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Chapter §7 of Spivak’s Calculus focuses on three of the most important
theorems in Calculus. In this note I will give alternative proofs of these
results.

1 Preliminaries

We review a few important facts we have seen about sequences.

Lemma 1 If xn ∈ [a, b] for all n ∈ N and (xn)
∞

n=1 converges to x. Then

x ∈ [a, b].

Proof We first show a ≤ x. Suppose x < a. Choose ε > 0 with ε < a− x.
Then no element of the sequence is in the interval (x−ε, x+ε), a contradicton.
A similar argument shows b ≥ x.

Lemma 2 If f : [c, d]→ R is continuous, an ∈ [c, d] for n ∈ N and (an)
∞

n=1

converges to a ∈ [c, d]. Then (f(an))
∞

n=1 converges to f(a).

Proof Let ε > 0. Since f is continuous, there is δ > 0 such that if |x−a| < δ,
then |f(x) − f(a)| < ε. Since (an)

∞

n=1 → a, there is N ∈ N such that
|an − a| < δ for all n ≥ N . Thus |f(an) − f(a)| < ε for all n ≥ N and
(f(an))

∞

n=1 → f(a).

Theorem 3 (Nested Interval Theorem) Suppose In = [an, bn] where

an < bn for n ∈ N and I1 ⊇ I2 ⊇ I3 ⊇ . . .. Then

∞⋂

n=1

In 6= ∅.
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Proof Note that we have

a1 ≤ a2 ≤ a3 . . . ≤ an ≤ . . . . . . ≤ bn ≤ . . . b2 ≤ b1.

Then each bi is an upper bound for the set A = {a1, a2, . . .}. By the Com-
pleteness Axiom, we can find α a least upper bound for A.

We claim that α ∈ In for all n ∈ N. Fix n ∈ N. Since α is an upper
bound for A, an ≤ α. But bn is an upper bound for A and α is the least

upper bound. Thus α ≤ bn. Hence α ∈ In for all n ∈ N and α ∈
∞⋂

n=1

In.

Theorem 4 (Bolzano–Weierstrass Theorem) Every bounded sequence has

a convergent subsequence.

Proof Let (xi)
∞

i=1 be bounded. There is M ∈ R such that |xi| ≤ M for all
i ∈ N . We inductively construct a sequence of intervals

I0 ⊃ I1 ⊃ I2 ⊃ . . .

such that:
i) In is a closed interval [an, bn] where bn − an = 2M

2n ;
ii) {i : xi ∈ In} is infinite.

We let I0 = [−M,M ]. This closed interval has length 2M and xi ∈ I0 for
all i ∈ N.

Suppose we have In = [an, bn] satisfying i) and ii). Let cn be the midpoint
an+bn

2
. Each of the intervals [an, cn] and [cn, bn] is half the length of In. Thus

they both have length 1

2

2M
2n = 2M

2n+1 If xi ∈ In, then xi ∈ [an, cn] or xi ∈ [cn, bn],
possibly both. Thus at least one of the sets

{i : xi ∈ [an, cn]} and {i : xi ∈ [cn, bn]}

is infinite. If the first is infinite, we let an+1 = an and bn+1 = cn. If the
second is infinite, we let an+1 = cn and bn+1 = bn. Let In+1 = [an+1, bn+1]
Then i) and ii) are satisfied.

By the Nested Interval Theorem, there is α ∈
∞⋂

n=1

In. We next find a

subsequence converging to α.
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Choose i1 ∈ N such that xi1 ∈ I1. Suppose we have in. We know
that {i : xi ∈ In+1} is infinite. Thus we can choose in+1 > in such that
xin+1

∈ In+1. This allows us to construct a sequence of natural numbers

i1 < i2 < i3 < . . .

where in ∈ In for all n ∈ N.
We finish the proof by showing that the subsequence (xin)

∞

n=1 → α. Let
ε > 0. Choose N such that ε > 2M

2N . Suppose n ≥ N . Then xin ∈ In and
α ∈ In. Thus

|xin − α| ≤
2M

2n
≤

2M

2N
< ε

for all n ≥ N and (xin)
∞

n=1 → α.

2 Bounding and the Extreme Value Theorem

Theorem 5 (Bounding Theorem) If f : [a, b] → R is continous, then

there is M ∈ R such that |f(x)| ≤M for all x ∈ [a, b].

Proof For purposes of contradiction, suppose not. Then for any n ∈ N we
can find xn ∈ [a, b] such that |f(xn)| > n. By the Bolzano–Weierstrass The-
orem, we can find a convergent subsequence xi1 , xi2 , . . .. Note that |f(xin| >
in ≥ n. Thus, replacing (xn)

∞

n=1 by (xin)
∞

n=1, we may, without loss of gener-
ality, assume that (xn)

∞

n=1 is convergent. Suppose (xn)
∞

n=1 → x. By Lemma
1, x ∈ [a, b]. By Lemma 2,

(f(xn))
∞

n=1 → f(x).

But the sequence (f(xn))
∞

n=1 is unbounded, and hence divergent, a contradi-
cation.

Theorem 6 (Extreme Value Theorem) Suppose a < b. If

f : [a, b] → R, then there are c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d)
for all x ∈ [a, b].

Proof Let A = {f(x) : a ≤ x ≤ b}. Then A 6= ∅ and, by the Bounding
Theorem, A is bounded above and below. Let α = supA. We claim that
there is d ∈ [a, b] with f(d) = α.
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Since α = supA, for each n ∈ N, there is xn ∈ [a, b] with
α − 1

n
< f(xn) ≤ α. Note that (f(xn))

∞

n=1 converges to α. By the Bolzano–
Weierstrass Theorem, we can find a convergent subseqence. Replacing (xn)

∞

n=1

by a subsequence if necessary, we may assume (xn)
∞

n=1 → d for some d ∈ [a, b].
Then (f(xn))

∞

n=1 → f(d). Thus f(d) = α. Note that f(x) ≤ α = f(d) for all
x ∈ [a, b].

Similarly, we can find c ∈ [a, b] with f(c) = β = inf A and f(c) ≤ f(x)
for all x ∈ [a, b].

3 Intermediate Value Theorem

Theorem 7 (Intermediate Value Theorem) If f : [a, b] → R is contin-

uous and f(a) < 0 < f(b), then there is a < c < b with f(c) = 0.

Proof We start to build a sequence of intervals

I0 ⊇ I1 ⊇ I2 ⊇ . . .

such that In = [an, bn], f(an) < 0 < f(bn) and bn − an = b−a
/2n . Let a0 =

a, b0 = b and I0 = [a0, b0]. Then f(a0) < 0 < b0 and b− a = (b− a)/20.
Suppose we are given In = [an, bn] with f(an) < 0 < f(bn) and bn − an =

b− a/over2n. Let d = bn−an

2
. If f(d) = 0, then we have found a < d < b with

f(d) = 0 and are done. If f(d) > 0, let an+1 = an, bn+1 = d. If f(d) < 0, let
an+1 = d and

Let In+1 = [bn+1, an+1]. Then In+1 ⊂ In, f(an+1) < 0 < f(bn+1) and
bn+1 − an+1 =

b−a
2n .

By the nested interval theorem, there is c ∈
⋂
∞

n=0
In. We claim that

f(c) = 0.
Since an, c ∈ In, |an − c| ≤ b−a

2n for all n ∈ N. If ε > 0, choose N such
that b−a

2N < ε. Then |an− c| < ε for all n ≥ N . Hence (an)
∞

n=1 converges to c.
Thus, by Lemma 2, (f(an))

∞

n=1 converges to f(c). Since f(an) ≤ 0 for all n,
we must have f(c) ≤ 0.

Similarly, (bn)
∞

n=1 → c and (f(bn))
∞

n=1 → f(c). But each f(bn) > 0, thus
f(c) ≥ 0. Hence f(c) = 0.

Thus there is a < c < b with f(c) = 0.
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