
Learning and Verifying Graphs using Queries

with a Focus on Edge Counting

Lev Reyzin⋆ and Nikhil Srivastava⋆⋆

Department of Computer Science
Yale University, New Haven, CT 06520, USA
{lev.reyzin,nikhil.srivastava}@yale.edu

Abstract. We consider the problem of learning and verifying hidden
graphs and their properties given query access to the graphs. We ana-
lyze various queries (edge detection, edge counting, shortest path), but
we focus mainly on edge counting queries. We give an algorithm for
learning graph partitions using O(n log n) edge counting queries. We in-
troduce a problem that has not been considered: verifying graphs with
edge counting queries, and give a randomized algorithm with error ǫ for
graph verification using O(log(1/ǫ)) edge counting queries. We examine
the current state of the art and add some original results for edge de-
tection and shortest path queries to give a more complete picture of the
relative power of these queries to learn various graph classes. Finally, we
relate our work to Freivalds’ ‘fingerprinting technique’ – a probabilistic
method for verifying that two matrices are equal by multiplying them
by random vectors.

1 Introduction

Graph learning appears in many different contexts. Suppose we are presented
with a circuit containing a set of chips on a board. We can test the resistance
between two chips with an ammeter. In as few measurements as possible, we
want to learn whether the entire circuit is connected, or whether we need to
power the components separately. This can be seen as a graph learning problem,
in which the chips are vertices of a hidden graph and the ammeter measurements
are queries into the graph, which tell whether a pair of vertices is connected by
a path. If we are given a strong enough ammeter to tell not only whether two
chips are connected, but also how far apart they are in the underlying circuit,
we get the stronger ‘shortest path’ queries.

In a different setting [3], testing which pairs of chemicals react in a solution
is modeled by ‘edge detection’ queries. Here, vertices correspond to chemicals,
edges designate chemical reactions, and a set of chemicals ‘reacts’ iff it induces
an edge. Applications of this model extend to bioinformatics, where learning a

⋆ Supported by a Yahoo! Research Kern Family Scholarship.
⋆⋆ This material is based upon work supported in part by the National Science Foun-

dation under Grant No. 0707522.



hidden matching [2] turns out to be useful in DNA sequencing. With each setup
we have different tools and target concepts to learn.

Our goal is to explore several graph-learning problems and queries. We con-
sider the following types of queries, defined on graphs G = (V, E):

– Edge detection query (ED): Check if there is edge between any two
vertices in S ⊆ V . This model has applications in genome sequencing and
was studied in [1–4, 10].

– Edge counting query (EC): Return the number of edges in the subgraph
induced by S ⊆ V . This has extensive uses in bioinformatics and was studied
in [6, 11].

– Shortest Path query (SP): Return the length of shortest path in G be-
tween two vertices; if no path exists, return ∞. This is the canonical model
in the evolutionary tree literature; see [12–14].

The second kind of task we consider is graph verification. Suppose we are
interested in learning the structure of some protein networks, and after months
of careful measurement, we complete our learning task. If we then find out there
is a small chance we made a mistake in our measurements or if we have reason
to believe our equipment may have been broken during experimentation, can
we verify the structures we’ve learned more efficiently than learning them over
again? More concretely, we are interested in how efficiently can we decide whether
a graph presented to us is indeed the “true graph.” This is a natural question
to ask, especially since real world data is often noisy, or we sometimes have
reason to mistrust results we are given. Every learning problem induces a new
verification problem.

We consider different classes of graphs for our learning and verification tasks.
The first class is arbitrary graphs, where there are no restrictions on the topol-
ogy of the graph. Any algorithm that learns or verifies an arbitrary graph can
also be used for more restricted settings. We also consider learning trees, where
we know the graph we are trying to learn is a tree, but we are not aware of its
topology. This is a natural setting for learning structures that we know do not
have underlying cycles, for example evolutionary trees. Finally, we consider the
problem of learning the partition of a graph into connected components. Here,
we do not restrict the underlying class of graphs, but instead relax the learning
problem. This is a natural question in settings where different partitions repre-
sent qualitative differences, for example in electrical networks, a power generator
in one partition cannot power any nodes outside its own partition. Note that this
also subsumes the natural question of whether or not a graph is connected.

In this paper we fill in some gaps in the literature on these problems and
introduce the verification task for these queries. We also introduce the problem
of learning partitions and present results in the EC query case. We then show
what problems remain open. After presenting a summary of the past work done
on these problems, we divide our results into two sections: Graph Learning and
Graph Verification.



2 Previous Work

In one of the earliest works in graph discovery, Hein [12] tackles the problem of
learning a degree d restricted tree with SP queries. He describes an O(dn lg n)
algorithm that builds the tree by inserting one node at a time, in a carefully
chosen order under which each insertion takes O(d lg n) queries. Among other
results, King et al. [13] provide a matching lower bound by showing that solving
this problem requires solving multiple partition problems whose difficulty they
then analyze.

Angluin and Chen [3] show that O(lg n) adaptive ED queries per edge are
sufficient to learn an arbitrary hidden graph. Their algorithm repeatedly divides
the graph into independent subgraphs (i.e., it colors the graph), so as to eliminate
interference to ED queries from previously discovered edges, and uses a variant
of binary search to find new edges within each subgraph. It is worth noting that
this is not far from an information-theoretic lower bound of Ω(ǫ lg n) ED queries
per edge for the family of graphs with n2−ǫ edges. A later paper [4] generalizes
these results to hypergraphs using different techniques.

The work of Angluin and Chen is preceded by a few papers [1, 2, 10] that
tackle learning restricted families of graphs, such as stars, cliques, and matchings.
Alon et al. [2] provide lower and upper bounds of .32

(

n
2

)

and (1/2 + o(1))
(

n
2

)

respectively on learning a matching using nonadaptive ED queries, and a tight
bound of Θ(n lg n) ED queries in expectation if randomization is allowed. Alon
and Asodi [1] prove similar bounds for the classes of stars and cliques. Grebinski
and Kucherov [10] study reconstructing Hamiltonian paths with ED queries. It
turns out that many of these results are subsumed by those of [3] if we ignore
constant factors.

Grebinski and Kucherov [11] also study the problem of learning a graph using
EC queries and give tight bounds of Θ(dn) and Θ(n2/ lgn) nonadaptive queries
for d-degree-bounded and general graphs respectively. They also prove tight Θ(n)
bounds for learning trees. Their constructions make heavy use of separating
matrices. In [6], Grebinski and Kucherov present a survey on learning various
restricted cases of graphs, including Hamiltonian cycles, matchings, stars, and
k−degenerate graphs, with ED and EC queries.

In the graph verification setting, Beerliova et al. [5] consider the problem of
discovering and verifying networks using distance queries. In this setting that
models discovering nodes on the internet, the learner can query a vertex, and
the answer to the query is the set of all edges whose endpoints have different
graph-theoretic distance from the query vertex. They show there is no o(log n)
competitive algorithm unless P = NP .

Both the learning and verification tasks also bear some relation to the field
of Property Testing, where the object is to examine small parts of the adjacency
matrix of a graph to determine a global property of the graph. For a survey of
this area, see [9].



3 Graph Learning

We first note that EC queries are at least as strong than ED queries and that
the problem of learning an arbitrary graph is at least as hard as learning trees or
partitions. Hence, in this paper, any lower bounds for stronger queries and easier
targets apply to weaker queries and harder target classes. Conversely, any upper
bounds we establish for weaker queries and harder problems apply for stronger
queries and more restricted classes.

We first establish that Θ(n2) SP and ED queries is essentially tight for
learning arbitrary graphs and partitions.

Proposition 1 Ω(n2) SP queries are needed to learn the partition of a hidden
graph on n vertices.

