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§1 Introduction.

The model theory of separably closed fields was first investigated by Ersov.
Among other things he proved that the first-order theory of separably closed
fields of a fixed characteristic p / 0 and of fixed degree of imperfection e £
ω U {00} is complete, see [6]. In 1979 C. Wood (see [24]) showed that these
theories are stable, but not superstable, yielding the only examples of stable,
non-superstable fields. Further model theoretic properties of these fields, like
quantifier elimination, equationality, the independence relation, DOP, etc. were
analysed. In 1988 F. Delon (see [5]) published a comprehensive article in which
she investigated types in terms of their associated ideals in an appropriate poly-
nomial ring, in particular proving elimination of imaginaries and giving a detailed
analysis of different notions of rank.

In 1992, E. Hrushovski gave a model theoretic proof of the Mordell-Lang
conjecture for function fields. In the case of characteristic p φ 0 he used some of
the model theoretic tools for separably closed fields, in particular an analysis of
minimal types and the author's results on definability in separably closed fields.

A separably closed field can be equipped with a differential structure. Ac-
counts of this line of work can be found in [21,22,23,10].

The purpose of these notes is to give an overview of the known results in
the model theory of separably closed fields with special emphasis on the case
of finite degree of imperfection. When discussing elimination of imaginaries, we
give a general outline of how this property can be proved in all known examples
of stable fields with additional structure

§2 A few remarks about field extensions.

All fields under consideration in this chapter will be of fixed characteristic
p φ 0. F, K and L always denote fiejds, F[Xi,i £ /] the polynomial ring over
F in the indeterminates Xi,i £ /. F stands for the (field-theoretic) algebraic
closure of F and Fp* for the subfield {xp" : x G F}. By abuse of notation Fn

denotes the set of n-tuples over F. To avoid confusion, we will sometimes use
[F]n for the cartesian product. fp is the finite field with p elements.
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Definition 2.1. A polynomial / £ F[X] is said to be separable if all_its
irreducible factors (in F[X]) have distinct roots (in F). An element x £ F is
said to be separable over F if its minimal polynomial over F is separable.

Note: An irreducible polynomial / £ F[X] is separable iff its formal derivative /'
is nonzero. An algebraic extension K of F is separable if every x £ K is separable
over F. Now let us define what it means for an arbitrary field extension to be
separable.

Definition 2.2* (a) A p-monomial over a set {αi,. . . ,αn} C F is an element
of the form a\l " α£n with 0 < e, < p. A finite set A — {αι,...,α n} C F
is p-independeni in F if the set of p-monomials {ra0 = \^..,mp^_ι} over A
is linearly independent over Fp. An infinite set is p-independent if every finite
subset is.

(b) A field K D F is a separable extension of F if, whenever A C F is
p-independent in F, then A is p-independent in /f.

(c) A set A C F is a p-basis of F if the set of p-monomials over A form a
basis for F over Fp as a vector space; i.e. A is a maximal p-independent subset
of F. The cardinality of such a set A is called the degree of imperfection or
Ersov-invariant of F. We will simply call it the invariant of F .

(d) F is said to be separably closed if it has no proper separable algebraic
extension. F denotes the separable closure of F, that is the maximal separable
algebraic extension of F (inside F).

Note:
• Part (b) of the previous definition is just another way of saying that F and

Kp are linearly disjoint over Fp.

• The property of being separably closed can be expressed by an infinite set
of first-order sentences in the language C = {+, —, , ~1,0,1} of fields by
saying that each polynomial whose formal derivative is nonzero has a root.

§3 The theory of separably closed fields in the language of fields.

By the note at the end of the previous section we can form the first-order
theory SCFe of separably closed fields (of characteristic p) of invariant e, where
e £ ω or e = oo in the language C = {+,-, ,-1,0,1} of fields. Notice that
SCFo is the theory of algebraically closed fields. First we show that SCFe is
complete.
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We first consider the case when e is finite. We extend the language £ by
finitely many constant symbols α i , . . . , α e interpreted as the elements of a p-
basis in each model of SCFe. So £' = £ U {αi, . . . , αe} and SCF'e stands for the
theory of separably closed fields of invariant e in the language £'. It is clear that
SCFe and SCF'e have the 'same' models and completeness of SCF'e implies the
completeness of SCFe .

