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0. Introduction

In its simplest form the Löwenheim-Skolem Theorem for Lω1ω states that if σ ∈ Lω1ω

and M |= σ then M0 |= σ for some (in fact, ‘many’) countable M0 ⊆ M . For sentences in
L∞ω but not in Lω1ω this property normally fails. But we will see that the L∞ω proper-
ties of arbitrary structures are determined by properties of their countable substructures.
In particular we obtain a biconditional strengthening of the ‘simple’ Löwenheim-Skolem
Theorem for Lω1ω given above. We also obtain a characterization of L∞ω-elementary
equivalence of two structures in terms of isomorphisms between their countable substruc-
tures.

Central to this development are:

1) the concept of a countable approximation to structures and to formulas of L∞ω,

2) a filter which defines a notion of almost all on countable approximations.

This work appeared in the author’s paper [Ku3] (see also the announcement [Ku1]),
which also discusses some other topics, including extensions to infinite quantifier logics.
Some results from the paper and, more importantly, the methods, are used in our recent
work on abstract elementary classes (see [Ku4]), which is the reason they are being covered
in this course.

The usual formalization of L∞ω uses conjunctions and disjunctions of sets of formulas,
thus if Φ is a set of formulas of L∞ω then

∧

Φ and
∨

Φ are formulas. Many examples are
more clearly written using indexed sets instead, so if ϕi ∈ L∞ω for all i ∈ I then

∧

i∈Iϕi

and
∨

i∈Iϕi are formulas. We adopt the indexed sets version in these notes. Of course a
set Φ can be treated as an indexed set with the index of ϕ being just ϕ so this is not a
significant change.

1. Countable Approximations

A countable approximation to a structure M is just a countable substructure of M . A
countable approximation to a formula ϕ ∈ L∞ω is the result of replacing all conjunctions
and disjunctions over uncountable sets by conjunctions and disjunctions over countable
subsets. Countable approximations are indexed by countable sets as in the following defi-
nition, which we state for arbitrary sets s to include the later generalization. For simplicity
we assume throughout that all languages L are countable.

Definition. a) M s is the substructure of M generated by (M ∩ s).
b) We define ϕs for ϕ ∈ L∞ω by recursion:

ϕs = ϕ if ϕ is atomic
(¬ϕ)s = ¬ϕs

(∀xϕ)s = ∀xϕs
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(∃xϕ)s = ∃xϕs

(
∧

i∈Iϕi)
s =

∧

i∈(I∩s)ϕ
s
i

(
∨

i∈Iϕi)
s =

∨

i∈(I∩s)ϕ
s
i

Some convention is needed for the case in which (M ∩ s) = ∅ and L contains no
constants. The easiest solution is to allow the empty structure, but the precise way in which
this is done is irrelevant since (M ∩ s) will be non-empty for almost all countable s. M s

is a countable substructure of M for every countable s and ϕs ∈ Lω1ω for every countable
s. Note that in general a countable approximation to a formula is not a subformula of
the formula and a formula neither implies nor is implied by its countable approximations,
either individually or in concert. The reader should think about how these definitions must
be modified to include the case of uncountable languages.

In any context we will be considering countable s ⊆ C for some set C which is
large enough to approximate whatever we are looking at — where C is large enough to
approximate M if M ⊆ C and C is large enough to approximate ϕ if I ⊆ C for all I
such that some subformula of ϕ is either a conjunction or disjunction indexed by I. Note
that if C is large enough to approximate M and ϕ and C ⊆ C ′ then C ′ is large enough
to approximate M and ϕ and for every s′ ⊆ C ′ we have M s′

= Ms and ϕs′

= ϕs where
s = (s′ ∩ C) ⊆ C.

2. ‘Almost All’ Countable s

For any set C we define a filter on Pω1
(C), the set of countable subsets of C, and

define ‘for almost all countable s ⊆ C’ to mean ‘for all s in some set belonging to the
filter’. We first introduce some terminology. Given C let X ⊆ Pω1

(C). Then:
X is closed iff X is closed under unions of countable chains;
X is unbounded iff for every s0 ∈ Pω1

(C) there is some s ∈ X such that s0 ⊆ s.
These are the natural generalizations of closed and unbounded sets of ordinals to this
context.

