Lectures on Large Stable Fields IV Stable and Superstable Fields

Dave Marker

Mathematics, Statistics, and Computer Science University of Illinois at Chicago

February 15, 2021

www.math.uic.edu/~marker/mc-S21

Dave Marker (UIC)

Large Stable Fields IV

February 15, 2021 1 / 23

Last time

Theorem

If $(K, +, \cdot, ...)$ is a stable field, then the additive group and the multiplicative group are connected.

Lemma (Surjectivity Principle)

If $(G, \cdot, ...)$ is a connected superstable groups and $\sigma : G \to G$ is a definable finite-to-one homomorphism then σ is surjective.

Corollary

Let $(K, +, \cdot, ...)$ be a superstable field.

- **1** The multiplicative homomorphism $x \mapsto x^n$ is surjective.
- 2 Superstable fields are perfect.
- If char(K) = p > 0, then the additive homomorphism x → x^p x is surjective

Cyclic Galois extensions

Theorem (Kummer extensions)

Suppose that L/K is a cyclic Galois extension of degree n, where n is relatively prime to the characteristic of K and K contains all nth roots of unity. The minimal polynomial of L/K is $X^n - a$ for some $a \in K$.

Theorem (Artin–Schreier extensions)

Suppose that char(K) = p > 0 and L/K is a Galois extension of degree p. The minimal polynomial of L/K is $X^p - X - a$ for some $a \in K$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Superstable fields

Lemma

Suppose an infinite superstable field K contains all $m^{\rm th}$ roots of unity for $m \leq n$. Then K has no Galois extensions of order n.

Suppose L/K is Galois of degree *n* and p|n is prime.

By the Fundamental Theorem of Galois Theory, there is $K \subseteq F \subset L$ such that L/F is a Galois extension of degree p. Let $L = F(\alpha)$. The field F is interpretable in K and hence it is also superstable.

If $p \neq \text{char}(K)$, the minimal polynomial of α is $X^p - a$. But $x \mapsto x^p$ is surjective, so $X^p - a$ is not irreducible.

If p = char(K), the minimal polynomial of α is $X^p + X - a$. But $x \mapsto x^p - x$ is surjective, so $X^p - X - a$ is not irreducible.

イロト 不得 トイヨト イヨト 二日

Corollary

If K is an infinite superstable field, then K contains all $n^{\rm th}$ roots of unity.

We prove this by induction on n.

Suppose K contains all m^{th} roots of unity for m < n. By the previous lemma K has no proper Galois extensions of order less than n.

Let ξ be a primitive n^{th} -root of unity. Then $K(\xi)/K$ is a Galois extension of degree at most n-1, a contradiction.

Theorem (Cherlin–Shelah)

Every infinite superstable field is algebraically closed.

Let $(K, +, \cdot, ...)$ be a superstable field.

By the previous lemmas, K has contains all roots of unity and hence has no proper separable extensions.

But $x \mapsto x^p$ is surjective so K is perfect and every algebraic extension is separable.

Bounded Fields

Definition

A field K is *bounded* if there are only finitely many isomorphism types of separable algebraic extensions of degree n for all n.

Examples:

- separably closed fields
- real closed fields
- finite fields
- pseudofinite fields where there is a unique extension of degree *n* for all *n*.

Theorem (Poizat)

An infinite bounded stable field is separably closed.

Bounded Stable Fields

Lemma

Suppose K is an infinite bounded stable field.

- **1** If char(K) doesn't divide n, then $x \mapsto x^n$ is surjective.
- 3 If char(K) = p > 0, then $x \mapsto x^p x$ is surjective.

Lemma \Rightarrow Theorem

Follow Macintyre's argument. Note that if F/K is a finite separable extension F is bounded and stable.

Suppose K is infinite and stable, n is relatively prime to char(K) and $x \mapsto x^n$ is not surjective.

Since K^{\times} is connected $(K^{\times})^n$ is an infinite index subgroup. We will show that if L/K is a finite separable extension there are only finitely many cosets of $K^{\times}/(K^{\times})^n$ that have n^{th} -roots in L.

Thus there are infinitely many isomorphism types of separable extensions of K of degree at most n and K is not bounded.

Let L/K be a finite separable extension.

Let $\sigma_1, \ldots, \sigma_m$ be the embeddings of *L* into K^{alg} fixing *K*.

Let $X = \{a \in L^{\times} : a^n \in K\}$ Define \sim on X by

$$a \sim b \Leftrightarrow \bigwedge_{i=1}^m \frac{\sigma_i(a)}{a} = \frac{\sigma_i(b)}{b}.$$

Since $a^n \in K$, $\sigma_i(a)^n = a^n$. Thus each $\frac{\sigma_i(a)}{a}$ is an n^{th} root of unity. It follows that there are only finitely many \sim classes.

