Lectures on Large Stable Fields III Generic types in stable groups continued

Dave Marker

Mathematics, Statistics, and Computer Science University of Illinois at Chicago

February 8, 2021

www.math.uic.edu/~marker/mc-S21

Dave Marker (UIC)

Large Stable Fields III

February 8, 2021 1 / 20

Last Time

Definition

A definable $A \subseteq G$ is *generic* if and only if there are $b_1, \ldots, b_n, c_1, \ldots, c_n$ such that $G = b_1 A c_1 \cup \cdots \cup b_n A c_n$. A type is generic if it contains only generic formulas.

- If A is generic there is a generic type p with $A \in p$.
- For any $\phi(x; \overline{y})$ the set $\{\overline{b} : \phi(x; \overline{b}) \text{ is generic}\}\$ is definable.
- For any φ(x; ȳ) there is a bound N such that if φ(x, b̄) is generic we can cover G with at most N two sided translates

- A non-forking extension of a generic type is generic.
- A generic type does not fork over \emptyset .
- There are at most $2^{|T|}$ generic types
- For all ϕ the set $\{p|\phi: p \text{ generic}\}$ is finite.

If a is generic over A and a $\bigcup_A b$, then ab is generic and ab $\bigcup_A b$.

If a is generic and $a \perp_A b$, then tp(a/Ab) is generic (recall: nonforking extensions of generic types are generic).

If $X \in tp(ab/Ab)$, then $Xb^{-1} \in tp(a/Ab)$ is generic. Thus X is also generic and tp(ab/Ab) is generic.

Since generic types don't fork over \emptyset , $ab \perp_A b$.

Corollary

Every $g \in G$ is the product of two generics.

Let $g \in G$ and a generic with $a \mid g$. Then $a^{-1}g$ is generic and $g = a(a^{-1}g).$

- 4 同 6 4 日 6 4 日 6

Corollary

Let $A \subset G$ be definable. If A is generic, then A is left generic. Thus generic \Leftrightarrow left generic (similarly \Leftrightarrow right generic)

Suppose A is generic and definable over a model \mathcal{M} . By compactness it suffices to show that all $p \in S(\mathcal{M})$ are in a left translate of A.

Let *b* realize *p*. Let $a \in A$ with $tp(a/\mathcal{M}b)$ generic. Let $c = ab^{-1}$. Then $tp(c/\mathcal{M}b)$ is generic, $c \downarrow_{\mathcal{M}} b$ and $c \in Ab^{-1}$. By symmetry $b \downarrow_{\mathcal{M}} c$.

- 4 目 ト 4 日 ト

So we have $c \in Ab^{-1}$ and $b \perp_{\mathcal{M}} c$.

Let $q = \operatorname{tp}(b/\mathcal{M})$. Let $\phi(v; w)$ be $w \in Av^{-1}$. Using definability of types there is a formula $d_q\phi(w)$ such that

$$\phi(\mathsf{v};\mathsf{d})\in\mathsf{q}\Leftrightarrow\mathsf{d}_{\mathsf{q}}\phi(\mathsf{d}).$$

This definition also works for the non-forking extension $\operatorname{tp}(b/M, c)$. But then $d_q\phi(c)$ so $\exists w \ d_q\phi(w)$ holds in the monster and hence in \mathcal{M} . Thus there is $d \in \mathcal{M}$ with $d \in Ab^{-1}$ and $b \in d^{-1}A$.

Stabilizers

There is a natural action of G on the space of types.

If $p \in S_1(G)$, a realizes p and $g \in G$, let gp be the type of ga. Then

$$\phi(\mathbf{v})\in g\mathbf{p}\Leftrightarrow\phi(g\mathbf{v})\in\mathbf{p}.$$

If p is a type, then $Stab(p) = \{g \in G : gp = p\}$ is the *stabilizer* of p.

Stabilizers of ϕ -types

We have to be careful thinking of G acting on ϕ -types as $\phi(gv; \overline{a})$ is not strictly speaking an instance of ϕ .

