MCS 441 – Theory of Computation I Spring 2014 Problem Set 1

Lev Reyzin

Due: 2/5/14 at the beginning of class

Instructions: Atop your problem set, please write your name and whether you are an undergraduate or graduate student. Remember: no collaboration is allowed on the problem sets.

Important note: Problems labeled " (\mathbf{U}) " and " (\mathbf{G}) " are assigned to undergraduate and graduate students, respectively. Undergraduate students can get a small bonus for solving the graduate problems. Graduate students are encouraged to solve the undergraduate problems for practice.

1. [4 pts] Imagine the following binary sequence: begin with the number 0 and continually append the Boolean negation of the sequence so far. Hence, the sequence begins as

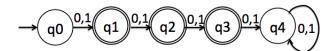
0110100110010110...

One can think of the elements, t_i , of the sequence individually, starting with t_0 . So, we have

$$t_0 = 0, t_1 = 1, t_2 = 1, t_3 = 0, t_4 = 1, t_5 = 0, \dots$$

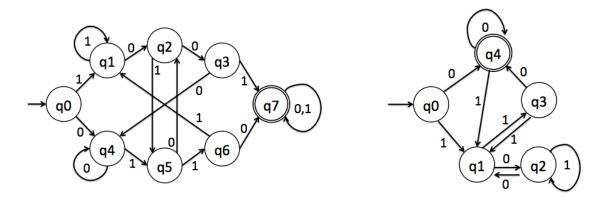
What is the value of t_{129} ? How did you arrive at your answer?

- 2. [8 pts] Draw state diagrams for DFAs recognizing the following languages:
 - i. $L_1 = \{ w \mid \text{length of } w \text{ is even} \}, \Sigma = \{1\}$
 - ii. $L_2 = \{w \mid w \text{ begins with "}bbb" \text{ or ends with "}bbb" \}, \Sigma = \{a, b\}$. Restriction: your DFA may contain no more than 8 states.
- 3. [10 pts] For each of the following DFAs, explain what language they recognize:
 - i. (**U**) M_1



For machine M_1 , also give its formal description as a 5-tuple. You do not need to do this for the machines that follow in parts ii. and iii. of this question.

ii. M_2 iii. (G) M_3



4. [4 pts] Let A and B be regular languages. Show that $A \setminus B$ is also regular. (Remember that $A \setminus B = \{x | x \in A, x \notin B\}$. Hence, this operation removes all strings from A that are also in B.)

5. [4 pts]

- (U) Describe all the languages recognizable by 1 state DFAs over $\Sigma = \{0, 1\}$.
- (G) Give an upper bound on the number of different languages recognizable by an n state machine over an alphabet of size s, as a function of n and s. Explain why your bound is valid.
- **6.** [10 pts] Consider the NFA: $N = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\}), \text{ with } \delta \text{ defined in Table 1.}$

δ	0	1	ϵ
q_1	$\{q_1,q_2\}$	Ø	Ø
q_2	Ø	$\{q_1\}$	$\{q_1\}$

Table 1: The transition function δ for N

- i. [3 pts] Draw the state diagram for N.
- ii. [3 pts] What language does N recognize?
- iii. [3 pts] Let M_1 be a DFA recognizing L(N). Using the "power set" construction in the proof of Theorem 1.39 from Sipser, draw the state diagram for M_1 , labeling the states of M_1 with the corresponding members of $\mathcal{P}(\{q_1, q_2\})$.
- iv. [1 pts] Let M_2 be a DFA recognizing $L(M_1)$ but containing fewer states than M_1 . Draw the state diagram of M_2 .