Definition 3.1. A theory T is model complete if for all models M , N of T,
M C N implies M ^ N.

Note: T is model complete iff for all models M,N of T and every existential
sentence 3xφ(x,m) with ra C M and ^ quantifier-free, if TV [= Ξx<£(x,ra) then
M [=

Lemma 3.2. The theory SCFg is model complete.

Before proving the lemma we make a few remarks about varieties (in the
sense of Lang, see [8]). Let Ω be an algebraically closed field. By an (affine)
variety V we mean the zero set of a prime ideal T> of Ω[ΛΊ, . . . ,Xn] for some
n\ that is V = {x G Ωn : f ( x ) = 0 for all / G P}. Conversely, the ideal I(V)
associated to a variety V is given by {/ G Ω[X] : f ( x ) = 0 for all x G V}.

Let / be an ideal of Ω[X]. If 7 has a basis consisting of elements from K[X]
with ^ C Ω, then K is said to be a /ίe/d o/ definition of /. (We will note later
that there exists a minimum such field of definition, see Section 4.) The variety
V is said to be defined over K if K is a field of definition for I(V).

Lemma 3.3. Let F be separably closed and K a separable extension of F.
Then F and K are linearly disjoint over F.

Proof. Let {&ι,.. .,δ n } C if be linearly dependent over F. So there are
ci, . . . , cn G -F, not all zero, with CIOH ----- \-cnbn = 0. Since F is separably closed,
each Cj is purely inseparable over F. So there is ra G ω such that cf G F for all i.

So we have cξ 6f H ----- hc^™^™ = 0. Now, since /£ is separable over F, if follows
that Xpm and F are linearly disjoint over Fpm . Therefore we find dι , . . . , dn G F,

not all zero, with d^b^ + + d£m6£m = (dι&ι + + dnbn)
pm = 0, which says

that {61, . . . , bm} is linearly dependent over F.

Proof of 3.2. We follow Ersov's proof, see [6] and also [24, Th.l]. Let F C K,
both models of SCF^. Since {βι,...,αe} is a p-basis of both F and /C, it
follows that K is a separable extension of F (p-independence is preserved!).
Furthermore, since F is separably closed, F is relatively algebraically closed in
K. So K is a 'regular' extension of F. Now let φ(xιt. . . , zn) be a quantifier free
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formula over F with K \= 3xφ(x). Let 6 C K with K |= φ(b). Without loss of
generahty φ is in disjunctive normal form; that is

Φ = \ΛΛ £«•(*) = °Λ Λ «*(*) * °)

with fji, gjk € F[X]. Without loss of generality K (= Λi /«(&) = °ΛΛ
0.

Now consider the prime ideal P C F[X,Y] defined as follows.

By the previous lemma, F and K are linearly disjoint over Fλ so by [8,Ch.IΠ,
Th.8] , F is a field of definition of P and the variety V C Fn+1 given by P
is defined over F. By [8,Ch.IΠ, Th. 10], the set of points of V which are
separably algebraic over F is dense in V '. Since F is separably closed, there is
(c, d)eVΠ F"*1. Clearly, since fa(X) E P for all i and Π* 0ι*(*)y - 1 € P,
c satisfies φ(x).

Remark 3.4. The separable closure of FP(Q.\, . . . ,αe) is the prime model of

Proof. Clearly the separable closure of Tp(a\^ . . ,αe) is a model of
and it is contained in any model of SCF'e. The claim follows from the model
completeness of SCF'e.

Theorem 3.5. (Ersov) The theory SCFe (eeωU {oo}) is complete.

Proof.
For e finite, Lemma 3.2 and Remark 3.4 show that SCF'e is complete, which

implies the completeness of SCFe .
In the case of e = oo, instead of adding constant symbols for a p-basis

we add infinitely many relation symbols Qn(xι, >^n), n G ω, interpreted as
follows:

Qn(^ij •• ,ZM) iff {zι, £n} isp— independent.

So

Qn(zι,...,zn) iff V y i . . . yn(yp

lχι + '-y*χn = Q-+yι = - - = yn = 0).

In this extended language one can show model completeness in a similar way as
before. Again, the separable closure of fp(Xi : i G ω) is the prime model which
yields the completeness of SCF^ . (For the infinite invariant part of this proof
seealso[24Th.l] .)
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Note:
(a) The theory SCFe (in the language of fields) is not model complete: Let

F < K (= SCFe, where K = F(b) with V> = a G F-F*>. Then K |= 3φ*> = α),
but F £ Ξz(z*> = α).

(b) In the case of infinite invariant it is not possible to work in a language
where we have names for a p-basis, since elementary extensions can contain new
p-independent elements.

§4 Separably closed fields of finite invariant.

In the previous section we saw that the theory of separably closed fields of
finite invariant is model complete if we add names for a p-basis. After extending
this language by some definable function symbols, this theory will turn out to
have several 'nice' model theoretic properties, such as quantifier elimination.
From now on we fix e to be finite and nonzero.

Let F |= SCF'e and let {mo = l,. . .,m p e_ι} be the set of p-monomials
over the p-basis {αi, . . . , ae} as before. Each element of x G F can uniquely be
written of the form

x = 2

with X(i) G F. Now for 0 < i < pe,

XW = *M)mO + χP(i

Continuing this process, we get a tree associated to each element x G F:

Note that in the language £' each element in the tree is definable over x,
and that x is definable over each level of the tree.

Let (pe)<ω denote the set of finite tuples over the set {0, . . . ,pe — 1}. We ex-
tend the language C! by infinitely many unary function symbols λ σ,σ G (pe)<ω ,
interpreted as follows:

• For 0 < j < pe, \(j)(x) = X(j) iff x = Ejlό1 χ P ( j ) m j

• For σ G (pe)<ω, λσ(j)(x} = λ(j)(λσ(x)) = Xσ(j), as indicated in the tree.
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We say that x^ ) is the jth coordinate of x. Note that all λσ's are definable
in the language C! '.

Definition 4.1. SCF* denotes the theory of separably closed fields (of char-
acteristic p) of invariant e (< ω) in the language C* - {+,-, » " 1 > 0 , 1} U
{al,...,ae}U{λσ:σe(p*)<»}.

Note that by 3.2 and 3.5 SCF* is model complete and complete.

Proposition 4~.2. The theory SCF* eliminates quantifiers.

Note: Delon in [5, Prop. 27] discusses a more general language for the finite and
infinite invariant yielding quantifier elimination.

Proof of Proposition 4.2.
In order to prove quantifier elimination for a theory T it suffices to show

the following (Shoenfield test):

For any ωι-saturated model M of T and any countable model N of T,
and substructures A C TV and B C M, if A = B then this isomorphism
extends to an elementary embedding of N into M .

Claim. Let F (= SCF* and k a substructure of F, then k has invariant e.

Proof of Claim. Clearly the invariant of k is at least e since {αi, . . . , αe} C k.
But with any element x £ fc, k contains all coordinates xσ of x witnessing its
p-dependence on {αi, . . . ,αe}. This shows the invariant of k is at most e. This
proves the claim.

Now let kι be a substructure of K \= SCF* with K ^-saturated and k^

a substructure of F |= SCF* with F countable, and Jbi Ξ Jk2 Clearly fci 2 ίc2

with ki \= SCF* and k\ C K. By model completeness k\ -< K and k^ embeds
elementarily into K. But since K is u>ι -saturated, F also embeds elementarily
into K.

This quantifier elimination results yields a very useful one-to-one corre-
spondence between 1-types over models of SCF* and certain prime ideals in a
suitable polynomial ring. This feature is explored in great detail in [5]. Here we
discuss a few aspects of it.

Corollary 4.3. In SCF* every formula φ(x) with parameters from a model
F \= SCF* is equivalent to a boolean combination of formulas of the form

where / € F[Xir , . . . , Xnσ : σ E (p*)<ω}.
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Proof. First check that for all x,y and σ G (pe)<ω ', (z + y)σ, (x - 2/)<τ, (z y)σι

(x~l)σ £ F(xτ,yτ : T G (p€)<ω)< For example, for p = 3, e = 1 and p-basis {α},
the first-level coordinates of x - y can be obtained as the first row of the matrix

2/{ι)α

Now the claim follows immediately from Proposition 4.2.

The following remark shows that all information about types is contained
in the 1-types.