For any $\phi(v; \overline{y})$ we can consider $\psi(v; u, \overline{y}) = \phi(uv, \overline{y})$ Then

$$\psi(\mathsf{gv}; \mathsf{b}, \overline{\mathsf{a}}) \Leftrightarrow \psi(\mathsf{v}, \mathsf{bg}, \overline{\mathsf{a}})$$

So G acts on ψ -types. Moreover, for any p, $p|\psi \Rightarrow p|\phi$. (For these lectures we will call such a ψ robust)

Define

$$\operatorname{Stab}_{\psi}(p) = \{g \in G : gp | \psi = p | \phi\}.$$

Then

$$\operatorname{Stab}(p) = \bigcap \{ \operatorname{Stab}_{\psi}(p) : \psi \text{ robust} \}.$$

Suppose $\psi(v; u, \overline{y}) = \phi(uv, \overline{y})$

Lemma

 $\operatorname{Stab}_{\psi}(p)$ is definable. Thus $\operatorname{Stab}(p)$ is \bigwedge -definable.

Then

$$g \in \operatorname{Stab}_{\psi}(p) \Leftrightarrow orall c orall \overline{b} \ \left(\psi(v; c, \overline{b}) \in p \Leftrightarrow \psi(v; cg, \overline{b}) \in p
ight).$$

By definability of types there is $d_{\rho}\psi(u,\overline{y})$ such that

$$\psi(\mathbf{v}, \mathbf{c}, \overline{\mathbf{b}}) \in \mathbf{p} \Leftrightarrow d_{\mathbf{p}}\psi(\mathbf{c}, \overline{\mathbf{b}}).$$

Then

$$\operatorname{Stab}_{\psi}(p) = \{g : \forall u \forall \overline{y} \ (d_{p}\psi(u,\overline{y}) \leftrightarrow d_{p}\psi(ug,\overline{y}))\}$$

- 4 目 ト 4 日 ト

3

Review-Connected Components

 G^0 the *connected component* of G is the intersection of all definable finite index subgroups of G.

 G_{ϕ}^{0} is the intersection of all conjugates of finite index subgroups of G defined using ϕ .

- ${\cal G}_{\phi}^{0}$ is a finite intersection of conjugates of finite index subgroups defined using ϕ
- G^0_{ϕ} is a normal subgroup of finite index defined over \emptyset .
- $G^0 = \bigcap G^0_{\phi}$ is \bigwedge -definable over \emptyset , normal and of bounded index. $[G:G^0] \leq 2^{|T|}$.

 $\operatorname{Stab}(p) \subseteq G^0$

We will show that $\operatorname{Stab}(p) \subseteq G_{\phi}^{0}$ for all ϕ . Suppose $p \in bG_{\phi}^{0}$. Let a realize p. Then $b^{-1}a \in G_{\phi}^{0}$. If $g \in \operatorname{Stab}(p)$, then $b^{-1}ga \in G_{\phi}^{0}$. Say $\alpha, \beta \in G_{\phi}^{0}$ such that $b^{-1}a = \alpha$ and $b^{-1}ga = \beta$. $b^{-1}g(b\alpha) = \beta$ and $b^{-1}gb = \beta\alpha^{-1} \in G_{\phi}^{0}$.

But G^0_ϕ is normal. Thus $g \in G^0_\phi$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

```
If p is generic, then Stab(p) \supseteq G^0.
```

Suppose ψ is robust.

If p is generic and $g \in G$, then gp is generic.

We know that $\{p|\psi : p \text{ generic}\}$ is finite. Thus $\operatorname{Stab}_{\psi}(p)$ is of finite index in G. Hence $\operatorname{Stab}_{\psi}(p) \supseteq G^0$ and $\operatorname{Stab}(p) \supseteq G^0$.

Corollary

If p is generic, then $Stab(p) = G^0$

We will soon show the converse.

We work over G sufficiently saturated so that all possible cosets of G^0 are represented.