Proof. We prove this by an adversarial argument; the adversary simply answers
‘∞’ (i.e., not connected) for all pairs of vertices i, j. If fewer than

(

n
2

)

queries are
made, then some pair i, j is not queried, and the algorithm cannot differentiate
between the graph with no edges and the graph with a single edge {i, j} (for
which SP(i, j) = 1). But these graphs have different partitions. �

If k is the number of components in a graph, there is an obvious algorithm
that does better for k < n, even without knowledge of k:

Proposition 2 O(nk) SP queries are sufficient to determine the partition of
a hidden graph on n vertices, if k is the number of components in the graph.

Proof. We use a simple iterative algorithm:

– Step 1: Place 1 in its own component.1

– Step i > 1: Query SP(i, w) for an item w from each existing component;
if SP(i, w) 6= ∞ , place i in the corresponding component and move to the
next step. Otherwise, create a new component containing i and move to the
next step.

Correctness is trivial. For complexity, note that there at most k components
at any step (since there are at most k components at phase n and components
are never destroyed); hence n vertices take at most nk queries. �

Proposition 3 Ω(n2) ED queries are needed to learn the partition of a hidden
graph on n vertices.

Proof. Consider the class of graphs on n vertices consisting of two copies of
K n

2
, which we will call C1 and C2, and one possible edge between C1 and C2.

If there is an edge, all the vertices are in a single component; otherwise there
are two components. Any algorithm that learns the partition must distinguish

1 we use numbers 1, 2, . . . , n to represent the vertices of the graph



between the two cases. Observe that an ED query on a set S containing more
than one vertex from either C1 or C2 will not yield any information since an
edge is guaranteed to be present in S and any such query will be answered with
a ‘yes’. Hence, all informative queries must contain one vertex from C1 and one
vertex from C2. An adversary can keep on answering ‘no’ to all such queries,
and unless all possible pairs are checked, an edge may be present between C1

and C2. Hence, the algorithm cannot tell whether the graph has one component
or two until it asks all ≈ (n

2 )2 = Ω(n2) queries. �

It turns out that EC queries are considerably more powerful than ED queries
for this problem.

Proposition 4 Ω(n) EC queries are needed to learn the partition of a hidden
graph on n vertices.

Proof. We use an information-theoretic argument. The number of partitions of
an n element set is given by the Bell number Bn; according to de Bruijn [7]:

lnBn = Ω(n lnn)

Since each EC query gives a lg(
(

n
2

)

) = 2 lg n bit answer, we need Ω( lg(Bn)
2 lg n

) =

Ω(n lg n
lg n

) = Ω(n) queries. �

Theorem 5 O(n lg n) EC queries are sufficient to learn the partition of a
hidden graph on n vertices.

Proof. Consider the following n−phase algorithm, in which the components of
G[1 . . . i] are determined in phase i.

– Phase 1: Set C = {c1} with c1 = {1}. C will keep track of the components
c1, c2, . . . known at any phase, and we will let C + v denote {v} ∪

⋃

ci∈C
ci.

– Phase (i + 1): Let v = (i + 1), and query EC(C + v). If EC(C + v) = EC(C)
(i.e., there are no edges between v and C ), add a new component c = {v}
to C.

Otherwise, split C into roughly equal halves C1 and C2 and query EC(C1 +
v),EC(C2 + v). Pick any half h ∈ {1, 2} for which EC(Ch + v) > EC(Ch)
and repeat recursively until EC({cj}+ v) > EC(cj) for a single component
cj ∈ C2. This implies that there are edges between cj and v; we will call cj

a live component.

Repeat on C \ {cj} to find another live component cj′ , if it exists; repeat
again on C \ {cj, cj′} and so on until no further live components remain (or
equivalently, no new edges are found). Remove all live components from C
and add a new component {v} ∪

⋃

live cj
cj .

