop a fuller
understanding of the relationship between different constructions, in a manner that could
guide an informed choice of a hypothesis class.
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Appendix A. Proofs Omitted from the Text

Proof (of theorem 4)
The lower bound: Let H ⊆ YX be a hypothesis class of Natarajan dimension d and Let
Hd := {0, 1}[d]. We claim that mHd ≤ mH, so the lower bound is obtained by theorem 2.
Let A be a learning algorithm for H. Consider the learning algorithm, Ā, for Hd defined
as follows. Let S = {s1, . . . , sd} ⊆ X, f0, f1 be a set and functions that indicate that
dN (H) = d. Given a sample (xi, yi) ∈ [d]×{0, 1}, i = 1, . . . ,m, let g = A((sxi , fyi(sxi))

m
i=1).

Define f = Ā((xi, yi)
m
i=1) by setting f(i) = 1 if and only if g(si) = f1(si). It is not hard to

see that mĀ ≤ mr
A, thus, mHd ≤ mH.

The upper bound: Let H ⊆ YX be a hypothesis class of graph dimension d. For every
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f ∈ H define f̄ : X × Y → {0, 1} by setting f̄(x, y) = 1 if and only if f(x) = y and let
H̄ = {f̄ : f ∈ H}. It is not hard to see that V C(H̄) = dG(H).

Suppose that f ∈ H is consistent with a sample (xi, f0(xi))
m
i=1 ofm = Ω(dε ln(1

ε )+
1
ε ln(1

δ ))
examples, drawn i.i.d. according to some distribution D on X . We must show that, with
probability ≥ 1− δ, ErrD,f0(f) ≤ ε. However, by theorem 2,

ErrD,f0(f) = Pr
x∼D

(f̄(x, f0(x)) 6= 1) ≤ ε

With probability ≥ 1− δ.

Proof (of Theorem 6) Let A be an ERM learner. Since FA(f) ⊆ H for every f , it follows
that ΠA ≤ ΠH. By lemma 11, ΠH(m) ≤ mdN (H)|Y|2dN (H). Incorporating it into Theorem 9
we get the desired bound.

Proof (of Theorem 21) Let S = {x1, . . . , xdN } ⊆ Rd be a set which is N-shattered byMt
φ,

and let f1, f2 : S → Y be the functions that witness the shattering. For every i ∈ [dN ]
let zi = φ(xi, f1(xi)) − φ(xi, f2(xi)) ∈ Rt. Denote Z = {zi}i∈[dN ]. Consider the hypothesis
class of homogeneous linear separators in Rt, defined by {z → sign(〈w, z〉) | w ∈ Rt}. Since
the VC-dimension of this class is t, by Sauer’s lemma the number of possible labelings of Z
with this class is upper-bounded by (dN )t. We now show that there is a one-to-one mapping
from subsets T ⊆ S to labelings of Z: For any T ⊆ S, let w ∈ Rt such that

{x ∈ S | h[w](x) = f1(x)} = T, and {x ∈ S | h[w](x) = f2(x)} = S \ T.

Then T = {x ∈ S | 〈w, φ(x, f1(x))〉 ≥ 〈w, φ(x, f2(x))〉} = {xi | 〈w, zi〉 ≥ 0}. Thus every T
induces a different labeling of Z. It follows that the number of subsets of S is bounded by
the number of labelings of Z, thus 2dN ≤ (dN )t. It follows that dN ≤ O(t log(t)).

Proof (of Theorem 22) The upper bound is a direct consequence of Theorem 21. For
the lower bound, we show that there exists an N-shattered set of size bd/2c · bk/2c. Let
b = bk/2c. Let x1, . . . , xb ∈ R2 be b different vectors such that ∀i ∈ [b], ||xi|| = 1. Let
S = {yi,j}i∈[b],j∈[bd/2c] ⊆ Rd, where for s ∈ [d]:

yi,j [s] =


xi[1] s = 2j − 1

xi[2] s = 2j

0 otherwise.

