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Abstract—One of the main organizing principles in real-
world networks is that of network communities, where sets
of nodes organize into densely linked clusters. Communities
in networks often overlap as nodes can belong to multiple
communities at once. Identifying such overlapping communities
is crucial for the understanding the structure as well as the
function of real-world networks.

Even though community structure in networks has been
widely studied in the past, practically all research makes
an implicit assumption that overlaps between communities
are less densely connected than the non-overlapping parts
themselves. Here we validate this assumption on 6 large scale
social, collaboration and information networks where nodes
explicitly state their community memberships. By examining
such ground-truth communities we find that the community
overlaps are more densely connected than the non-overlapping
parts, which is in sharp contrast to the conventional wisdom
that community overlaps are more sparsely connected than the
communities themselves.

Practially all existing community detection methods fail
to detect communities with dense overlaps. We propose
Community-Affiliation Graph Model, a model-based commu-
nity detection method that builds on bipartite node-community
affiliation networks. Our method successfully captures over-
lapping, non-overlapping as well as hierarchically nested com-
munities, and identifies relevant communities more accurately
than the state-of-the-art methods in networks ranging from
biological to social and information networks.

I. INTRODUCTION

Nodes in networks organize into densely linked groups
that are commonly referred to as network communities,
clusters or modules [8], [27]. There are many reasons
why networks organize into communities. For example, in
social networks communities emerge since society organizes
into groups, families, friendship circles, villages and asso-
ciations [6], [28]. In the graph of the World Wide Web
topically related pages link more densely among themselves
and communities naturally emerge [7]. And in biological
networks communities emerge since proteins belonging to a
common functional module are more likely to interact with
each other [9], [13].

Communities in networks are thought of as groups of
nodes that share a common functional property or role, and
the goal of network community detection is to identify such
sets of functionally related nodes from the unlabeled network
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Figure 1. Conventional view of (a) two non-overlapping and (b) two
overlapping communities. Notice that the nodes in the overlap are less
connected. (c) Our findings suggest densely connected community overlaps.
Top: network; Bottom: corresponding adjacency matrix.

alone [8]. The understanding and models of network com-
munities has evolved over time [8], [17], [30]. Early works
on network community detection were heavily influenced
by the research on the strength of weak ties [11]. This
lead researchers to think of networks as consisting of dense
clusters that are linked by a small number of long-range ties
(Figure 1(a)) [10]. Graph partitioning [27], modularity [21]
as well as betweenness centrality [10] based methods all
assume such view of network communities and thus search
for edges that can be cut in order to separate the clusters.

Later it was realized that such definition of network
communities does not allow for community overlaps. In
many networks a node may belong to multiple communities
simultaneously which leads to overlapping community struc-
ture [1], [2], [23]. The overlapping nature of communities
can lead to communities that have more external than
internal connections. To deal with this community detection
algorithms based on identifying overlapping cliques [23],
articulation points, as well as hierarchical clustering of
the edges [1] have been proposed. However, practically all
present overlapping community detection approaches have
a hidden underlying assumption that was left unnoticed. In
particular, present overlapping community detection meth-
ods assume that community overlaps are less densely con-
nected than non-overlapping parts of communities (Figure
1(b)). In other words, this assumption means that the more
communities a pair of nodes shares, the less likely it is they
are connected. One possible reason that this assumption went
unnoticed and untested could simply be due to the challenges



of evaluating community detection — the lack of reliable
ground-truth makes the evaluation extremely difficult.

Present work: Empirical observations. Here we validate
the above assumption by studying the connectivity structure
of ground-truth communities [30]. Recently we identified a
set of 6 different large social, collaboration, and information
networks where we can reliably define the notion of ground-
truth communities [30]. Networks we study come from a
number of different domains and research areas. In all these
networks nodes explicitly state their ground-truth commu-
nity memberships [30]. The availability of reliable ground-
truth communities has two important consequences. It allows
us to empirically study the structure of true communities
and validate present assumptions. Moreover, the ground-
truth also allow us to move from qualitative to quantitative
evaluation of network community detection methods [30].

In this paper we study the overlaps of ground-truth
communities and discover that the probability of nodes
sharing an edge increases as a function of the number of
communities they have in common. We find an increasing
relationship between the number of shared communities of
a pair of nodes and the probability of them being connected
by an edge. A direct consequence of this is that parts of the
network where communities overlap tend to be more densely
connected than the non-overlapping parts of communities
(Figure 1(c)). This observation stands in sharp contrast to
present structural definitions of network communities and
also means that present methods [1], [2], [23] are not
able to correctly identify such community overlaps. Present
community detection algorithms would either mistakenly
identify the overlap as a separate cluster or merge two
overlapping communities into a single cluster.