Remark 4.4. Let F |= SCF%. There is a definable injection from [F]n into
F, and therefore from the set of ra-types into the set of 1-types. Moreover, if
n = pm'e for some m < ω, we get a bijection.

Proof. Let m < ω be such that pm'e > n. Let {m^, . . .,m^me} be the set
of pm -monomials over {αi, . . . , αe}; that is {m^, . . . , m^me} is a basis of F over

F*>m. Define Φ : [F]n -> F by

«=ι

SoΦ(x) is an element whose mth level of its tree consists of (xi, . . . ,xn,0, . . . ,0).
Φ is the desired injection.

For F \= SCF*y the automorphisms Aut(F) of F act on the types over
F by acting on the parameters. For F[Xi : i G J], a polynomial ring over F,
Aiίί(F) also acts on the ideals of F[Xi : i G /] by acting on the coefficients of
the polynomials.

Corollary 4.5. Let F \= SCF* . There is a (natural) one-to-one correspondence
between complete 1-types over F and 'certain' prime ideals in the polynomial
ring F[Xσ : σ G (pe)<ω]5 given as follows. Let q be a 1-type over Fy then the
ideal I(q) associated to q is given by

= {fe F(Xσ]σ G (pe)<Ί '• 7(*σ) = 0' G q}.

Moreover, any automorphism α G Aut(F) fixes q (setwise) iff α fixes I(q) (set-
wise).

Proof. Immediate from Corollary 4.3. Note that I(q) is a prime ideal since q is
a complete type.
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Note:
• (Delon) We call an ideal / of F(Xσ\σ G (pe)<ω] separable if for all

:σ£(pe)<»],

/£ _ι™pβ-ι G / implies /0,...,/pe-ι G /.

The Certain' ideals occurring as ideals of types are exactly the prime ideals
which are separable in this sense and contain

«=o

• (Delon) The same one-to-one-correspondence holds for types over definably
closed sets, see [5, Prop.33] .

• This kind of description of types in terms of ideals also arises in algebraically
closed fields and in differentially closed fields.

Corollary 4.6. (Wood) The theory SCF* is stable, not superstable.

Proof.
Let F \= SCF* with \F\*° = \F\. By Corollary 4.5 the number of 1-types

over F is at most the number of ideals of F[Xσ\σ G (pe)<ω] For an ideal
ICF[Xσ]σe(pe)<ω]\et

where (pe)n denotes the set of tuples over {0,... ,pe — 1} of length at most n.
F[Xσ : σ G (pe)n] is a noetherian ring, since it is a polynomial ring with finitely
many indeterminates. Therefore In is finitely generated. So there are at most
|FI possible different In for each n. But / = Uneω^n, which shows that there at
most |F|K° = \F\ possible different ideals /.

To see that SCF* is not superstable, we show that

F > Fp > Fp2 > - - > Fpt > -

forms an infinite descending chain of definable additive subgroups, each of infi-
nite index in the preceding one. (The same can be shown for the corresponding
multiplicative subgroups.) Since F is definably isomorphic to Fp via the Frobe-
nius map x H-> xp, it suffices to show that the index of Fp in F is infinite. But
this follows from the following theorem of Poizat's, see [12, Th.5.10].

Let F be a stable field. The F has no definable (additive or multiplica-
tive) subgroup of finite index.

We can also see this directly. Let α G F - Fp and 6, c G F* = F - {0}
with b φ c. at? and acp lie in different (additive) cosets modulo Fp, since
α&P — ac? = dp implies a = (ι^)p, a contradiction.
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This corollary also shows that the theories SCFe and SCF'G from Section 3
are stable, not superstable for t E ω. The same holds for SCF^, see [24, Th.3]
and [5, p.63].

Note. Separably closed fields are the only known stable, non-superstable fields.

Next we want to list several model-theoretic properties of the theory SCF*.

1. Quantifier elimination implies that SCF* is an equational theory for e <
ω. This was shown by G.Srour, see [17]. It is not known whether SCF<χ> is
equational.