But if $a \sim b$, then $\sigma_i(a/b) = a/b$ for all *i*. But a/b is separable over *K* and this is only possible if $a/b \in K$ and $a^n = b^n \pmod{(K^*)^n}$.

Thus only finitely many classes of $K^{\times}/(K^{\times})^n$ have *n*th-roots in *L*.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Let K be an infinite, stable, bounded field of characteristic p > 0. Let $\wp : K \to K$ by $x \mapsto x^p - x$. If \wp is not surjective then, since the additive group is connected, $\wp(K)$ has infinite index in K

Let L/K be a finite separable extension. An analogous argument to the one above shows that the set of cosets $b\wp(K)$ such that $b \in \wp(L)$ is finite.

Valuations on Stable Fields

Theorem (Poizat)

If K is an infinite stable field and v is a non-trivial henselian valuation on K, then K is separably closed.

Recall: If (K, \mathcal{O}) is a valued field with valuation v and residue field k, then (K, \mathcal{O}) is *henselian* if any of the following equivalent conditions hold.

- if $p(X) \in K[X]$, \overline{p} is the image of p under reduction and there is $a \in \mathbf{k}$ such that $\overline{p}(a) = 0$ and $\overline{p}'(a) \neq 0$, then p has a zero in K.
- **2** If L/K is separable algebraic, there is unique extension of \mathcal{O} to a valuation ring on K.
- If L/K is algebraic, there is unique extension of \mathcal{O} to a valuation ring on K.

Examples: \mathbb{Q}_p , k((X)), Hahn series, separably closed valued fields...

・ロト ・ 一下 ・ ト ・ ト ・ ト

Any separably closed field K except the algebraic closure of the prime field has a non-trivial henselian valuation.

Let k be the prime subfield of K and let $t \in K$ be transcendental over k. We can define a non-trivial valuation v_0 on k(t). Then we can extend v_0 to v a non-trivial valuation on K and this valuation must be henselian.

Recall: Shelah's conjectured that an infinite NIP field is either algebraically closed, real closed or admits a non-trivial henselian valuation.

Poizat's result shows that Shelah's Conjecture implies that an infinite stable field is separably closed.

It suffices to show that if K is a stable field admitting a nontrivial henselian valuation then $x \mapsto x^n$ is surjective for all n relatively prime to char(K) and if char(K) = p > 0, then $x \mapsto x^p - x$ is surjective.

Then the usual arguments will show that K is separably closed-note if L/K is a finite Galois extension, then the valuation of K extends to a henselian valuation on L.

Let \boldsymbol{k} be the residue field of K.

Work in $(K, v) \prec (K_1, v_1)$ where $a \in K_1$ realizes the unique generic type of K.

Replacing *a* by a^{-1} if necessary we may assume $v(a) \ge 0$. Let $b \in K$ with v(b) > 0. Then *ba* is generic and v(ba) > 0. So, without loss of generality, we may assume v(a) > 0.

▲□▶▲□▶▲□▶▲□▶ □ のQで

We have a generic with v(a) > 0.

claim 1 If char(\boldsymbol{k}) does not divide n, then $x \mapsto x^n$ is surjective.

1 + a is also generic. Let $p(X) = X^n - 1 - a$. Reduce to **k** and consider $\overline{p}(X) = X^n - 1$. Then 1 is a simple zero of \overline{p} in **k**. Since K is henselian there is a zero in K.

Thus the generic 1 + a is in $(K^{\times})^n$ so $(K^{\times})^n$ is generic and, hence, of finite index in K^{\times} .

But K^{\times} is connected. Thus $K = K^n$.

claim 2 If char(K) = p > 0, then K is closed under $x \mapsto x^p - x$ is surjective.

We have a generic with v(a) > 0.

Let $p(X) = X^p - X - a$. Then $\overline{p}(X) = X^p - X$ and 1 is a simple zero in k. Thus the image of $x \mapsto x^p$ is generic and, since (K, +, ...) is connected, must be all of K.

3 K K 3 K - 3

claim 3 If char(K) = 0 and char(k) = p > 0, then $x \mapsto x^p$ is surjective.

We have a generic with v(a) > 0. By claim 1, there is b such that $b^{p-1} = \frac{1}{p}$. We will show that $b^p + a \in K^p$. Then K^p is generic and $K = K^p$.

Let $f(Y) = (Y + b)^p - b^p - a$. It suffices to find a y such that f(y) = 0.

$$f(Y) = Y^{p} + pbY^{p-1} + {p \choose 2}b^{2}Y^{p-2} + \dots + pb^{p-1}Y - a$$
$$= Y^{p} + \sum_{i=1}^{p-2} {p \choose i}b^{i}Y^{p-i} + Y - a.$$

Note that p divides $\binom{p}{i}$, $i = 1, \dots, p-1$ and $v(b) = -\frac{v(p)}{p-1}$ so $v(\binom{p}{i}b^i) \ge v(p) - \frac{v(p)i}{p-1} > 0$ for $1 \le i < p-1$.