Present work: Model-based Community detection. We
then proceed and ask the following question: What underly-
ing process causes community overlaps to be denser than the
communities themselves? To answer this question, we build
on models of affiliation networks [4], [15] and develop the
Community-Affiliation Graph Model (AGM) which reliably
reproduces the organization of networks into communities
and the overlapping community structure [31]. In our model
communities arise due to shared group affiliations [4], [28],
[6]. The central idea of generating social networks based
on the affiliation network is that links among people stem
from common group affiliations [4]. We model the prob-
ability of an edge between a pair of nodes as a function
of the communities that the two nodes share. Community
assignments in our model are probabilistic which allows
for flexibility in the structure of community overlaps: The
AGM can model overlapping, non-overlapping, as well as
hierarchically nested communities in networks.

Based on the AGM we then develop a community de-
tection method that successfully detects overlapping, non-
overlapping, as well as nested communities in networks.

We achieve this by fitting AGM (i.e., discovering the node-
community affiliation graph) to an unlabeled undirected
network. Using the Markov Chain Monte Carlo method
and convex optimization, we develop a fitting algorithm for
identifying node community affiliations. We also present a
method that automatically determines the number of com-
munities in a given network.

Experiments on social, collaboration, information and
biological networks reveal that AGM discovers overlapping
as well as non-overlapping community structure more ac-
curately than present state-of-the-art methods [1], [23], [2],
[26]. The success of our approach relies on the flexibility
of the AGM, which allows for modeling overlapping, non-
overlapping as well as hierarchically nested communities in
networks.

In summary, our work has three main contributions:

o The observation that community overlaps are more
densely connected than the non-overlapping parts.

o Community-Affiliation Graph Model that explains the
emergence of dense community overlaps and accurately
models network community structure.

o Model-based community detection method that detects
overlapping, non-overlapping, as well as nested com-
munities in networks.

II. NETWORKS WITH GROUND-TRUTH COMMUNITIES

We examine a collection of 6 large social, collaboration
and information networks where nodes explicitly state their
community memberships [30]. Members of these ground-
truth communities share properties or attributes, common
purpose or function. We did our best to identify networks
in which such ground-truth communities can be reliably
defined and identified. Table I gives the dataset statistics.

First we consider 4 online social networks: the LiveJour-
nal blogging community [3], the Friendster online network
[19], the Orkut social network [19], and the Youtube social
network [19]. In each of these networks users create explicit
groups which other users then join. Such groups serve
as organizing principles of nodes in social networks and
are focused on specific interests, hobbies, affiliations, and
geographical regions. For example, LiveJournal categorizes
communities into the following types: culture, entertainment,
expression, fandom, life/style, life/support, gaming, sports,
student life and technology. For example, there are over 100
communities with ‘Stanford’ in their name, and they range
from communities based around different classes, student
ethnic communities, departments, activity and interest based
groups, varsity teams, etc.

Figure 2 gives the distribution (Complementary CDF) of
ground-truth community sizes and the number community
memberships of nodes in LiveJournal. First notice a clear
power-law distribution of the community size distribution.
The exponent of the cumulative distribution is 1.3, which is
slightly higher than what has been reported in the past [5]
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Figure 2.  LiveJournal ground-truth communities: (a) Community size
distribution, (b) Distribution of the number of communities a node belongs
to.

” Dataset | N | E| C| S| A
LiveJournal 40 M 349M | 310k 40.06 3.09
Friendster 120M | 26600M | 1.5M 26.72 0.33
Orkut 3.1 M 120M | 85 M 34.86 | 95.93
Youtube 1.1 M 3.0M 30 k 9.75 0.26
DBLP 043 M 1.3 M 2.5k | 429.79 2.57
Amazon 0.34 M 093 M 49 k 99.86 | 14.83

Table I

DATASET STATISTICS. N: NUMBER OF NODES, F: NUMBER OF EDGES,
C': NUMBER OF COMMUNITIES, S: AVERAGE COMMUNITY SIZE, A:
COMMUNITY MEMBERSHIPS PER NODE. M DENOTES A MILLION AND k
DENOTES ONE THOUSAND.

(based on detected rather than ground-truth communities).
On the other hand the distribution of the number of com-
munity memberships of a node seems to follow a log-
normal distribution of average 3.09. Overall, there are over
three hundred thousand explicitly defined communities in
the LiveJournal network.

Friendster, Youtube and Orkut online social networks
define topic-based communities in the same way as Live-
Journal. Users create explicit groups that others then join.
Each user can join to zero, one or more such groups. We
consider each such group as a ground-truth community.
Friendster is the largest network we consider in this study. It
contains 120 million nodes, 2.6 billion edges and 1.5 million
ground-truth communities.

The second type of network data we consider is the
Amazon product co-purchasing network [16], where the
notion of community is quite different from that in the social
networks. Here the nodes of the network represent products
and edges link commonly co-purchased products. Each
product (i.e., node) belongs to one or more hierarchically
organized product categories and products from the same
category define a group which we view as a ground-truth
community. This means members of the same community
share a common function or role, and each level of the
product hierarchy defines a set of hierarchically nested and
overlapping communities.

Finally, we also consider the collaboration network of
DBLP [3] where nodes represent authors/actors and edges
connect nodes that have co-authored a paper. In DBLP
we use publication venues as ground-truth communities
which serve as proxies for highly overlapping scientific
communities around which the network then organizes. In
this network communities heavily overlap and tend to be
larger than in other networks we consider here (Table I).

The size of the networks we consider here ranges from

hundreds of thousands to hundreds of millions of nodes and
edges (Table I). The number of ground-truth communities
varies from hundreds to millions and there is also a nice
range in group sizes and the node membership distribution.
Overall, the networks range from those with modular to
highly overlapping community structure and represent a
wide range of edge densities, numbers of explicit commu-
nities, as well as amounts of community overlap (Table I).

We refer the reader to [30] for further discussion on
the choice of definition of ground-truth for each network.
We were very careful to define ground-truth communi-
ties based on common functions or roles around which
networks organize into communities [6], [11]. Note that
this is fundamentally different from Ahn et al. [1], who
evaluated communities based on attribute similarity of the
members. The problem with this approach is that it folds all
social dimensions (family, school, interests) around which
separate communities form into a single similarity met-
ric. In contrast, we harness explicitly labeled functional
groups as labels of ground-truth communities [30]. All the
networks we use are complete and publicly available at
http://snap.stanford.edu.

Even though our networks come from very different
domains and have very different motivation for formation
of communities the results we will present are consis-
tent and robust across all of them.Our work is consistent
with the premise that is implicit in all network commu-
nity literature: members of real communities share some
(latent/unobserved) functional property that serves as an
organizing principle of the nodes and gives them a distinct
structural connectivity pattern in the network. We use these
groups around which communities organize to explicitly
define ground-truth [30].

Data preprocessing. To represent all networks in a con-
sistent way we drop edge directions and consider each
network as an unweighted undirected static graph. Because
members of a particular group may be disconnected in the
network, we consider each connected component of the
group as a separate ground-truth community. However, we
allow ground-truth communities to be nested and to overlap
(i.e., a node can be a member of multiple groups at once).

III. EMPIRICAL OBSERVATIONS

The availability of reliable ground-truth communities [30]
allows us to empirically study the structure of communities
and community overlaps. Based on empirical findings, we
will then develop a new method for detecting overlapping
communities. We study the structure of community overlaps
by asking what is the probability that a pair of nodes being
connected if they share k¥ common community memberships,
i.e., the nodes belong to the overlap of same k£ communities.
Figure 3 plots this probability for all six datasets.

We discover an increasing relationship for all datasets.
This means that, the more communities a pair of nodes
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Figure 3. Edge probability between two nodes given the number of
communities that two nodes share. We observe that the edge probability is
an increasing function of the number of common communities in all the
networks.

has in common, the higher the probability of them being
connected. In LiveJournal, for example, if a pair of nodes
has 8 groups in common, the probability of friendship is
nearly 80%. To appreciate how strong the effect of shared
communities is on the edge probability, note that all of our
networks are extremely sparse. The background probability
of a random pair of nodes being connected is ~= 10~5, while
as soon as a pair of nodes shares two communities, their
probability of linking increases from 107° to 10~!. That is
by 4 orders of magnitude! We note that all other data sets
exhibit similar behavior — the probability of a pair of nodes
being connected approaches 1 as the number of common
communities increases. While in online social networks the
edge probability exhibits a diminishing-returns-like growth,
in DBLP, it appears to follow a threshold-like behavior.

Discussion. The above result is very intuitive. While nodes
belong to multiple communities (people have friends, fam-
ilies and co-workers), links often exist as a result of one
dominant reason (people are in the same family, work
together, or share common hobbies and interests). Thus, the
more communities people have in common, the more oppor-
tunities there are to create links. So, people sharing multiple
interests have a higher chance of becoming friends [?],
researchers with many common interests are more likely
to work together [24], and proteins belonging to multiple
common functional modules are more likely to interact [9],
[13]. Communities thus serve as organizing principles of
nodes in social networks and are created based on shared
affiliation, role, activity, social circle, interest or function.
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(a) Community Affiliation Network

(b) Overlap
Figure 4. (a) Bipartite community affiliation graph. Circles: communities,
Squares: nodes in (b) (one square is shown for two squares in (b)). Edges
indicate node community memberships. (b) Network generated by AGM.