We show that S is N-shattered, thus dN ≥ |S| = bk/2c · bd/2c. Define functions f1, f2 : S →
[k] such that for yi,j ∈ S, f1(yi,j) = i and f2(yi,j) = b+ i. For a subset T ⊆ S, let w ∈ Rdk
such that for i ∈ [b], s ∈ [d]

w[d(i− 1) + s] =


xi[1] yi,j ∈ Z and s = 2j − 1,

xi[2] yi,j ∈ Z and s = 2j,

0 otherwise.

226



Multiclass Learnability and the ERM principle

input: x

L(T )
R(T )

C[1]

C[2]

C[1](x) = 0 C[1](x) = 1

C[2](x) = 0 C[2](x) = 1

label: 1 label: 2

label: 3

H(T )

Figure 1: Illustration of a reduction tree

and for i ∈ {b+ 1, . . . , 2b}, s ∈ [d],

w[d(i− 1) + s] =


xi[1] yi−b,j /∈ Z and s = 2j − 1,

xi[2] yi−b,j /∈ Z and s = 2j,

0 otherwise.

Then h[w] = f1(y) for y ∈ T and h[w] = f2(y) for y ∈ S \ T . Thus S is N-shattered.

Proof (of Theorem 23) Let H(T ) be a binary hypothesis class for tree T . We construct
H(T ) inductively on the structure of the tree. For every tree T , the domain of the binary
hypotheses in H(T ) will be [d]×N(T ).

Induction basis: Assume that both L(T ) and R(T ) are leafs, thus k = 2 and |N(T )| =
1. Define H(T ) = {h | h : [d]× {H(T )} → {0, 1}}.

Inductive step: Assume T has two children L(T ) and R(T ), and at least one of them
is not a leaf. By the induction hypothesis, if L(T ) is a non-leaf then H(L(T )) is a set
of binary hypotheses with domain [d] × N(L(T )). H(L(T )) has VC-dimension d, and the
Natarajan dimension of H(L(T ))L(T ) is d · |N(L(T ))|. The same holds for R(T ). Define
H(T ) = {h0, h1} ∪ HL ∪HR ∪HH , where:

• h0(x) = 0 and h1(x) = 1 for all x ∈ [d]×N(T ),
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• If L(T ) is a leaf, HL = ∅. Otherwise,

HL =
{
h : [d]×N(T )→ {0, 1} |∃hL ∈ H(L(T )), ∀x ∈ [d]×N(T ),

h(x) =

{
hL(x) x ∈ [d]×N(L(T )),

0 otherwise.

}
• HR is defined similarly, for R(T ) instead of L(T ).

• HH is defined as follows:

HH = {h : [d]×N(T )→ {0, 1} |∀x ∈ [d]×N(L(T )), h(x) = 0,

∀x ∈ [d]×N(R(T )), h(x) = 1}.

We now prove by induction that for every tree T the following claims hold:

• H(T ) has VC-dimension d,

• H(T )T has Natarajan dimension d · |N(T )|.

• An auxiliary claim: H(T ) includes the hypotheses h0 and h1.

Induction Basis: If both L(T ) and R(T ) are leafs, then the VC-dimension of H(T ) is
clearly d. The induced multiclass hypothesis classH(T )T is in fact a set of binary hypotheses
which is isomorphic to H(T ), thus its Natarajan dimension is also d = d(k − 1). The zero
hypothesis is clearly in H(T ) by construction.

Induction Step: Assume T has two children L(T ) and R(T ), and at least one of them
is not a leaf. By the construction of H(T ), the auxiliary claim clearly holds. The following
lemmas, whose proofs follows, prove the two other claims:

Lemma 27 H(T ) has VC-dimension d.

Lemma 28 H(T )T has Natarajan dimension d|N(T )|.

Thus the induction hypothesis holds.