2 Notice that this is essentially a binary search.



Correctness is simple, by induction on the phase: we claim that C contains
the components of G[1 . . . i] at the end of phase i. This is trivial for i = 1.
For i > 1, suppose C = {c1, . . . , cm} at the beginning of phase i, and by the
inductive hypothesis C contains precisely the components of G[1 . . . (i− 1)]. The
components that do not have edges to v are unaffected by its introduction in
G[1 . . . i], and these are not changed by the algorithm. All other components are
connected to v and therefore to each other in G[1 . . . i]; but these are marked
‘live’ and subsequently merged into a single component at the end of the phase.
This completes the proof.

To analyze complexity, we use a “potential argument.” Let ∆i denote the
increase in the number of components in C during phase i. There are three
cases:

– ∆i = 1: There are no live components (v has no edges to any component in
C), and this is determined with a single EC(C + v) query.

– ∆i = 0: There is exactly 1 live component (v connects to exactly one member
of C). Since there are at most n components to search, it takes O(lg n) queries
to find this component.

– ∆i < 0: There are k > 1 live components with edges to v, bringing the
number of components down by k − 1.3 Finding each one takes O(lg n)
queries, for a total of O(k lg n) = O((−∆i + 1) lg n).

The total number of queries is

∑

i:∆i=1

1 +
∑

i:∆i=0

(lg n) +
∑

i:∆i<0

O((−∆i + 1) lg n)

The first two sums are bounded by O(n lg n) since there are n phases, and the
last one becomes

O(n lg n) + O(lg n)
∑

∆i<0

(−∆i).

But
∑

∆i<0(−∆i), the total decrease in the number of components, cannot be
greater than n since the total increase is bounded by n (one new component per
phase) and the final number of components is nonnegative. So the total number
of queries is O(n lg n), as desired.

To see that this analysis is tight, consider the case where G has exactly n/2
components, with ∆i = 1 for i < n/2, ∆i = 0 for i ≥ n/2. The first n/2 phases
take only O(n/2) queries, but the remaining n/2 take O(lg(n/2)) queries each,
for a total of O(n/2 lg(n/2) + n/2) = O(n lg n) queries. �

Proposition 6 O(|E| lg n) EC queries are sufficient to learn a hidden graph

on n vertices.

Proof. The algorithm of Angluin and Chen ([3]) achieves this since EC queries
are more powerful than ED queries, but we present a simpler method here that

3 The k components previously in C are replaced by a single component, hence ∆i =
−(k − 1).



exploits the counting ability of EC. The key observation is that we can learn
the degree of any vertex v in two queries:

d(v) = EC(V ) − EC(V \ {v})

We use this to find all of the neighbors of v, using a binary search similar to
that in the algorithm of theorem 5. Split V \ {v} into halves V1, V2 and query
EC(V1 +v),EC(V2 +v). Pick a half such that EC(Vi +v) > EC(Vi) and recurse
until EC(w + v) > 0 for some vertex w. This implies that w is a neighbor of v.
Repeat the procedure on V \{w, v} to find more neighbors, and so on, until d(v)
neighbors are found.

We can reconstruct the graph by finding the neighbors of each vertex; this
uses a total of

∑

v

d(v) lg n = lg n
∑

v

d(v) = 2|E| lg n = O(|E| lg n)

queries, as desired. �

It follows from the above proof that the degree sequence of a graph can be
computed in 2n queries, and consequently any property that is determined by
it takes only linear queries.

Proposition 7 Ω(n2) SP queries are needed to learn a hidden tree.

Proof. Consider a graph G on 2n + 1 vertices, which are of three kinds: a single
center vertex s, n ‘inner’ vertices x1 . . . xn, and n ‘outer’ vertices y1 . . . yn. The
center and inner vertices form a star (with edges {xi, s}) and the outer vertices
are matched with the inner vertices (for each yi there is a unique xji

such that
{xji

, yi} is an edge; no xji
is repeated).