Our finding suggests communities overlap as illustrated
in Figure 1(c). Since the probability of an edge increases as
a function of the number of shared communities this means
that nodes in the overlap of two (or more) communities
are more likely to be connected. This view of network
formation is consistent with works that predate the “strength
of weak ties” literature. In particular, dense community
overlaps are consistent with the works of Simmel [28§]
on the web of affiliations, and Feld [6] on the focused
organization of social ties. In both of these views networks
consist of overlapping “tiles” or “social circles” that serve
as organizing principles of nodes in networks.

We also point the contrast between our finding and
the currently predominant view of network communities.
Current understanding of network communities is based on
two fundamental social network theories: triadic closure and
“strength of weak ties” [11] which leads to the picture of
network communities as illustrated in Figure 1(a). It also
suggests that homophily in networks operates in small pock-
ets where nodes gather in dense non-overlapping clusters
(Fig. 1(a)). Moreover, in some networks communities tend
to overlap by nodes belonging to multiple communities at
once (and thus residing in the “overlap”) [23]. Applying
the conventional view in this case leads to the structure
of community overlaps as illustrated in Figure 1(b): Com-
munity overlaps are less densely connected than the groups
themselves. Our results show the contrary is true.

Last, as a consequence this also means that present
overlapping community detection methods [1], [2], [23] are
not able to correctly identify such overlaps. They would
either mistakenly identify the overlap as a separate cluster
or merge two overlapping communities into a single cluster.

IV. COMMUNITY-AFFILIATION GRAPH MODEL

We proceed by formulating a simple conceptual model
of networks that naturally leads to densely overlapping



communities. We then design a model fitting procedure that
detects communities from a given unlabeled network.

We present the Community-Affiliation Graph Model
(AGM), a probabilistic generative model for graphs that
reliably reproduces the organization of networks into over-
lapping communities. Our model is based on two main ingre-
dients. The first ingredient is based on Breiger’s foundational
work [4] which recognized that communities arise due to
shared group affiliations [4], [28], [6]. We represent node
community memberships with a bipartite affiliation network
that links nodes of the social network to communities that
they belong to.

The second ingredient of our model is based on the fact
that people belong to multiple communities (people have
friends, families and co-workers) but the links between them
often exist as a result of one dominant reason. We can model
this by having each community also carry a single parameter
that captures the probability that nodes belonging to that
community to share a link. This means every community
that a pair of nodes shares gets an independent chance of
connecting the nodes. Thus, naturally, the more communities
a pair of nodes shares, the higher the probability of linking.

Figure 4(a) illustrates the essence of our model. We
start with a bipartite graph where the nodes at the bottom
represent the nodes of the social network, the nodes on
the top represent communities, and the edges indicate node
community memberships. We denote the bipartite affiliation
network as B(V,C, M), where V the set of nodes of the
underlying network G, C' the set of communities, and M
the edge set.

Now, given the affiliation network B(V,C, M), we want
to generate a social network G(V, E). To achieve this we
need to specify the process that generates the edges E of
G given the affiliation network B. We consider a simple
parameterization where we assign a parameter p. to every
community ¢ € C. The parameter p. models the probability
of an edge forming between two members of the community
c. In other words, we simply generate an edge between a pair
of nodes that belongs to community ¢ with probability p.
Each community c creates edges independently. However, if
the two nodes are connected by more than one community,
the duplicate edges are not included in the graph G(V, E).

Definition 1: Let B(V,C, M) be a bipartite graph where
V is a set of nodes, C is a set of communities, and an edge
(u,c) € M means that node v € V belongs to community
¢ € C. Let also {p.} be a set of probabilities for all ¢ €
C. Given B(V,C, M) and {p.}, the Community-Affiliation
Graph Model generates a graph G(V, E) by creating edge
(u,v) between a pair of nodes u,v € V with probability

p(u,v):

plu,v) =1— T] (1 =ps), (1)

keCyuy

where C,,,, C C is a set of communities that « and v share
(Cuv = {c|(u,¢), (v,¢c) € M}).