2. Result 5.10 together with 4.5 and 4.6 show that the theory SCF* of separably
closed fields with e < ω eliminates imaginaries. (For definitions, etc. see Section

5)

3. OOP ('The Dimensional Order Property*) is a non-structure property which
for a superstable theory T yields the maximal number of models of in each
cardinality > 2'TL In [1], Bouscaren proved that every superstable theory with
a stable theory of pairs does not have DOP. Subsequently Delon showed that
separably closed fields provide an example of a stable theory with stable pairs
which has DOP. In fact, in [3] a strengthened, infinitary version, called ω-DOP,
is proved. The authors show that there is a family of independent models /f, ,
i E ω, each containing a fixed model KQ , and a type p over the prime model over
UiKi such that for all j E ω, p is orthogonal to U^jKi.

Among other things, the proof makes use of the fact that there is an alge-
braic description of (in)dependence, which we want to mention here.

4. Forking in SCF*

Fact 4.7. Let F C K be models of SCF* and p a complete type over K realized
by some x£L>K. Then p does not fork over F iff F(xσ : σ E (pe)<ω) and K
are algebraically disjoint over F. This is equivalent to saying that F(xσ : σ E
(pe)<ω) and -K" are linearly disjoint over F.

For proofs and further details see [5, p.Slff.].
This description of forking says that two elements x and y are model-

theoretically independent over some model F of SCF* iff their trees {xσ : σ E
(pe)<ω} and {Vσ '• & G (pe)<ω} are algebraically independent over F. Similar de-
scriptions of independence we find in algebraically closed fields and differentially
closed fields.

5. Non-FCP. The theory SCF* does not have the 'finite cover property' (non-
FCP). The proof can be copied from the Chapter 'Model Theory of Differential
Fields' by D. Marker, replacing differential polynomials there by polynomials
in the polynomial ring F[X\σ,... ,Xnσ •' & € (pe)<ω] There an explicit proof
of 'uniform bounding' is given. Non-FCP follows by Shelah's FCP-Theorem
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(see [16, Ch.II, Th.2.2(8)]) using elimination of imaginaries and the stability of
SCF*.

6. Groups and fields. (For details see [9]) As in algebraically closed fields and
differentially closed fields the question arises of whether the groups definable
in a separably closed field are related to 'classical' groups. Results by Weil,
van den Dries and Hrushovski showed that any infinite group definable in an
algebraically closed field is definably isomorphic to an algebraic group. For a
proof of this result see [2].

In analogy to (abstract) algebraic groups (over algebraically closed fields)
we introduce the notion of an F-algebraic group for a separably closed field
F^SCF*.

Definition 4.9. A subset A C [F]n is called F -closed if there are polynomials
/i, i fm G F [Xi, . . . , Xn] , m G ω such that

A = {x G [F]n : f i ( x ) = 0 for i = 1, . . . , m} .

We call V = V\ U . . . U Vk a variety in F if there are F-closed 'charts'
Ui C [F]n and bijections /< : Vi -> Ui such that Uij = fi(Vi Π Vj) are F-open
subsets of Ui and such that the fa = fj o /, -ι : Uij -* Uji are rational functions
over F, for 1 < i y j < k.

We call (G, •) an F -algebraic group if G is a variety in F such that the maps
(x,y) *— >• x - y and x ι-» a:""1 are morphisms with respect to the topology defined
above, i.e. are locally F-rational functions.

Prop 4.9. Every infinite group G interpretable in a model F of SCF* is defin-
ably isomorphic to an F-algebraic group.

Sketch of proof. A natural topology on Fn is the λ-topology given as follows.

A subset A C Fn is called basic \-closed if there are finitely many
polynomials /,- G F [Xισί. . . ,Xn<r : σ G (pe)<ω] such that A = {x G

X-varieties are defined in analogy to varieties in F, where the charts
Ui are basic λ-closed, the Uij's are basic λ-open, the /, ; 's are rational
functions over F as before in the x G Uij (not in the expanded tuples).
A λ- algebraic group is a λ- variety such that multiplication and inversion
are F-rational functions on each chart.

So let G be an infinite group interpretable in F \= SCF*. First it is shown
that G is definably isomorphic to a λ-algebraic group.

Since SCF* eliminates imaginaries we can assume that G is a definable
group. By 4.4, without loss of generality, G C F. Moreover, since G is connected-
by-finite it suffices to consider the case where G is connected.

By increasing the arity of the set on which G is defined, we find a group
G1 definably isomorphic to G such that multiplication is a rational function for
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independent generic elements of G1 '. Then we can cover G1 by finitely many
translates of a λ-open generic' subset on which multiplication and inversion
are rational functions, so that G1 is equipped with the structure of a λ-alebraic
group.

Finally the following fact allows us to turn this λ-algebraic group into an
F- algebraic group.

Let A be a λ-closed subset of F \= SCF* defined by a formula of the
form f(xσι, . . . ,xσj = 0 with / G F[Xσ\σ G (pe)<ω]. Then A is in
definable bijection with an F-closed subset B of [F]m for some m G ω
defined by g(x) = 0 for some g G F[Xι, - - - Xm]-

To see this, first let L G ω be the maximal length of all tuples σi, . . . , σn

occuring in /. We can assume that all σ, are of the same length L, by replacing
the xσt by the corresponding term in the xr's, where τ has length L. Now let
m = pLe and define the map Φ : F — > [F]m as follows.

where {τi,...,rm} are all the tuples in (pe)<ω of length L, or equivalently
(xTl , . . . , xTm) is the Lth level of the tree of x. Clearly the image B of A under
Φ is defined by the same polynomial / viewed as an element of F[Xι , . . . , Xm].

As a corollary of the previous result one can prove the following Rosenlicht-
style theorem (see [15]) for infinite groups interpretable in SCF*.

Corollary 4.10. Let G be a connected infinite group interpretable in a separably
closed field F (= SCF*. Then G/Z(G) is definably isomorphic to a linear F-
algebraic group. (Z(G) denotes the center of G.)

Note: By a linear F-algebraic group we mean an F-closed subgroup of GL v(F)
for some TV < ω, the general linear group over F .

Now we can classify the infinite fields interpretable in SCF* .

Theorem 4.11. Let K be a field interpretable in a separably closed field F \=
SCF* of finite invariant. Then K is definably isomorphic to a finite (purely
inseparable) extension of F. In particular, K is itself separably closed.

Sketch of Proof.
By Corollary 4.10 the additive group K+ as well as the multiplicative group

K* are both linear F-algebraic groups which are the F-rational points of some
linear algebraic groups F"1" and V* , respectively, in the algebraic closure F of
F. Since K* acts on K+ by multiplication, one can show that V* acts on V+ .
After restricting to the semisimple part of V* , we are in the situation to apply
ZiΓber's field theorem (see [12, Theorem 3.7]) and find an algebraically closed
field 1C definable in F which is definably isomorphic to F by [12, Theorem 4.15]
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, via a definable isomorphism Φ. We arranged that K be definably embedded
into 1C. So Φ carries K onto a subfield of some finite extension of F. But it
is easily seen that such a subfield must contain Fpn for some n. Now Fp" is
isomorphic to F itself, so K is definably isomorphic to a finite extension of F.

Using an ultraproduct argument, it can also be shown that any infinite field
K definable in a separably closed field F of infinite invariant is itself separably

closed of infinite invariant, and char(K) — char(F).

As a corollary of the previous theorem, Hrushovski observed the following.
Note that in a saturated model, a set X, which is defined by a possibly infinite
conjunction of formulas, is called minima/if for every definable (with parameters)
set A, the intersection of X with A is finite or cofinite in X.

Corollary 4.12. Let F be a separably closed field of finite invariant and K an
infinite minimal field defined in F by an infinite conjunction of formulas. Then
K is definably isomorphic to Fp°° = Γ\nF

pn, the maximal perfect, algebraically
closed subfield of F.

Proof. By [12, Cor.5.21] K is the intersection of fields Li each definable in F.
By Proposition 4.11, each Li is definably isomorphic to a finite extension Ki of
F. By applying the map x ι—»• xp for some large enough n to the Ki's, we get
an infinite descending chain of definable subfields K[ of F. By [9, Cor.3.2], each
Kl contains Fp°°. But since K is minimal, Γ(K[ = Fp°°.

§5 Elimination of imaginaries in fields.

In model theory we often find structures which are given on definable sets
modulo some definable equivalence relation, for example a definable group mod-
ulo some definable normal subgroup or projective space over some field, etc.
These structures are, in a strict sense, not definable. Often one says that they
are interpretable in the theory T , or definable in Teq. If a theory T elimi-
nates imaginaries, each such interpretable structure is definably isomorphic to
an (honestly) definable structure (see Fact 5.2(a) below). We will explore this
property in the case of stable fields. For a general discussion of elimination of
imaginaries, see for example [13]. Most of the discussion here will appear in [10].

Definition 5.1. A first-order theory T with monster model M is said to elimi-
nate imaginaries if for every definable (with parameters) set A C Mn, there is
a finite set B C M such that for every automorphism σ of M> σ fixes A setwise
if and only if σ fixes B pointwise.
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Fact 5.2. (a) If the theory T eliminates imaginaries and the definable closure
(=dcl) of the empty set contains at least two elements, then for every definable
equivalence relation E on Λ4n there is a definable function / from Mn to M.m

for some m such that for all z, y, E(x, y) iff f ( x ) = f ( y ) -

(b) If the theory T eliminates imaginaries then for every definable set A C
Mn there is a minimum definably closed set B such that A is definable over B.

Proof. For (a) see [13, Th.16.16] . (b) is immediate from the definition.

Remark 5.3. The theory SCFe for e G ωU{oo} (in the language of fields) does
not eliminate imaginaries.

Proof.
(See [5]) Let F be a saturated model of SCFe. Then we find can two

elements x, y in F — Fp which lie in the same (multiplicative) coset modulo F*
and such that Fp(x)Γ\Γp(y) = Tp. Now fp(x) and Fp(y) are two definably closed
sets over which the coset xF* is definable. But clearly xF*P is not definable

over Fp(x) Π Fp(y] = Tp, contradicting Fact 5.2(b).

At this point we would like to pick the example from the previous proof and
show how the quotient group F*/F*P can be eliminated in the theory SCF*.

We consider the specific example when p = 3 and e = I with the p-basis
being {α}. The two elements x, y E F* lie in the same coset modulo F* iff

x y

Note that x = x?0v + x^n\a + x?2)α2' an(^ sinularly f°Γ V The equation above
implies that

which implies that - G ̂ * - So the definable closure of

is the minimum definably closed set over which xF* is definable. Or in terms
of Fact 4.8(a), the quotient group F*/F* can be eliminated by the definable

map
x3

(1)+2x3

(2)a
JU I—T .

X

There is a weaker version of elimination of imaginaries.
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Definition 5.4. A theory T with monster model M has weak elimination of
imaginaries if for every definable set A C Mn there is a formula φ(x,y) such
that there are only finitely many tuples ά i , . . . , άm such that φ(x, α, ) defines A.

Note that a theory has elimination of imaginaries iff for every definable set
A C Mn there is a formula φ(x, y) such that there is a unique tuple a such that
φ(x,a) defines A. In the theory of fields these two definitions of elimination of
imaginaries are equivalent.

Fact 5.5. Let T be the theory of a field. Then T has weak elimination of
imaginaries iff T has elimination of imaginaries.

Proof. See [14, Cor.6]. Let φ(x,y) be a formula in the language of T. We
give the idea of the proof in the case where y has length one. Let α i , . . . , αm

be the only elements such that φ(x, αt ) defines A C Mn. Let /ι(yι,..., ym),...
, /m(yι, - - , ym) be the symmetric functions in yι,..., ym; that is

Now define the formula ψ(x,z) to be

m m

*> yi) Λ /\ Vz0(z, yi) <-> <£(*, y, ) Λ /\ y, / y; Λ /\ zf = /<

Now (/ι(α), . . . , /m(α)) is the only tuple 6 such that ψ(x, b) defines A.
The proof is based on the fact that using symmetric functions, we can code

up finite sets as finite tuples. In the general case when y has length /, one can
code the set {α~Ί, . . . , α^} by the tuple with consists of the coefficients of

m

J|(y + OiiXi + ai2X2 + + Oi

Definition 5.6. Let T be an arbitrary first-order theory and p an n-type over
a model M of T. A definably closed set A C M is said to be the canonical base
ofp if for every automorphism σ of M, σ fixes p iff σ fixes A pointwise.

To point out the connection between elimination of imaginaries and the
existence of canonical basis we include the following lemma.
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Lemma 5.7. Let T be a stable theory with elimination of imaginaries. Then
every type has a canonical base.

Proof.
Let p be an n-type over a model M of T. Then p is definable over M. This

means that for every formula φ(x, y) over the empty set there is a formula dφ(y)
over M such that for all a C M, φ(x, a) £ p iff M (= dφ(ά).

