Math 494: Topics in Algebra

Problem Set 1

Due Friday Feburary 14: Turn in 6 of the following problems. At the end of the problem set there is a list of useful MAPLE commands that may be useful in problems 1)-3).

1) Let $f(X)=X^{5}+2 X^{4}+2 X^{3}+X^{2}-X-1$.
a) How many distict zeros does f have in \mathbb{C} ? What are the multiplicities of the zeros?
b) We can also view f as a polynomial in $\mathbb{Z}_{3}[X]$. Suppose $K \supseteq \mathbb{Z}_{3}$ is an algebraically closed field. How many distict zeros does f have in K ? What are the multiplicities of the zeros?
2) Let $f=X^{3}+X+3$ and $g=X^{5}-X^{4}-X+6$.
a) Do f and g have a common zero in \mathbb{C}.
b) Suppose K is an algebraically closed field containing \mathbb{Z}_{p}. For which primes p do f and g have a common solution in K ?
3) [The Euclidean Algorithm] Suppose F is a field and $f, g \in F[X]$ are nonzero. Define a sequence of polynomials $r_{0}, \ldots, r_{n}, q_{0}, \ldots, q_{n+1} \in F[X]$ such that $\operatorname{deg} g>\operatorname{deg} r_{0}>\ldots>\operatorname{deg} r_{n}$ and

$$
\begin{aligned}
f & =q_{0} g+r_{0} \\
g & =q_{1} r_{0}+r_{1} \\
r_{0} & =q_{2} r_{1}+r_{2} \\
& \vdots \\
r_{n-2} & =q_{n} r_{n-1}+r_{n} \\
r_{n-1} & =q_{n+1} r_{n} .
\end{aligned}
$$

a) Show that r_{n} divides f and g, if h divides f and g, then r_{n} divides h, and there are $s, t \in K[X]$ such that $s f+t g=h$. We call r_{n} a greatest common factor of f and g.[Hint: work backward by induction.]
b) Let $f(X)=X^{4}+X^{3}+6 X^{2}+X+5$ and $g(X)=X^{4}-2 X^{3}+6 X^{2}-2 X+5$. Use the Euclidean Algorithm to find h a greatest common factor of f and g and to find s, t such that $s f+t g=h$.
4) Prove that every algebraically closed field is infinite.
5) Suppose $f \in \mathbb{R}[X], a, b \in \mathbb{R}$ and $f(a+b i)=0$. Prove that $f(a-b i)=0$. [Hint: Consider the polynomial $g(X)=X^{2}-2 a X+a^{2}+b^{2}$.]
6) Suppose $K \supseteq \mathbb{Z}_{p}$ is an algebraically closed field. Let $f(X)=X^{p^{n}}+X$.
a) Show that f has p^{n} distinct zeros in K.
b) Let $F=\{x \in K: f(x)=0\}$. Prove that F is a field with p^{n} elements.
c) Suppose k is any field with p^{n} elements. Show that every element of k is a zero of f. [This is the key step in the proof that there is a unique field with p^{n} elements.]
7) Suppose K is a field, $f \in K\left[X_{1}, \ldots, X_{n}\right], A \subseteq K$ is infinite and

$$
f\left(a_{1}, \ldots, a_{n}\right)=0
$$

for all $a_{1}, \ldots, a_{n} \in A$. Prove that $f=0$.[Hint: Use induction.]

Here are some MAPLE commands that may be useful in problems 1)-3).
factor (f); factors f in $\mathbb{Q}[X]$
Factor (f) $\bmod \mathrm{p}$; factors f in $\mathbb{Z}_{p}[X]$
resultant ($\mathrm{f}, \mathrm{g}, \mathrm{X}$); computes the resultant of f, g polynomials in the variable X
$\operatorname{rem}(\mathrm{f}, \mathrm{g}, \mathrm{X})$; computes the remainder when the polynomial f is divided by g in $\mathbb{Q}[X]$
quo ($\mathrm{f}, \mathrm{g}, \mathrm{X}$) ; computes the quotient when the polynomial f is divided by g in $\mathbb{Q}[X]$