Definition. For any C, D(C) is the set of all X ⊆ Pω1
(C) such that X contains some

closed unbounded set.

The following Lemma gives the basic properties of these filters.

Lemma 1. Let D = D(C).
a) D is a countably complete filter.
b) D is closed under diagonalization, that is, if Xi ∈ D for every i ∈ I, where I ⊆ C,

then X̄ ∈ D where
X̄ = {s ∈ Pω1

(C) : s ∈ Xi for every i ∈ (s ∩ I)}.

Proof: a) It suffices to show that the intersection of countably many closed unbounded
sets is also closed unbounded. Let Xi be closed unbounded for all i ∈ ω. It is clear that
⋂

i∈ωXi is closed. To show that it is unbounded we use an alternating chains argument.
Partition ω into infinitely many infinite disjoint sets Ii for i ∈ ω. Given countable s0 we
use the fact that each Xi is unbounded to define sets sk for k ∈ ω such that sk ⊆ sk+1 and
sk+1 ∈ Xi whenever (k + 1) ∈ Ii. Then

⋃

k∈ωsk ∈
⋂

i∈ωXi.
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b) We may assume that each Xi is closed unbounded. It is easy to see that X̄ is
closed. We show that X̄ is unbounded. Let countable s0 be given. By part a, Y0 =

⋂

{Xi :
i ∈ (s0 ∩ I)} is closed unbounded, hence there is some s1 ∈ Y0 such that s0 ⊆ s1. We
continue in this way, at stage n obtaining sn+1 ∈ Yn =

⋂

{Xi : i ∈ (sn ∩ I)} such that
sn ⊆ sn+1. Let s =

⋃

n∈ωsn. We claim s ∈ X̄. Let i ∈ (s∩ I). Then there is some n0 such
that i ∈ (sn∩I) for all n ≥ n0, hence sn ∈ Xi for all n > n0. Therefore s =

⋃

n>n0
sn ∈ Xi,

since Xi is closed, and so s ∈ X̄ as desired. a

Since X ∈ D is interpreted as ‘(s ∈ X) almost everywhere (a.e.)’, diagonalization can
be interpreted as allowing us to interchange quantifiers in the following way:

if (∀i ∈ I)(s ∈ Xi a.e.) then [∀i ∈ (I ∩ s)(s ∈ Xi)] a.e.

This filter was also studied by T. Jech [Je1] who independently proved the preceding
Lemma about the filter. He did not, however, obtain the game theoretic characterization
which we now present.

Given X ⊆ Pω1
(C) we define the infinite two-person game G(X) as follows: at stage

n player I chooses some an ∈ C and player II responds by choosing some bn ∈ C. Player
II wins iff s = {an : n ∈ ω} ∪ {bn : n ∈ ω} ∈ X.

Theorem 2. For any X ⊆ Pω1
(C), player II has a winning strategy in the game G(X) iff

X ∈ D(C).

Proof: First, suppose that II has a winning strategy. This means that there are functions
fn : Cn+1 → C such that whenever an ∈ C for all n ∈ ω then s = {an : n ∈ ω} ∪
{fn(a0, . . . , an) : n ∈ ω} ∈ X. Now let X ′ be the set of all s ∈ Pω1

(C) such that s is
closed under fn for all n ∈ ω. Clearly X ′ is closed unbounded. Now let s ∈ X ′, say that
s = {an : n ∈ ω}. Then s = {an : n ∈ ω} ∪ {fn(a0, . . . , an) : n ∈ ω} ∈ X, since s is closed
under all fn and since they define II’s winning strategy. Thus X ′ ⊆ X, hence X ∈ D(C).

For the other direction suppose that X ∈ D(C). We may assume that X is closed
unbounded. We describe a winning strategy for II in the game G(X). Suppose that I
chooses a0. II first picks some s0 ∈ X such that {a0} ⊆ s0 and will choose every element
of s0 in an infinite number of his succeeding moves. More formally, partition ω into an
infinite number of infinite disjoint subsets Xi for i ∈ ω such that the smallest element of
Xi is ≥ i for each i ∈ ω. II will choose bn’s so that s0 = {bn : n ∈ X0}. At the next
move I chooses some a1. Now II first picks some s1 ∈ X such that s0 ∪ {a1} ⊆ s1. II will
choose bn’s so that s1 = s0 ∪ {bn : n ∈ X1}. By continuing in this way II guarantees that
{an;n ∈ ω} ∪ {bn : n ∈ ω} =

⋃

n∈ωsn where sn is a chain from X, hence its union is in X,
as desired. a

As an immediate consequence we have the following ‘game-free’ characterization of
the filters.

Corollary 3. For X ⊆ Pω1
(C), X ∈ D(C) iff there are functions fn on C for n ∈ ω, each

with finitely many arguments, such that s ∈ X whenever s ∈ Pω1
(C) and s is closed under

fn for every n ∈ ω.

Theorem 2 is essential to our work on abstract elementary classes referred to earlier.
We note that Corollary 3 has been used heavily in set theory. It is basic to Shelah’s proper
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forcing (see [Je2], for example) and, especially in some of its uncountable generalizations
(not considered in these notes, but see [Ku3]), is used in various combinatorial arguments
(see [Do], for example).

3. Löwenheim-Skolem Theorems

A property of countable approximations of one or more models and/or formulas is
said to hold almost everywhere, or a.e., iff it holds for all s ∈ X for some X ∈ D(C)
where C is large enough to approximate all of the models and formulas involved. Using
the observation at the end of section 1 it is easy to see that this is independent of the
choice of C. As an exercise, the reader should show that the universe of M s is (M ∩s) a.e.

For the proof of our next result we require the notion of negation-normal form. A
formula ϕ is in negation-normal form iff whenever ¬α is a subformula of ϕ then α is atomic.
The canonical negation-normal form ϕn of ϕ is defined by recursion:

ϕn = ϕ if ϕ is atomic
(
∧

i∈Iϕi)
n =

∧

i∈I(ϕi)
n

(
∨

i∈Iϕi)
n =

∨

i∈I(ϕi)
n

(∀xϕ)n = ∀xϕn

(∃xϕ)n = ∃xϕn

(¬ϕ)n is defined by cases on ϕ as follows:

(¬ϕ)n = ¬ϕ if ϕ is atomic
(¬¬ψ)n = ψn

(¬
∧

i∈Iϕi)
n =

∨

i∈I(¬ϕi)
n

(¬
∨

i∈Iϕi)
n =

∧

i∈I(¬ϕi)
n

(¬∀xψ)n = ∃x(¬ψ)n

(¬∃xψ)n = ∀x(¬ψ)n

It is easy to see that ϕn is in negation-normal form and is logically equivalent to ϕ.
We need the additional easy fact: for every s, (ϕn)s = (ϕs)n.

The following is a Löwenheim-Skolem Theorem showing how the L∞ω properties of a
structure are determined by properties of its countable substructures.

Theorem 4. For any M and any σ ∈ L∞ω

M |= σ iff Ms |= σs a.e.

Proof: First note that it is enough to prove the implication from left to right, since if we
know that direction and M 6|= σ then M |= ¬σ hence M s |= (¬σ)s a.e. and thus it can’t
happen that M s |= σs a.e. since (¬σ)s = ¬σs for all s.

Secondly, because of the facts above about canonical negation-normal forms, it is
sufficient to prove the implication for sentences in negation-normal form. We prove by
induction that for all ψ(x̄) ∈ L∞ω in negation-normal form and for all ā ∈M , if M |= ψ(ā)
then Ms |= ψs(ā) a.e.

Assume that M |= ψ(ā) and the implication is known for all proper subformulas of
ψ. Let C be large enough to approximate both M and ψ (and hence all subformulas of ψ)
and let D = D(C). Let

X(ψ, ā) = {s ∈ Pω1
(C) : Ms |= ψs(ā)}.

4



We show that X(ψ, ā) ∈ D.
If ψ is atomic or negated atomic this is easy (why?).
If ψ =

∨

i∈Iϕi then we must have M |= ϕi(ā) for some i ∈ I. By inductive hypothesis
we know that M s |= ϕs

i (ā) a.e. and so M s |= ψs(ā) a.e., as desired (explain!).
The case ψ = ∃yϕ is similar to the preceeding since an existential quantification is

just a disjunction, over the elements of M .
Suppose that ψ =

∧

i∈Iϕi. For each i ∈ I define Xi = X(ϕi, ā). By inductive
hypothesis Xi ∈ D for all i ∈ I. By diagonalization, X̄ ∈ D where

X̄ = {s ∈ Pω1
(C) : s ∈ Xi for all i ∈ (s ∩ I)}.

Translating this we see that
X̄ = {s ∈ Pω1

(C) : Ms |= ϕs
i (ā) for all i ∈ (s ∩ I)}.

But this is exactly X(ψ, ā), so this case is finished.
Finally the case of a universal quantifier is just like the case of a conjunction, so the

proof is complete. a

As another exercise in diagonalization, the reader is invited to show that for every
ϕ(x1, . . . , xn) ∈ L∞ω and every M the following holds:

(

for every ā ∈ (M s)n[M |= ϕ(ā) iff M s |= ϕs(ā)]
)

a.e.

We note a matched pair of consequences of the Theorem.
Corollary 5. a) If σ ∈ Lω1ω then M |= σ iff Ms |= σ a.e. (also read, ‘M0 |= σ for almost
all countable substructures M0 of M ’).

b) If M is countable and σ ∈ L∞ω, then M |= σ iff M |= σs a.e.

Certainly part a does not require our general theory, but part b seems to. It is easy to
derive from part a that if M is countable and M≡ω1ωN then M≡∞ωN . It follows from
Theorem 4 that if |= σ

s
a.e. then |= σ, but the converse fails in general. As an example

where the converse does hold, the reader should show that if σ, ϕi(x) ∈ Lω1ω for all i ∈ I

then
|= (σ → ∃x

∧

i∈Iϕi) iff |= (σ → ∃x
∧

i∈I0
ϕi) for all countable I0 ⊆ I.

Using Theorem 4 we can prove the characterization of L∞ω-elementary equivalence
referred to in the Introduction. Note that part b of this result is not an immediate conse-
quence of part a since the ‘almost all’ filter is not an ultrafilter.

Theorem 6. a) M≡∞ωN iff Ms ∼= Ns a.e.
b) M 6≡

∞ωN iff Ms 6∼= Ns a.e.

Proof: It suffices to show the left to right directions of each part since the reverse impli-
cations will then follow.

a) Assume that M≡∞ωN . By the partial isomorphism characterization of L∞ω-
elementary equivalence there are functions

fn : (Mn+1 ×Nn) → N and gn : (Mn ×Nn+1) →M

such that whenever a0, . . . , an ∈M , b0, . . . , bn ∈ N are such that
(M,a0, . . . , an)≡∞ω(N, b0, . . . , bn)

then for any an+1 ∈M and for any bn+1 ∈ N we have
(M,a0, . . . , an, an+1)≡∞ω(N, b0, . . . , bn, fn(a0, . . . , an+1, b0, . . . , bn))

and
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(M,a0, . . . , an, gn(a0, . . . , an, b0, . . . , bn, bn+1))≡∞ω(N, b0, . . . , bn, bn+1).
(The functions fn, gn define the winning strategy for player II in the game version of the
characterization). Let C ⊇ (M ∪N) and define

X = {s ∈ Pω1
(C) : s is closed under fn, gn for all n ∈ ω}.

Then, by the easy direction of Corollary 3, X ∈ D(C). Finally, if s ∈ X then you can use
fn, gn to construct an isomorphism of M s onto Ns. Thus, Ms∼=Ns a.e.

b) If M 6≡
∞ωN then there is some σ ∈ L∞ω such that M |= σ and N |= ¬σ. It follows

from Theorem 4 that M s |= σs a.e. and Ns |= ¬σs a.e. We conclude that M s 6∼= Ns a.e.
(Explain!). a

We note the following:

Corollary 7. If M is countable, then M≡∞ωN iff M ∼= Ns a.e.

We also have the following application:

Corollary 8. A group G is L∞ω-elementarily equivalent to a free group iff every countable
subgroup of G is free.

Proof: If G≡∞ωH where H is free then Gs ∼= Hs a.e., hence Gs is free a.e. and thus all
countable subgroups of G are free. Conversely if every countable subgroup of G is free and
G is uncountable then G is not finitely generated, hence Gs is not finitely generated a.e.
and so Gs ∼= Hω a.e. where Hω is the free group on ω generators and thus G≡∞ωHω. a

4. Uncountable Approximations

Let λ be an uncountable cardinal. Then λ-approximations are just M s and ϕs for
sets s of cardinality ≤ λ. There is more than one way to define a corresponding filter
to yield a notion of λ-a.e. This was done in [Ku3] so as to yield results about infinite
quantifier logics, which are used in our recent work about abstract elementary classes with
uncountable Löwenheim-Skolem number. Since in this course we will concentrate on the
countable Löwenheim-Skolem number case, we present a simpler generalization which is
adequate for L∞ω. We omit all proofs.

Given C and X ⊆ Pλ+(C) we say that X is closed iff X is closed under unions of
chains of length ≤ λ, and X is unbounded iff for every s0 ∈ Pλ+(C) there is some s ∈ X

such that s0 ⊆ s.

Definition. For any C, Dλ+(C) is the set of all X ⊆ Pλ+(C) such that X contains some
closed unbounded set.

The following Lemma gives the basic properties of the filters.

Lemma 9. Let Dλ+ = Dλ+(C).
a) Dλ+ is a λ+-complete filter.
b) Dλ+ is closed under diagonalization.

We use λ-a.e. to mean for all s ∈ X for some X ∈ Dλ+(C) where C is large enough
to approximate all of the models and formulas involved. The following two Löwenheim-
Skolem results correspond to Theorems 4 and 6. (We omit the statements of the results
corresponding to Corollary 5 and part b of Theorem 6).
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Theorem 10. For any M and any σ ∈ L∞ω

M |= σ iff Ms |= σs λ-a.e.

Theorem 11. M≡∞ωN iff Ms≡∞ωN
s λ-a.e.

Of course, Theorem 11 is less striking than Theorem 6 since L∞ω-elementarily equiv-
alent models of the same uncountable cardinality need not be isomorphic.

5. Other Löwenheim-Skolem Results

The Theorems in section 3 can be applied to yield Löwenheim-Skolem results about
certain properties not given by sentences of L∞ω. We give a few examples here.

Definition. a) M is rigid iff M has no proper automorphisms.
b) M is definably rigid iff every element of M is definable by a formula of L∞ω.

Clearly, definably rigid structures are rigid, but the converse fails in general (there
are rigid dense linear orders, for example). However the two notions coincide on countable
structures.

Lemma 12. If M is countable then M is rigid iff it is definably rigid.

Proof: If M is not definably rigid then there are a, b ∈ M with a 6= b such that
(M,a)≡∞ω(M, b). But then (M,a) ∼= (M, b) so M is not rigid. a

We obtain the following Löwenheim-Skolem, or ‘transfer’, result about such models.

Theorem 13. M is definably rigid iff M s is rigid a.e.

Proof: Assume first that M is definably rigid. Then there are ϕa(x) ∈ L∞ω for all a ∈M

such that
M |= ∀x

∨

a∈M [ϕa(x) ∧ ∃!xϕa(x)].
By Theorem 4 this implies

Ms |= ∀x
∨

a∈(M∩s)[ϕ
s
a(x) ∧ ∃!xϕs

a(x)] a.e.
But since M ∩ s is the universe of M s a.e. we conclude that M s is definably rigid a.e.

For the other direction suppose that M is not definably rigid. Then there are a, b ∈M

such that a 6= b but (M,a)≡∞ω(M, b). By Theorem 6 we conclude that (M s, a) ∼= (Ms, b)
a.e., so Ms is not rigid a.e. a

As a consequence we obtain the following:

Corollary 14. Let σ ∈ Lω1ω.
a) If σ has a definably rigid model then σ has a countable rigid model.
b) If every countable model of σ is rigid then all models of σ are definably rigid.

We remark that the only property of K = Mod(σ) needed for the Corollary is that
M ∈ K implies that M s ∈ K a.e.

We state without proof the analogous results for models with ‘few’ automorphisms.

Definition. a) M has few automorphisms iff there is some (finite) tuple ā ∈M such that
(M, ā) is rigid.
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b) M has definably few automorphisms iff there is some tuple ā ∈M such that (M, ā)
is definably rigid.

Note that if M is infinite and has few automorphisms then it has ≤ |M | automor-
phisms. Once again, on countable M these notions coincide (see [Ku2], for example).

Lemma 15. If M is countable the following are equivalent:
i) M has few automorphisms
ii) M has just countably many automorphisms
iii) M has < 2ω automorphisms
iv) M has definably few automorphisms

Theorem 16. M has definably few automorphisms iff M s has few automorphisms a.e.

We omit the statement of the result corresponding to Corollary 14, but note the
following consequence which is weaker but more likely to appeal to an algebraist (cf. [Hi]).

Corollary 17. Let σ ∈ Lω1ω. If every countable model of σ has few automorphisms then
every model of σ has few automorphisms.

6. Logics with Game Quantification

The natural way to write down a sentence saying that almost all countable substruc-
tures have a certain property is to use a game quantifier. In this section we discuss one
such logic, L(ω), studied by Keisler [Ke].

Definition. The set of formulas of L(ω) is defined as follows:
i) every atomic formula of L belongs to L(ω),
ii) if ϕ ∈ L(ω) then ¬ϕ ∈ L(ω),
iii) if Φ ⊆ L(ω) then

∨

Φ,
∧

Φ ∈ L(ω),
iv) if ϕ ∈ L(ω) then ∃xϕ, ∀xϕ ∈ L(ω) provided they have just finitely many free

variables,
v) if ϕ ∈ L(ω) then Q0x0 . . .Qnxn . . . ϕ ∈ L(ω), where each Qn is either ∀ or ∃,

provided it has only finitely many free variables.

Theorem 18. Let K0 be any class of countable structures. Then there is some σ ∈ L(ω)
such that for every M we have M |= σ iff M s ∈ K0 a.e.

Proof: For any M ∈ K0 and any enumeration ā of the elements of M , allowing repetitions,
let θM,ā be

∧

{α(x0, . . . , xn) : α is atomic or negated atomic and M |= α(a0, . . . , an)}.
Let ϕ(x̄) be the disjunction over all M ∈ K0 and all enumerations ā of M of the formulas
θM,ā. Finally let σ be

∀x0∃x1 . . .∀x2n∃x2n+1 . . . ϕ.
We leave the verification that σ is as desired to the reader. a

For example, if K0 is the class of all countable rigid models, then Mod(σ) will be the
class of all definably rigid models.

Certainly every formula of L∞ω belongs to L(ω) but the converse fails. In fact there
are sentences of L(ω) which are not equivalent to any sentence of L∞ω. The reader should

8



give an example. But Keisler proved that every formula of L(ω) is preserved by L∞ω-
elementary equivalence.

Theorem 19. [Ke] Let ϕ(x̄) ∈ L(ω). Given M and N , assume that ā ⊆ M and b̄ ⊆ N ,
with lh(x̄) = lh(ā) = lh(b̄), are such that (M,ai0, . . . ain

)≡∞ω(N, bi0 , . . . , bin
) for all i0 <

. . . < in < lh(x̄). Then M |= ϕ(ā) iff N |= ϕ(b̄).

Proof: By induction on ϕ using the partial isomorphism characterization of L∞ω-elementary
equivalence in the step involving the game quantifier. a

Corollary 20. If M≡∞ωN then M≡L(ω)N .
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