Since T eliminates imaginaries, for each dφ(y) there is a finite set £^ such
that every automorphism fixes the set defined by dφ(y) setwise iff it fixes B
pointwise. Now let A be the definable closure of the union of all Bφ. It is easy
to check that A is the canonical base for p.

The converse of the previous Lemma is not true. The theory of an infinite set
in the pure language of equality is a counterexample. But we have the following.

Proposition 5.8. (Evans, Pillay, Poizat, see [7]) Let T be a stable theory such
that each n-type over M has a canonical base for every model M of T. Then T
has weak elimination of imaginaries.

Proof.
Let A C ΛΊn be a set defined by φ(x,a) and let E be the following equiva-

lence relation.
yEziff Mxφ(x,y)^φ(x,z).

Furthermore let

C = {y : Vxφ(x, y) <-»• φ(x, a)} = the class of ά.

Pick p, a nonforking extension of V>(y, ά) to Λί, and let B be the canonical base
of p. Note that each (τ(B) gives rise to a nonforking extension of ^(y,ά) to Λ4,
of which there is only a bounded number. Thus B has only a bounded number
of images under automorphisms σ which preserve C.

Claim 1. C is defined over B.
Proof of Claim 1. Let σ be an automorphism of M fixing B. So σ fixes p
and ^>(t/, <τ(ά)) £ p, defining the equivalence class <τ(C) of E. Since equivalence
classes are disjoint, it follows that σ(C) = C. Thus each automorphism fixing
B fixes C. Hence C is defined over B by some formula 0(i/,6), b C 5, proving
the claim.

Claim 2. There is only a finite number of &' with the same type as 6 over the
empty set such that 0(i/,6) <-»• θ(y, 6').
Proof of Claim 2. If σ is an automorphism_of M with σ(6) = 6' such that
0(y>&) «-* θ(y>tf)> then_σ preserves C. Since 6 C 5, there is only a bounded
number of such images 6' by the note above. So by compactness there is only a
finite number of 6"s. This proves the claim.
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Now again by compactness, there is a formula χ ( z ) in the type of 6 over the
empty set which implies the statement of claim 2. Define

Then the formula

φ*(yι,z)^

has the property that there are only finitely many 6's such that Γ(z,6) defines
A.

Corollary 5.9. Let T be the theory of a stable field such that for each model
M of T each n-type over M has a canonical base. Then T has elimination of
imaginaries.

Proof. By 5.8 and 5.5.

As mentioned before, there are several examples of stable fields (with addi-
tional structure) where we find a one-to-one correspondence between complete
n-types and certain ideals in an appropriate polynomial ring. This immediately
yields the existence of canonical bases as follows.

Let F be a field and F[Xj : j £ J] a polynomial ring over F. In Section 3
we discussed the notion of a 'field of definition' of an ideal I of F[Xj : j £ J].
In fact every such ideal / has a minimum field of definition C(I) contained in
any other field of definition and obtained in the following way.

Let M be the set of monomials over {Xj : j £ J}. Then there is a
subset MO of M which is a basis for F[Xj : j £ J]/I- So modulo /,
every monomial πik £ M can uniquely be written as Σι αfc/m/ w^h
αjbj E F, mi G MQ. Then C(I) is the subfield of F generated by all the

α*/

Moreover, C(I) has the property that for any automorphism σ of F, σ fixes
/ (setwise) iff σ fixes (7(7) pointwise. For proofs see for example [8].

Now we can formulate a general recipe for proving elimination of imaginaries
in certain stable fields.

Prop 5.10. Let T be the theory of a stable field. Suppose that for every n> 1
there is a (possibly infinite) set of indeterminates Xi, i £ J, such that for each
model F of T there is a one-to-one correspondence between complete n-types
over F and certain ideals in the polynomial ring F[Xi : i £ J], such that for
every automorphism σ of F (as a T-structure) , σ fixes the type (setwise) iff σ
fixes the corresponding ideal (setwise). Then T eliminates imaginaries.

Proof. For any n-type p over F let I(p) be the corresponding ideal. Then the
definable closure of its minimum field of definition C(I(p)) is the canonical base
of p. Therefore, by Corollary 5.9, T eliminates imaginaries.
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