Note that this simple process already ensures that pairs
of nodes that belong to multiple common communities are
more likely to link. This is due to the fact that nodes that
share multiple community memberships receive multiple
chances to create a link. For example, pairs of purple nodes
in the overlap of communities A and B in Figure 4(a) get
two chances to create an edge. First they can be connected
with probability p (due to their membership in community
A) and then also with probability pg (due to membership
in B). While pairs of nodes residing in the non-overlapping
region of A link with probability p4, nodes in the overlap
link with probability 1 — (1 —pa)(1 — pp) which is greater
than either of p4 or pp.

We also point out that the Community-Affiliation Graph
Model is very similar to the model of Lattanzi and Sivaku-
mar [15]. However, there are two crucial differences. First,
[15] posed a model where edge creation probability de-
creases with community size. AGM relaxes this and allows
communities to have arbitrary edge probabilities, in order
to flexibly model the community structure of real-world
networks. Second while [15] focuses on generating synthetic
networks with desirable properties, our work aims to detect
the community structure by developing an efficient fitting
algorithm for AGM.

e-community. In the formulation of Equation 1, AGM
does not allow for the edges between the nodes that do
not share any common communities. To allow for edges
between nodes that do not share any common commu-
nities, we assume an additional community, called the e-
community, which connects any pair of nodes with a very
small probability €. We find that setting € to the background
probability of a pair of nodes being connected by an edge
(e =2|E|/|V|(JV] — 1)) works well in practice. In case of
our datasets, € ~ 1078,

Flexibility of the AGM. Last, we also point out the
flexible nature of the Community-Affiliation Graph Model,
which allows for modeling a wide range of network com-
munity structures. Figure 5 illustrates the structure of af-
filiation network for three possible community structures.
Figure 5(a) shows an affiliation graph of a network with
two non-overlapping communities. (Note the presence of -
community which allows for edges between communities
A and B.) Figure 5(b) shows an example of hierarchical
community structure where communities A and C' are nested
inside community B. Finally, Figure 5(c) illustrates an
affiliation network corresponding to a pair of overlapping
communities. This means that the flexibility of the affiliation
network structure allows the AGM to simultaneously model
non-overlapping, hierarchically nested as well as overlap-
ping communities in networks.

In [31] we further evaluate the ability of AGM to generate
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communities connect with small prob. € (refer to the discussion in the main text).

realistic networks with realistic community structure. Our
results show that AGM is able to generate networks with
heavy-tailed degree distributions, high clustering as well
as realistic overlapping, non-overlapping and hierarchical
community structures.

V. COMMUNITY DETECTION WITH
COMMUNITY-AFFILIATION GRAPH MODEL

Now that we defined the AGM model, we explain how
to detect network communities using the model. Given an
unlabeled undirected network G(V, E), we aim to detect
communities by fitting the AGM (i.e., finding affiliation
graph B and parameters {p.}) to the underlying network G
by maximizing the likelihood L(B,{p.}) = P(G|B,{p.})
of the underlying graph G:

argmax L(B, {p.}) = H p(u,v) H (1—p(u,v))

B.{pc} (u)EE (uv)EE

To solve the above optimization problem we employ co-
ordinate ascent strategy where iterate the following two
steps. First, we update {p.} by keeping B fixed. Then we
update B while keeping {p.} fixed. To start the process we
need to initialize B. We achieve this by generating a binary
affiliation graph B on K communities (K = |C]) by using
the configuration model [20].

Updating {p.}. With keeping the community affiliation
network B fixed, we aim to find {p.} by solving the
following optimization problem:

argmax [[ (1= T] (0—=pe)) T] (T (1=pw))

Ped (uv)eE kEC s (u0)€E kE€Cy

with the constraints 0 < p. < 1. Although this problem is
non-convex, we can transform it to a convex optimization
problem. We maximize the logarithm of the likelihood and
change the variables e™"* = 1 — py:

arg max Z 1og(1_e*2kecwwk)_ Z Z Th

4 (uw)eE (u,v)ZE k€Cyy

And the constraints 0 < p. < 1 become x. > 0. This
problem is a convex optimization of {z.}, which means
we can find globally optimal solution by using efficient
algorithms such as gradient descent or Newton’s method.

Updating B. To update B, we use the Metropolis-
Hastings [22] algorithm where we stochastically update B
using a set of ‘transitions’. Given the current community
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Figure 6. The 3 ‘transitions’ for updating the community affiliation graph
B.

affiliation graph B(V,C, M), we consider three kinds of
transitions to generate a new community affiliation graph
B'(V,C, M') (Figure 6).

e LEAVE simulates node w dropping the membership in
community c. We choose a random node-community
edge (u,c) € M and remove it from M (ie., M' =
M {(u, e)}).

e JOIN corresponds to node u joining community c. We
randomly choose node-community pair (u,c) ¢ M and
add it to M’ (i.e., M' = M U {(u,c)}).

e SWITCH corresponds to node u switching the mem-
bership between communities ¢; and c. We choose
a node-community pair (u,c1) € M, (u,c2) ¢ M
uniformly at random and set M’ = (M \ {(u,¢1)}) U
{(u, c2)}-

Once we have generated new community
affiliation B’, we accept B’ with probability
max (1, L(B’,{p.})/L(B,{p:})). In other words, we
start the process with some B and then perform a large
number of steps, where at each step ¢ we take B; (we
initialize B; = DB) and apply a random ‘transition’
generating a new affiliation network B.. At each step
we ‘accept’ the transition (ie., we set Bjy; = B))
probabilistically based on the ratio of log-likelihoods. In
case the transition is not accepted we do not update B;
(i.e., Bi+1 = Bl)

In our experiments the Markov chain of searching for
a good B exhibits relatively quick convergence within
O(|V'|?) steps, which makes the complexity of our algorithm
effectively quadratic in the number of nodes. Although this is
not a rigorous theoretical guarantee, experiments show that
our fitting algorithm works well in practice. The algorithm
can fit AGM to networks with a few thousand vertices in
about an hour.
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Figure 7. Example of finding the number of communities. Two Y-axes
used. Left axis: K*, K(X). Right axis: L' (B(X)), (). Refer to the main
text for description.

Finding the number of communities. So far we left the
question of how to determine the number of communities
K unanswered. To address this, we develop a method
that automatically estimates the number of communities in
a given network where we find the minimal number of
communities that still sufficiently explain the edges of the
network G.

We begin with fitting a candidate community affiliation
graph By(V, Cy, M) with a very large number of communi-
ties (|Co| = O(|V])). We then aim to force the model to use
the minimal number of communities while still accurately
modeling the network. We achieve this by placing a I3
penalty term on parameters {p.} and solve the following
modified optimization problem:

{P-(\)} = argmax P(G|Bo, {pc}) =AY _ Ipe|

{pc}

where A is a given regularization intensity. The effect of [y
penalty is that it will force p. to O (i.e., probability of edge
between the nodes belonging to that community is 0). This
means we can ignore communities in By whose values p,
are 0.

We solve the above problem for various values of A
obtaining B(A\) = B(V,C()\), M (X)) which consists of
the communities with nonzero p.(\). We find that the
log-likelihood L(B(\)) exhibits a step-like behavior as a
function of A\ (Figure 7). Let K(\) be the number of
communities in B(\), and let A* be the value of A at which
L(B()\)) experiences the step-like transition. We use K (A*)
as our estimate for the number of communities.

To determine the value of A\*, we use the following
heuristic. We measure L(B(\)) for several values of A (Blue
line in Figure 7). Then we fit the sigmoid function o(\)
(Black line) to the normalized likelihood, and find A* such
that o(A*) = 0.25 (Pink vertical line). For the particular case
in Figure 7 the method correctly estimates the true number
of communities (Red line, K*). Overall, experiments show
that this strategy succeeds in estimating the number of
communities more accurately than other methods (Figure 9).

VI. EXPERIMENTS

We proceed by evaluating the performance of AGM and
comparing it to the state-of-the-art community detection
methods on a range of networks from a number of different
domains and research areas.

EXPERIMENTS ON SYNTHETIC NETWORKS. Maximum
likelihood estimation of AGM is non-convex. To verify
that our fitting algorithm does not suffer from poor local
optima, we conduct the following experiment on synthetic
networks. We generated 100 synthetic networks using AGM.
Each network had 200 nodes with randomly chosen B* as
well as {p*}. Each B* has 5 communities whose sizes
are uniformly sampled from the interval [40,80] and p
are uniformly sampled from [0.05,0.25]. Then, for each of
the 100 networks, we fit AGM from 10 different random
initializations to recover B*,{p’}. In 97% of cases our
fitting algorithm reconstructs B* with reliable accuracy (F1-
score higher than 0.8), and in 50% of cases our algorithm
discovers B* almost perfectly (F1-Score > 0.98). This result
suggests that the optimization space of fitting AGM is nicely
structured in a sense that the likelihood has several local
optima which are almost equivalent to the global optimum.

EXPERIMENTS ON GROUND-TRUTH COMMUNITIES. We
also perform experiments on the 6 networks described in
Section II where nodes explicitly state their ground-truth
community memberships. Explicitly labeled communities
in these networks allow us to measure the ‘accuracy’ of
community detection methods by comparing the level of
correspondence between the detected and the explicitly
labeled ground-truth communities. Our goal here is very
natural. Given an unlabeled undirected network G (with
known ground-truth communities C*) we aim to discover
communities C' such that discovered communities C closely
match the ground-truth communities C*.

Experimental setup. We focus the evaluation of commu-
nity detection methods on their ability to correctly identify
overlapping communities. Running community detection
algorithms on full networks is not feasible for two reasons.
First, all the community detection algorithms that we con-
sider here do not scale to networks of millions of nodes.
And second, many nodes in our networks do not indicate
their ground-truth community memberships, which would
complicate the evaluation procedure.

To remedy these problems we use the following evaluation
scenario where the goal is to obtain a large set of relatively
small subnetworks with overlapping community structure.
To obtain one such subnetwork we pick a random node u in
the given graph G that belongs to at least two communities.
We then take the subnetwork to be the induced subgraph of
G consisting of all the nodes that share at least one ground-
truth community membership with u. Figure 8 illustrates
how a subnetwork (right) is created from G(V, E) (left)
based on the red node u. In our experiments we created



Figure 8.

Sampling subnetworks of G.

500 different subnetworks for each of the six datasets.

Baselines. We compare AGM to several state-of-the-art
community detection methods. We choose three most
prominent community detection methods: Link clustering
(LO) [1], Clique Percolation Method (CPM) [23], and the
Mixed-Membership Stochastic Block Model (MMSB) [2].
These methods have a number of parameters that need
to be set. For CPM, we have to choose the clique size k.
We use k& = 5 since the number of communities discovered
by CPM with k£ = 5 best approximates the true number of
communities. MMSB also requires the number of communi-
ties K as an input parameter. We use the Bayes Information
Criterion as described in [2] to choose K. MMSB out-
puts a stochastic vector for each node representing partial
memberships to each of the K communities. To generate
“hard” memberships we assign a node to a community if the
corresponding stochastic membership is non-zero. For CPM
and LC we used the implementation in the Stanford Network
Analysis Platform!, while for MMSB we used publicly-
available ‘LDA’ R package. We note that we also considered
Infomap [26], which is the-state-of-the-art non-overlapping
community detection method. We omit the results as the
performance of the method was not competitive.

Evaluation metrics. Evaluation metrics establish the level
of correspondence between the detected and the ground-truth
communities. Given a network G(V, E), we consider a set
of ground truth communities C* and a set of detected com-
munities C' where each ground-truth community C; € C*
and each detected community C; € C is defined by a set of
its member nodes. To assess the level of correspondence of
C to C*, we use four accuracy metrics:

o Average F1 score. To compute the F1 score, we
need to determine which C; € C* corresponds to
which C’i € C. We define the F1 score as the av-
erage of the Fl-score of the best-matching ground-
truth community to each detected community, and
the Fl-score of the best-matching detected commu-
nity to each ground-truth community: F1 = J(F, +
F,) where F, = ﬁ >, max; F1(C;,Cy), Fy =
ﬁzi max; F1(C},C;) and F1(C;,C;) is the har-

monic mean of precision and recall of C; and C’j.

e Omega Index [12] is the accuracy on estimating the
number of communities that each pair of nodes shares,
ie., ﬁ Zu,vEV 1{|Cuy| = |Cup|} where Cy, is the

Uhttp://snap.stanford.edu

set of ground-truth communities that v and v share and

Cly is the set of detected communities that they share.

« Normalized Mutual Information adopts the criterion
used in information theory to compare the detected
communities and the ground-truth communities. Nor-
malized Mutual Information has been proposed as a
performance metric for community detection. Refer
to [14] for details.

e Accuracy in the number of communities is the
relative accuracy between the detected and the true

.. c*|-|C
number of communities, 1 — %

Note that for all metrics higher values mean better perfor-
mance. Maximum value of 1 is obtained when the detected
communities exactly correspond to the ground-truth com-
munities.

Results on ground-truth communities. For each commu-
nity detection method and each dataset we measure the
average value of the 4 evaluation metrics over the 500
subnetworks. Then, for each evaluation metric separately we
scale the scores of the methods so that the best performing
community detection method achieves the score of 1. Fi-
nally, we compute the composite performance by summing
up the 4 normalized scores. If a method outperforms all
the other method in all the scores, then the composite
performance of the method is 4.

Figure 9 displays the composite performance of the
methods over all six networks. AGM gives superior overall
performance on all networks except the Amazon, where it
ties with MMSB. Furthermore, AGM detects highest quality
communities for most individual measures in each network.
On average, the composite performance of AGM is 3.56,
which is 57% higher than that of Link clustering (2.27),
48% higher than that of CPM (2.41), and 10% higher than
that of MMSB (3.25). The absolute average value of Omega
Index of AGM over the 6 networks is 0.46, which is 21%
higher than Link clustering (0.38), 22% higher than CPM
(0.37), and 26% higher than MMSB (0.36).