Proof (of Lemma 27) The VC-dimension of H(T ) is at least d, since the VC-dimension of
at least one of H(L(T )) and H(R(T )) is d. Assume to the contrary that it is larger than
d, then there exists a set A = {x1, . . . , xd+1} ⊆ [d] × N(T ) which is shattered by H(T ).
Denote for brevity SL = [d]×N(L(T )), SR = [d]×N(R(T )) and SH = [d]×H(T ). By the
construction ofH(T ) and the auxiliary claim, H(T )|SL = H(L(T )) andH(T )|SR = H(R(T ))
whenever L(T ) and R(T ) are not leaves respectively. In addition, since |SH | = d, A * SH .
Since |A| ≥ 3, there exist three different elements in x, y, z ∈ A such that at least two of
them are in different sets out of SL, SH , SR. We consider the different cases (where names
of elements are w.l.o.g.) and show for each case a labeling lx, ly, lz for x, y, z that cannot be
achieved with a hypothesis in H(T ):

• If x ∈ SH , y ∈ SR then lx = 1, ly = 0 cannot be achieved.
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• If x, y ∈ SL, z ∈ SH ∪ SR then lx = 1, ly = 0, lz = 1 cannot be achieved.

• If x ∈ SL, y, z ∈ SR then lx = 1, ly = 0, lz = 1 cannot be achieved.

• If x ∈ SL, y, z ∈ SH then lx = 1, ly = 0, lz = 1 cannot be achieved.

We have reached a contradiction, therefore no such A exists.

Proof (of Lemma 28) The Natarajan dimension is upper bounded by the size of the
domain, which is d|N(T )|. By the induction hypothesis,H(L(T ))L(T ) andH(R(T ))R(T ) have
Natarajan dimension dL = d|L(T )| and dR = d|R(T )| respectively. Thus [d]×N(L(T )) and
[d]×N(R(T )) are N-shattered by H(L(T ))L(T ) and H(R(T ))R(T ) respectively. Let fL1 , f

L
2 ,

and fR1 , f
R
2 be the pairs of functions that witness the N-shattering of H(L(T ))L(T ) and

H(R(T ))R(T ) respectively. Let cL be the class of the left-most child in L(T ), and let cR be
the class of the left-most child in R(T ). define g1 and g2 as follows:

g1(x) =


fL1 (x) x ∈ [d]×N(L(T ))

fR1 (x) x ∈ [d]×N(R(T ))

cL x ∈ [d]× {H(T )}

g2(x) =


fL2 (x) x ∈ [d]×N(L(T ))

fR2 (x) x ∈ [d]×N(R(T ))

cR x ∈ [d]× {H(T )}

It is easy to verify that [d]×N(T ) is N-shattered using g1 and g2.

Proof (of Theorem 24) The proof is by induction on the structure of the tree.
Induction basis: Assume that T is a tree with one internal node and two leaf children.

ThenWd
T is isomorphic up to label names toWd. Thus the graph dimension ofWd

T is equal
to the VC-dimension of Wd, that is d+ 1 = (d+ 1) · n1(T ).

Inductive step: We consider two cases: Either both R(T ) and L(T ) are non-leaves or
ons is a leaf and one is not.

Case 1: Let T be a tree where both L(T ) and R(T ) are non-leaves. By the induction
hypothesis, the graph dimension of Wd

L(T ) is at least dL = (d+ 1) · n2(L(T )) + d · n1(L(T ))

and the graph dimension of Wd
R(T ) is at least dR = (d+ 1) · n2(R(T )) + d · n1(R(T )). Thus

there exist sets AL = {a1, . . . , adL} and BR = {b1, . . . , bdR} which are G-shattered by L(T )
and R(T ) respectively, using functions fL and fR respectively. Let

aL = ( min
i∈[dL]

{ai[1]}+ 1, 0, . . . , 0) ∈ Rd

bR = (− max
i∈[dR]

{bi[1]} − 1, 0, . . . , 0) ∈ Rd

Let ÃL = {a1 + aL, . . . , adL + aL} and let B̃R = {b1 + bR, . . . , bdL + bR}. Then ∀x ∈ ÃL,
x[1] > 0, and ∀x ∈ B̃R, x[1] < 0.
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We show that the set ÃL ∪ B̃R is G-shattered by Wd
T : Define

f(x) =

{
fR(x) x[1] > 0

fL(x) otherwise.

Let Z ⊆ ÃL ∪ B̃R. We construct a mapping C : N(T )→ H such that

{x ∈ ÃL ∪ B̃R | [T,C](x) = f(x)} = Z.

Let Y ⊆ AL ∩ BR = {ai | ai + aL ∈ Z} ∩ {bi | bi + bR ∈ Z}. Since AL and BR are G-
shattered with fL and fR, there exist mappings CL : N(L(T ))→Wd and CR : N(R(T ))→
Wd such that

{x ∈ AL | [L(T ), CL](x) = fL(x)} = Y ∩AL,
{x ∈ BR | [R(T ), CR](x) = fR(x)} = Y ∩BR.

Define the mapping C as a translation of the mappings CL and CR, defined by:

∀n ∈ L(T ), CL[n] = (w, b)⇒ C[n] = (w, b− 〈w, aL〉),
∀n ∈ R(T ), CR[n] = (w, b)⇒ C[n] = (w, b− 〈w, bR〉).

Then

{x ∈ ÃL | [L(T ), C](x) = fL(x)} = Z ∩ ÃL,
{x ∈ B̃R | [R(T ), C](x) = fR(x)} = Z ∩ B̃R.

Now, set C[H(T )](x) = sign(〈x,w〉+ b) where w = (1, 0, . . . , 0) and b = 0. Then

∀x ∈ ÃL, [T,C](x) = [L(T ), C](x) = fL(x) = f(x),

∀x ∈ B̃R, [T,C](x) = [R(T ), C](x) = fR(x) = f(x).

Thus ÃL ∪ B̃R is G-shattered by Wd
T . It follows that the graph dimension of Wd

T is at least
|ÃL ∪ B̃R| = dL + dR = (d+ 1) · n2(T ) + d · n1(T ).

Case 2: Assume w.l.o.g. that T is a tree where L(T ) is not a leaf node and R(T ) is a
leaf node with λ[R(T )] = t. By the induction hypothesis, the graph dimension of Wd

L(T ) is

at least dL = (d + 1) · n2(L(T )) + d · n1(L(T )). Thus there exists a set A = {a1, . . . , adL}
which is G-shattered by L(T ) using the function fL.

Denote by ei the i’th unit vector in Rd, and let q > 0 be large enough such that
{(0, . . . , 0), qe1, . . . , qed} is shattered with a margin of 2M , where M = maxx∈A ||x||2. Let
B = A ∪ {qe1, . . . , qed}. Then we show B is G-shattered using the following function f :

f(x) =

{
fL ||x|| ≤ q
t otherwise.

Let Z ⊆ B. We construct a mapping C : N(T )→ H such that

{x ∈ B | [T,C](x) = f(x)} = Z. (8)
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Since A is G-shattered using fL, there exists a mapping CL : N(L(T )) → Wd such that
{x ∈ A | [L(T ), CL](x) = fL(x)} = Z ∩A. Define C such that ∀n ∈ N(L(T )), C[n] = CL[n].
In addition, Let C[H(T )] ∈ Wd be a hypothesis such that ∀i, ei ∈ Z ⇐⇒ h(ei) = 1, and
∀x, ||x||2 ≤M → h(0) = 0. Then Equation. (8) holds. Thus the graph dimension of Wd

T is
at least |B| = dL + d ≥ (d+ 1) · n2(T ) + d · n1(T ).

Proof (of Theorem 25) If suffices to consider distributions with deterministic labeling, such
that the correct label is a function f : X → [k]. Let A = {x1, . . . , xk} ∈ X such that for all
i ∈ [k], f(xi) = i. For any labeling λ ∈ Λ, let fλ : A→ {0, 1} be the indicator function of the
set of labels assigned to leaves in L(T ), that is fλ(xi) = 1[∃n ∈ leaf(L(T )), λ[n] = i]. If D is

separable with H(T,λ) then fλ = C[H((T, λ))]|A ∈ H|A. By Sauer’s lemma, |H|A| ≤
(
ek
d

)d
.

There are
(
k
n

)
possible indicator functions fλ for a labeling λ, and they all have equal prob-

ability for λ ∼ U . Thus Pλ∼U [fλ ∈ H|A] ≤
(
ek
d

)d
/
(
k
n

)
.
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