Suppose a learning algorithm knows that G is a quasi-star. There are only
three kinds of SP queries: SP(s, xi) = 1, SP(s, yi) = 2, and

SP(xi, yj) =

{

1 if {xi, yj} is an edge
3 otherwise

The only query that gives any information is the last kind, and the problem
reduces to that of learning a matching using ED queries, which we know by [2]
takes Ω(n2) queries. �

Table 1 shows the known bounds for the problems we consider. We can see
that tight asymptotic bounds exist for all of these learning problems, except for
learning partitions with EC.

We note that learning a tree becomes significantly easier when the degrees
of its vertices are restricted, and in many cases, knowing a bound on the degree
of a graph can help with the learning problem.



Query partition graph tree

ED Θ(n2) Θ(|E| lg n), Θ(n2)[3] Θ(n lg n)

EC O(n lg n) O(|E| lg n), O( n
2

lg n
), O(dn)[3, 11] Θ(n)

Ω(n) Ω(dn),Ω( n
2

lg n
)[11]

SP Θ(nk) Θ(n2) Θ(n2), Θ(dn lg n) [12, 13]

Table 1. Summary of results. n denotes the number of vertices, |E| the number of
edges, d the degree restriction, and k the number of components

4 Graph Verification

In this setting, a verifier is presented a graph G(V, E) and asked to check whether
it is the same as a hidden graph G∗(V, E∗), given query access to G∗. In this
section, we explore the complexity of graph verification using various queries.
Mainly, we show that while verifying unrestricted graphs is hard using SP and
ED queries, there is a fast randomized algorithm that uses EC queries.

Proposition 8 Verifying an arbitrary graph takes Θ(n2) SP queries and Θ(n2)
ED queries.

Proof. Consider the problem of verifying a clique, when the hidden graph is a
clique with some edge (u, v) removed, and the verifier knows this. SP(u′, v′) = 2
if and only if u′ = u and v′ = v. A simple adversarial argument shows that Ω(n2)
queries are necessary. Similarly, for ED queries, let S = {u, v}. The answer to
query ED(U), where |U | 6= 2 is predetermined. Otherwise, ED(U) = 0 if and
only if U = S. There are

(

n
2

)

choices for S such that |S| = 2; hence Ω(n2) are
needed. For both SP and ED queries the O(n2) algorithm of checking all pairs
of vertices is obvious. �

Given that SP queries are most often considered in evolutionary tree learn-
ing, we also consider the problem of verifying a tree with SP queries. In this
setting, the verifier knows the hidden graph is a tree and is presented with a tree
to verify.

Proposition 9 Verifying a tree takes Θ(n) SP queries.

Proof. Consider the problem of verifying a path graph (from the class of path
graphs). This reduces to verifying that a given ordering of the vertices is correct.
If the answers to each query are consistent with the graph to be verified, each
query verifies at most two vertices in the ordering. An adversary can choose
whether or not to swap any pair of vertices that have not been queried and
either stay consistent with the input path graph or not until at least n/2 SP
queries have been performed. Conversely, we can verify each edge individually
in n − 1 queries. �



We now consider the problem of verifying a graph with EC queries. Here,
we see that EC queries are quite powerful for verifying arbitrary graphs.

Theorem 10 Any graph can be verified by a randomized algorithm using 1 EC
query, with success probability 1/4.