If p is generic, then p is in some coset bG^0 . Taking translations, we get generic types in all cosets of G^0 .

Lemma

There is a unique generic type in G^0 .

Suppose p and q are generic types in G^0 . Let a and b realize p and q with $a \downarrow_C b$.

 G^0 is the stabilizer of q and its non-forking extension \hat{q} to G, a (as q is generic). Thus ab realizes q

We could redo our whole theory of stabilizers looking at right actions of G on $S_1(G)$.

That would tell us that b is in the right-stabilizer of the non-forking extension of p to G, b. Thus ab realizes p and p = q.

イロト 不得 トイヨト イヨト 二日

If $\operatorname{Stab}(p) = G^0$, then p is generic.

Let q be the unique generic type in G^0 . Let a realize p and b realize q with $a
i_c b$.

But $b \in G^0$, thus $b \in \text{Stab}(\widehat{p})$ where \widehat{p} is the non-forking extension of p to G, b.

Hence *ba* realizes *p*.

But $b
igcup_G a$ and b generic, implies ba is generic. Thus p is generic.

Fundamental Theorem of Stable Groups

Theorem

- G⁰ is of bounded index.
- There is a unique generic type in every coset of G^0 .
- G/G^0 is a profinite group acting transitively on the generics.
- p is generic if and only if $\operatorname{Stab}(p) = G^0$

To see G/G^0 is profinite, note that

$$G/G^0 = \varprojlim \{G/H : H \text{ definable, } [G : H] < \infty \}.$$

Reminder-Connectedness of additive group

Lemma

If $(K, +, \cdot, ...)$ is an infinite stable field, then the additive group (K, +, ...) is connected.

Suppose *H* is definable of finite index. For all $a \in K^{\times}$, *aH* is of finite index. By Baldwin–Saxl,

$$I = \bigcap_{a \in K^{\times}} aH = a_1 H \cap \dots \cap a_n H$$

for some a_1, \ldots, a_n . *I* is of finite index so $I \neq \{0\}$. But *I* is an ideal.

Connectedness of K^{\times}

Corollary

Let K be an infinite stable field. Then the multiplicative group $(K^{\times}, \cdot, ...)$ is connected

Since (K, +, ...) is connected there is a unique generic type p.

 $x \mapsto bx$ is a group automorphism of (K, +) for all $b \in K^{\times}$. Thus bp is generic for all $b \in K^{\times}$

Working in (K^{\times}, \dots) . This says that $\operatorname{Stab}(p) = K^{\times}$. But then $(K^{\times})^0 = K^{\times}$. Thus K^{\times} is connected and p is the unique generic type of K^{\times} .

Superstable Groups

Lemma (Surjectivity Principle)

Let $(G, \cdot, ...)$ be a connected superstable group. If $\sigma : G \to G$ is a definable finite-to-one group homomorphism, then σ is surjective.

If $g \in G$, then $\sigma(g)$ and g are inter-algebraic. Thus G and $\sigma(G)$ have the same U-rank.

If $[G : \sigma(G)]$ is infinite, then $U(G) > U(\sigma(G))$. [We can fork by naming a coset of $\sigma(G)$.] Thus $[G : \sigma(G)]$ is finite and, since G is connected we must have $\sigma(G) = G$.

This fails in SCF_{*p*,*e*} for e > 0 since $x \mapsto x^p$ is not surjective.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

Suppose $(K, +, \cdot, ...)$ is an infinite superstable field.

• The map
$$x \mapsto x^n$$
 is surjective for all n .

2 If char(K) = p > 0, then map $x \mapsto x^p - x$ is surjective.

 $x \mapsto x^n$ is a homomorphism of the multiplicative group. In characteristic $p, x \mapsto x^p - x$ is a homomorphism of the additive group.

Corollary

An infinite superstable field is perfect (i.e, every algebraic extension is separable).

In characteristic p we just need $x \mapsto x^p$ is surjective.

イロト 不得 トイヨト イヨト 二日