Thus $\overline{f}(Y) = Y^p + Y$, 0 is a simple 0 in **k** and f has a zero in K.

Artin-Schreier extensions of stable fields

Theorem (Scanlon)

If $(K, +, \cdot, ...)$ is an infinite stable field of characteristic p > 0, then $x \mapsto x^p - x$ is surjective.

Without loss of generality we can assume K is \aleph_1 -saturated. Let

$$k = \bigcap_{n=1}^{\infty} K^{p^n}$$

Note that $k = k^p$ is perfect. Let $I = \bigcap_{a \in k^{\times}} a_{\mathcal{D}}(K) \subseteq \mathcal{D}(K)$. We want to show $I \cap k$ is non-trivial. By Baldwin–Saxl, there are $a_1, \ldots, a_n \in k^{\times}$ such that $I = a_1 \mathcal{D}(K) \cap \cdots \cap a_n \mathcal{D}(K)$. We work in K^{alg} . Let

$$G = \left\{ (x_1, \ldots, x_n, t) : \bigwedge_{i=1}^n t = a_i (x_i^p - x_j) \right\}$$

If $(\overline{b}, t) \in G$, then $t \in I$.

Note G is an algebraic subgroup of \mathbb{G}_a^{n+1} defined over k and the dimension of G is at least 1.

We need one fact from algebraic group theory.

Lemma

If F is a perfect field and G is an algebraic subgroup of \mathbb{G}_a^l of positive dimension defined over F, then G contains an algebraic subgroup H defined over F and definably isomorphic over F to \mathbb{A}^1 .

There is $H \subseteq G$ an algebraic group defined over k and $f : \mathbb{A}^1 \to H$ an isomorphism defined over k.

$$G = \left\{ (x_1, \ldots, x_n, t) : \bigwedge_{i=1}^n t = a_i (x_i^p - x_j) \right\}$$

We have $H \subseteq G$ and $f : \mathbb{A}^1 \to H$ an isomorphism defined over k. Thus H(k) = f(k) is infinite.

If $(x_1, \ldots, x_n, 0) \in H$, then $x_i^p - x_i = 0$, so $x_i \in \{0, 1, \ldots, p-1\}$. Thus there is some point $(\overline{x}, t) \in H(k)$ with $t \neq 0$, but then $t \in I$.

Thus $I \cap k$ is a non-trivial ideal of k. So $I \supseteq k$. and $\wp(K) \supseteq I \supseteq k$.

Since $\wp(K) \supseteq k$, by compactness $\wp(K) \supseteq K^{p^n}$ for some *n*. Let $a \in K$. Then $a^{p^n} \in \wp(K)$ so there is $\alpha \in K$ such that

$$\alpha^{p} - \alpha = a^{p^{n}}.$$

Work in $K^{\text{alg.}}$. There is a unique β such that $\beta^{p^n} = \alpha$. Then

$$\wp(\beta)^{p^n} = (\beta^p - \beta)^{p^n} = (\beta^p)^{p^n} - \beta^{p^n} = \alpha^p - \alpha = a^{p^n}.$$

Thus $\wp(\beta) = a$. Since $\beta^{p^n} = \alpha$, $K(\beta)/K$ is purely inseparable. But $\beta^p - \beta = a$, thus $K(\beta)/K$ is separable. Thus we must have $\beta \in K$. **Remarks**: • The only place we used stability was in the application of Baldwin–Saxl that uses only NIP so this is also true in NIP fields.

• Kaplan–Scanlon–Wagner also show that infinite simple fields of characteristic p > 0 have no proper Artin–Schreier extensions

Corollary

If K is an infinite NIP field of characteristic p > 0 and L/K is a finite Galois extension, then p does not divide [L : K].

Otherwise, we can find $K \subseteq F \subset L$ with L/F separable of degree p. But F is also NIP and, hence, closed under Artin–Schreier extensions.

Corollary

If K is an infinite NIP field of characteristic p > 0, then $K \supseteq \mathbb{F}_p^{\text{alg}}$

Let $k = K \cap \mathbb{F}_p^{\text{alg}}$. Since K is closed under Artin–Schrier extensions $\mathbb{F}_{p^{p^n}} \subset k$ for all n. Thus k is infinite and perfect. Using the Lang–Weil estimates it's easy to see that k is PAC. We then apply the following result.

Theorem (Duret)

If K is NIP and $L \subset K$ is a PAC subfield algebraically closed in K, then L is separably closed.

Thus k is separably closed and, since perfect, algebraically closed.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >