
MCS 401 – Computer Algorithms I
Spring 2025

Problem Set 3

Lev Reyzin

Due: 3/5/25 by the beginning of class

1. Consider the problem of taking positive integers x and n and computing xn using as few multi-
plications as possible. Here, we are not concerned with the cost of performing the multiplications,
but only with how many multiplications are done. Naively, O(n) suffice by starting with 1 and
multiplying x with the result n times. But observe that

xn =

{
(xn/2)(xn/2), for n even

(x(n−1)/2)(x(n−1)/2)x, for n odd

}
.

Use this observation to come up with a divide and conquer approach to computing xn that uses
asymptotically fewer multiplications than linear in n.

2. Consider multiplying two n-digit integers x and y to get an integer z = xy. As we saw in class,
the grade-school multiplication algorithm, which takes O(n2) time, can be vastly improved upon.
One such improvement is given by the Toom-Cook algorithm. It divides the digits of x and of y
into 3 (approximately) equal parts and uses 5 multiplications instead of the brute-force 9 to get z.
It also uses a constant number of additions and subtractions. Give the recurrence resulting from
this approach and solve the recurrence. How does it compare to the other integer multiplication
methods we learned about in class?

3. You are given a one dimensional array that may contain both positive and negative integers.
Give an O(n log n) algorithm to find the sum of contiguous (ie. next to one another) subarray of
numbers which has the largest sum. For example, if the given array is [−2,−5,6,−2,−3,1,5,−6],
then the maximum subarray sum is 7 (the subarray is marked in boldface). Argue that your algo-
rithm is correct.

4. You are given two arrays, A and B, each of which contains n integers. The elements in each
array are guaranteed to already be in sorted order in the input, i.e.

A[0] ≤ A[1] ≤ . . . ≤ A[n− 1] and also B[0] ≤ B[1] ≤ . . . ≤ B[n− 1].

Give as fast an algorithm as you can for finding the median value of all the 2n numbers in both A
and B. (We define the median of 2n numbers to be the average of the nth smallest and nth largest
values.) Argue that your algorithm is correct and give its running time.

1



5. You are given an array X of n elements. A majority element of X is any element occurring
in more than n/2 positions. The only access you have to the array is to compare any two of
its elements for equality; hence you cannot sort the array, nor add up its values, etc. Design an
O(n log n) divide-and-conquer algorithm to find a majority element in X (or determine that no
majority element exists).

6. You are given a 2k × 2k board with one missing cell. (See Figure 1 below.)

Figure 1: On the left is an example grid with a missing cell, with k = 3. In the middle is the
“L-shaped” tile, to be used for tiling. On the right is an example solution.

Give an O(22k)-time algorithm for filling the board with “L-shaped” tiles.

2