In terms of absolute values of scores, AGM archives the
average F1 score of 0.57, average Omega index of 0.46,
Mutual Information of 0.15 and accuracy of the number of
communities 0.42.

EXPERIMENTS ON THE NETWORKS IN AHN ET AL. [1].
Last we also evaluate the performance of AGM by adopting
exactly the same data, evaluation metrics and experimental
setup as in Ahn et al. [1].

Experimental setup. We use seven different networks.> 5
biological networks: 4 protein-protein interaction networks
of Saccharomyces cerevisiae and the metabolic network of
E. coli K-12 MG1655 strain (iAF1260); The network of
Wikipedia pages of 1,218 famous philosophers; And the
Word association network discovered by the University of

2We thank Sune Lehmann for generously sharing the data.
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Figure 9. The composite performance of the algorithms on the networks with ground-truth communities.

South Florida and the University of Kansas. For further de-
tails about these datasets, refer to [1]. We also adopt the same
data-driven measures defined in [1]: Community Coverage,
Overlap Coverage, Community Quality, Overlap Quality. We
compute these measures using the same metadata as in [1].
The idea behind these scores is that good communities are
such where the diversity in the metadata of its members is
small. These networks only have about 1,000 nodes each,
so we apply the community detection methods to the whole
networks. Since these metrics are heavily biased towards
methods that find a large number of communities, we fit
AGM using the same number of communities as detected
by LC.

Results. Following [1] we compute the composite perfor-
mance by normalizing the scores the same way as we did in
the experiments with ground-truth communities. Figure 10
shows the composite performance of the four methods.
The AGM achieves best composite performance in the 3
networks (PPI (Y2H), PPI (LC) and Philosophers), Link
clustering performs slightly better in the Word association
and the metabolic network, and MMSB is the best in the
PPI (Y2H) and PPI (All) networks. On average, the AGM
achieves a composite performance score of 3.06, outper-
forming Link clustering (2.74) by 12%, Clique percolation
(1.51) by 102%, and MMSB (2.75) by 11%.

VII. DISCUSSION AND CONCLUSION

In this paper we developed a novel community detection
method that accurately discovers the overlapping community
structure of real-world networks. We identified a set of
networks where nodes explicitly state their ground-truth
community membership. We then studied the structure of
community overlaps in a set of networks with explicitly
defined ground-truth communities. We observed that the
overlaps of communities are more densely connected than
the non-overlapping parts of communities, which is in sharp
contrast to assumptions made by present community detec-
tion models and methods. Based on this observation, we then
developed the Community-Affiliation Graph Model (AGM),
a conceptual model of network community structure, which

reliably captures the overall structure of networks. We then
presented an efficient algorithm to fit AGM to a given net-
work whose community structure is unknown. Experiments
show that the AGM outperforms the state-of-the-art com-
munity detection methods in accurately discovering network
communities as well as the overlaps between communities.

We note that the finding that community overlaps are
denser than communities themselves nicely extends the
notion of homophily in networks [?]. The ‘strength of weak
ties’ and small-world models [11] lead to the idea that
homophily in networks operates in small pockets where
inside the pocket nodes link strongly among themselves,
and weakly to other pockets. In this respect our work here
represents an extension to the understanding of homophily.
In a sense we are discovering pluralistic homophily® where
the similarity of one node to another is the number of shared
affiliations, not just their similarity along a single dimension.
This view of tie formation is consistent with works that
predate the “strength of weak ties” literature. In particular,
dense community overlaps are consistent with the works of
Simmel [28] on the web of affiliations, and Feld [6] on the
focused organization of social ties. In both of these views
networks consist of overlapping “tiles” or “social circles”
that serve as organizing principles of nodes in networks.
Thus, network communities should not be thought of as a
set of ‘clusters’ but rather as a set of overlapping tiles where
the density of the edges increases with the number of tiles
that overlap.

Our work has several important implications: First, our
analysis sheds light on the organization of complex networks
and provides new directions for research on community
detection. Second, ground-truth communities offer a reliable
way for evaluating community detection methods. And last,
the AGM provides a realistic benchmark network on which
new community detection algorithms can be developed and
evaluated. More generally, a shift in perspective from sparse
to dense community overlaps represents a new way of
studying networks and provides a unifying framework for

3We thank Michael Macy for coining the term.
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network community detection.
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