Proof. We define EC(V, G) to be the query EC(V ) on graph G. The algorithm
is simple. We let Q be a random subset of vertices of V , with each vertex chosen
independently with probability 1

2 . We query EC(Q, G∗) and compute EC(Q, G).
If the two quantities are not equal, we say G and G∗ are different. Otherwise we
say they are the same. We will show that if G = G∗ the algorithm always returns
the correct answer, and otherwise gives the correct answer with probability at
least 1

4 .
Consider the symmetric difference S = (V, E∆E∗). Let A = {(u, v) ∈ E\E∗ :

u, v ∈ Q} and B = {(u, v) ∈ E∗ \ E : u, v ∈ Q}. If G = G∗ then |A| = |B| = 0
and we are always right in saying the graphs are identical; otherwise G 6= G∗

and E∆E∗ 6= ∅, so by the following lemma |E∆E∗| = |A| + |B| is odd with
probability 1

4 . But this immediately implies that |A| 6= |B|, as desired. �

Lemma 11 Let G(V, E) be a graph with at least one edge. Let G′(V ′, E′) be the
subgraph induced by taking each vertex in G independently with probability 1

2 . If
G is non-empty, the probability that |E′| is odd is at least 1

4 .

Proof. Fix an ordering v1 . . . vn so that (vn−1, vn) ∈ E. Select each of v1 . . . vn−2

independently with probability 1/2, and let H ′ be the subgraph induced by the
selected vertices. Suppose the probability that H ′ contains an odd number of
edges (i.e., parity(H ′) = 1) is p.

Let i (resp. j) be the number of edges between vn−1 and H ′ (resp. vn and
H ′). Consider two cases:

– i ≡ j mod 2 If both are chosen an odd number of edges is added to H ′ and
parity(H ′) = 1 − parity(G′). This happens with probability 1/4.

– i 6≡ j mod 2. Assume w.l.o.g. that i is odd and j is even. Then, if vn−1 is
chosen and vn is not chosen, an odd number of edges is added to H ′, and
again parity(H ′) = 1 − parity(G′). This happens with probability 1/4.

On the other hand, if neither vn−1 nor vn is chosen then parity(G′) =
parity(H ′), and this happens with probability 1/4. So upon revealing the last
two vertices, the parity of H ′ is flipped with probability at least 1/4 and not
flipped with probability at least 1/4, independently of what happens in H ′. Let
F denote the event that it is flipped (i.e., that parity(H ′) 6= parity(G′). Then,

P[parity(G′) = 1] = P[parity(G′) = 1|parity(H ′) = 1]P[parity(H ′) = 1]

+ P[parity(G′) = 1|parity(H ′) = 0]P[parity(H ′) = 0]

= P[F |parity(H ′) = 1]p + P[F |parity(H ′) = 0](1 − p)

= P[F ]p + P[F ](1 − p) by independence

≥ 1/4(p + 1 − p) = 1/4

as desired. �



This finishes the proof of Theorem 10. Since this result has 1-sided error,
we can easily boost the 1

4 probability to any constant, and Corollary 12 follows
immediately.

Corollary 12 Any graph can be verified by a randomized algorithm with error
ǫ using O(log(1

ǫ
)) EC queries.

4.1 Relation to Fingerprinting

Suppose A and B are n × n matrices over a field F. It is known that if A 6= B,
then for a vector v ∈ {0, 1}n chosen uniformly at random we have

P[Av 6= Bv] ≥ 1/2.

This is Freivalds’ fingerprinting technique [8]. It is was originally developed as
a technique for verifying matrix multiplications, and can be used for testing for
equality of any two matrices.

An easy extension of this method says that for vectors v, w ∈ {0, 1}n chosen
independently uniformally at random, if A 6= B we have

P[wT Av 6= wT Bv] = P[wT Av 6= wT Bv|Av = Bv]P[Av = Bv]

+ P[wT Av 6= wT Bv|Av 6= Bv]P[Av 6= Bv]

≥ 0 × P[Av = Bv] +
1

2
×

1

2

=
1

4

This bears a strong resemblance to graph verification with EC queries. Let
A and B be the incidence matrices of G and G∗, respectively. Then an EC query
Q corresponds to multiplication on the left and right by the characteristic vector
of Q, and the algorithm becomes: choose v ∈ {0, 1}n uniformly at random and
return ‘same’ iff vT Av = vT Bv. By Theorem 10 if A 6= B then Pr[vT Av 6=
vT Bv] ≥ 1

4 .
This raises a natural question. For arbitrary n × n matrices A and B over

a field, if A 6= B, then for a vector v ∈ {0, 1}n chosen uniformly at random, is
P[vT Av 6= vT Bv] ≥ 1/4 (or some other constant > 0)?

This turns out not to be the case. Consider the two matrices

A =





0 1 0
0 0 1
1 0 0



 B =





0 0 1
1 0 0
0 1 0





A 6= B, but it is not hard to check that for any vector v ∈ {0, 1}n, vT Av =
vT Bv. In fact, this holds true for adjacency matrices of ‘opposite’ directed cycles
on > 3 vertices. A graph theoretic interpretation of this fact is that if the number
of directed edges on any induced subset of the two opposite directed cycles is
the same, then an EC query will always return the same answer for the two



different cycles. Needless to say, this property is not limited to the adjacency
matrices of directed cycles: in fact, it holds for any two matrices A and B such
that A + AT = B + BT , since

vT (A + AT )v = vT Av + vT AT v = vT Av + (vT Av)T = 2vT Av

for all v, so that vT Av = vT Bv for all v.

Hence, we know that standard fingerprinting techniques do not imply The-
orem 10. Furthermore, the proof to Theorem 10 generalizes easily to weighted
graphs and a more general form of EC queries, where the answer to the query
is the sum of the weights of its induced edges. Since any symmetric matrix can
be viewed as an adjacency matrix of an undirected graph, we have the following
fingerprinting technique for symmetric matrices.

Theorem 13 Let A and B be n × n symmetric matrices over a field such that
A 6= B,4 then for v chosen uniformally at random from v ∈ {0, 1}n, Pr[vT Av 6=
vT Bv] ≥ 1

4 .

Proof. Let C = A − B 6= 0, and note that vT Av 6= vT Bv ⇐⇒ vT Cv 6= 0.
Identify C with the weighted graph G = (V, E), where V = {v1 . . . vn} and
E = {(u, v) : C(u, v) 6= 0}, and wt(u, v) = C(u, v). We proceed as in the proof
of Lemma 11. Fix v1 . . . vn so that wt(vn−1, vn) 6= 0, and let H ′ be as before.
Define:

wt(H) =
∑

(u,v)∈H

wt(u, v); wt(w, H) =
∑

(w,v)∈G,v∈H

wt(w, v).

The first quantity is a generalization of parity, the second of the number of edges
from a vertex to a subgraph. Let T = wt(vn−1, H

′) + wt(vn, H ′) + wt(vn−1, vn),
and consider two cases:

– T = 0. Since wt(vn−1, vn) 6= 0, we know that at least one of the other terms
must be nonzero. Assume w.l.o.g. that this is wt(vn, H ′). So choosing vn but
not vn−1 is will make wt(G′) 6= wt(H ′), and this happens with probability
1/4.

– T 6= 0. Choosing both vn and vn−1 sets wt(G′) = wt(H ′)+T 6= wt(H ′). This
happens with probability 1/4.

Again, we choose neither vertex with probability 1/4, in which case wt(G′) =
wt(H ′). Finally,

4 Or, more generally, any matrices A and B with A + AT 6= B + BT .



P[wt(G′) 6= 0] = P[wt(G′) 6= 0|wt(H ′) 6= 0]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= 0|wt(H ′) = 0]P[wt(H ′) = 0]

≥ P[wt(G′) = wt(H ′)|wt(H ′) 6= 0]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= wt(H ′)|wt(H ′) = 0]P[wt(H ′) = 0]

= P[wt(G′) = wt(H ′)]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= wt(H ′)]P[wt(H ′) = 0] by independence

