MCS 441 – Theory of Computation I Spring 2013 Problem Set 1

Lev Reyzin

Due: 1/23/13 at the beginning of class

Related reading: Chapter 0

Instructions: Atop your problem set, please write your name, clearly list your collaborators (see syllabus for the collaboration policy), and indicate whether you are an undergraduate or graduate student.

Important note: Problems labeled "U" and "G" are assigned to undergraduate and graduate students, respectively. Undergraduate students can get a small bonus for solving the graduate problems. Graduate students are encouraged to solve the undergraduate problems for practice.

Set Theory

- 1. [6 pts] For each pair of sets A and B, are they the same? Briefly explain.
 - i. $A \equiv \{\}, B \equiv \{\emptyset\}$
 - ii. $A \equiv \mathcal{Z}, B \equiv \mathcal{Z} \cup \mathcal{N}$
 - iii. $A \equiv \{i : i = m^2 \text{ for some } m \in \mathcal{N}\}, B \equiv \mathcal{N} \times \mathcal{N}$

Boolean Logic and Functions

2. [6 pts] Two boolean expressions are equivalent if and only if their truth tables are the same. How many *inequivalent* boolean expressions exist over 3 variables? Explain your answer.

Induction

- **3.** [6 pts] Prove by induction on k:
 - **U.** Prove that for all integers $k \ge 4$, $k! > 2^k$.
 - **G.** Assume that c is a real number such that $c + \frac{1}{c}$ is an integer. Prove that for all integers k > 0,

$$c^k + \frac{1}{c^k}$$

is an integer.

Strings and Sequences

4. [6 pts] Imagine the following binary sequence: begin with the number 0 and continually append the Boolean negation of the sequence so far. Hence, the sequence begins as

$0110100110010110\ldots$

One can think of the elements, t_i , of the sequence individually, starting with t_0 . So, we have

$$t_0 = 0, t_1 = 1, t_2 = 1, t_3 = 0, t_4 = 1, t_5 = 0, \dots$$

- i. What is the value of t_{256} ? How did you arrive at you answer?
- ii. Does the string "111" occur (as a contiguous substring) somewhere in this sequence? If so, where is the first occurrence? If not, why not?

Graphs

5. [6 pts] Prove that every graph on $n \ge 2$ vertices (and no self-loops) has at least two vertices of the same degree.