≥ 1/4(P[wt(H ′) = 0] + P[wt(H ′) 6= 0]) = 1/4

as desired. �

5 Discussion

There is a tantalizing asymptotic gap of O(lg n) in our bounds for EC queries for
learning the partition of the graph. It would also be interesting to know under
which, if any, query models it is easier to learn the number of components than
the partition itself. There is also the open question whether for general graphs,
the O(|E| lg n) bound can be improved to O(E) for EC queries. This is the open
question asked by Bouvel et. al. [6] on whether a hidden graph of average degree
d can be learned with O(dn) EC queries.5

Some other problems left to be considered are learning and verification prob-
lems for other restricted classes of graphs. For example, of theoretical interest
is the problem of verifying trees with ED queries. There is an obvious O(n)
brute-force algorithm, but it may be possible to do better. Also, other classes of
graphs have been studied in the literature (see the Section 2) including Hamilto-
nian paths, matchings, stars, and cliques. It may be revealing to see the power of
the queries considered herein for learning and verifying these restricted classes
of graphs.

It would also be useful to look at this problem from a more economic perspec-
tive. Since edge counting queries are strictly more powerful than edge detecting
queries, they ought to be more expensive in some natural framework. Taking
costs into account and allowing learners to be able to choose queries with the
goal of both learning the graph and minimizing cost should be an interesting
research direction.

Finally, our work shows that graph verification is possible even for many
classes of directed graphs. It would be interesting to redefine these queries for
directed graphs and explore their power.

5 [6] restrict themselves to a non-adaptive framework, where all queries must be asked
simultaneously.



Acknowledgments

We would like to thank Dana Angluin, Pradipta Mitra, and Daniel Spielman
for useful discussions and comments. We would also like to thank Dana Angluin
and Jiang Chen for suggesting Proposition 7.

References

1. Alon, N., and Asodi, V. Learning a hidden subgraph. SIAM J. Discrete Math.

18, 4 (2005), 697–712.
2. Alon, N., Beigel, R., Kasif, S., Rudich, S., and Sudakov, B. Learning a

hidden matching. SIAM J. Comput. 33, 2 (2004), 487–501.
3. Angluin, D., and Chen, J. Learning a hidden graph using O(log n) queries per

edge. In COLT (2004), pp. 210–223.
4. Angluin, D., and Chen, J. Learning a hidden hypergraph. Journal of Machine

Learning Research 7 (2006), 2215–2236.
5. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mi-

halák, M., and Ram, L. S. Network discovery and verification. In WG (2005),
pp. 127–138.

6. Bouvel, M., Grebinski, V., and Kucherov, G. Combinatorial search on graphs
motivated by bioinformatics applications: A brief survey. In WG (2005), pp. 16–27.

7. de Bruijn, N. G. Asymptotic Methods in Analysis. Dover, 1981.
8. Freivalds, R. Probabilistic machines can use less running time. In IFIP Congress

(1977), pp. 839–842.
9. Goldreich, O., Goldwasser, S., and Ron, D. Property testing and its connec-

tion to learning and approximation. J. ACM 45, 4 (1998), 653–750.
10. Grebinski, V., and Kucherov, G. Reconstructing a hamiltonian cycle by query-

ing the graph: Application to dna physical mapping. Discrete Applied Mathematics

88, 1-3 (1998), 147–165.
11. Grebinski, V., and Kucherov, G. Optimal reconstruction of graphs under the

additive model. Algorithmica 28, 1 (2000), 104–124.
12. Hein, J. J. An optimal algorithm to reconstruct trees from additive distance data.

Bulletin of Mathematical Biology 51, 5 (1989), 597–603.
13. King, V., Zhang, L., and Zhou, Y. On the complexity of distance-based evo-

lutionary tree reconstruction. In SODA ’03: Proceedings of the fourteenth annual

ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA, USA, 2003),
Society for Industrial and Applied Mathematics, pp. 444–453.

14. Reyzin, L., and Srivastava, N. On the longest path algorithm for reconstructing
trees from distance matrices. Inf. Process. Lett. 101, 3 (2007), 98–100.


