Proofs of "Three Hard Theorems"

Fall 2004

Chapter $\S 7$ of Spivak's Calculus focuses on three of the most important theorems in Calculus. In this note I will give alternative proofs of these results.

1 Preliminaries

We review a few important facts we have seen about sequences.
Lemma 1 If $x_{n} \in[a, b]$ for all $n \in \mathbb{N}$ and $\left(x_{n}\right)_{n=1}^{\infty}$ converges to x. Then $x \in[a, b]$.

Proof We first show $a \leq x$. Suppose $x<a$. Choose $\epsilon>0$ with $\epsilon<a-x$. Then no element of the sequence is in the interval $(x-\epsilon, x+\epsilon)$, a contradicton. A similar argument shows $b \geq x$.

Lemma 2 If $f:[c, d] \rightarrow \mathbb{R}$ is continuous, $a_{n} \in[c, d]$ for $n \in \mathbb{N}$ and $\left(a_{n}\right)_{n=1}^{\infty}$ converges to $a \in[c, d]$. Then $\left(f\left(a_{n}\right)\right)_{n=1}^{\infty}$ converges to $f(a)$.

Proof Let $\epsilon>0$. Since f is continuous, there is $\delta>0$ such that if $|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon$. Since $\left(a_{n}\right)_{n=1}^{\infty} \rightarrow a$, there is $N \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\delta$ for all $n \geq N$. Thus $\left|f\left(a_{n}\right)-f(a)\right|<\epsilon$ for all $n \geq N$ and $\left(f\left(a_{n}\right)\right)_{n=1}^{\infty} \rightarrow f(a)$.

Theorem 3 (Nested Interval Theorem) Suppose $I_{n}=\left[a_{n}, b_{n}\right]$ where $a_{n}<b_{n}$ for $n \in \mathbb{N}$ and $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots$ Then

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset
$$

Proof Note that we have

$$
a_{1} \leq a_{2} \leq a_{3} \ldots \leq a_{n} \leq \ldots \ldots \leq b_{n} \leq \ldots b_{2} \leq b_{1}
$$

Then each b_{i} is an upper bound for the set $A=\left\{a_{1}, a_{2}, \ldots\right\}$. By the Completeness Axiom, we can find α a least upper bound for A.

We claim that $\alpha \in I_{n}$ for all $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$. Since α is an upper bound for $A, a_{n} \leq \alpha$. But b_{n} is an upper bound for A and α is the least upper bound. Thus $\alpha \leq b_{n}$. Hence $\alpha \in I_{n}$ for all $n \in \mathbb{N}$ and $\alpha \in \bigcap_{n=1}^{\infty} I_{n}$.

Theorem 4 (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent subsequence.

Proof Let $\left(x_{i}\right)_{i=1}^{\infty}$ be bounded. There is $M \in \mathbb{R}$ such that $\left|x_{i}\right| \leq M$ for all $i \in N$. We inductively construct a sequence of intervals

$$
I_{0} \supset I_{1} \supset I_{2} \supset \ldots
$$

such that:
i) I_{n} is a closed interval $\left[a_{n}, b_{n}\right]$ where $b_{n}-a_{n}=\frac{2 M}{2^{n}}$;
ii) $\left\{i: x_{i} \in I_{n}\right\}$ is infinite.

We let $I_{0}=[-M, M]$. This closed interval has length $2 M$ and $x_{i} \in I_{0}$ for all $i \in \mathbb{N}$.

Suppose we have $I_{n}=\left[a_{n}, b_{n}\right]$ satisfying i) and ii). Let c_{n} be the midpoint $\frac{a_{n}+b_{n}}{2}$. Each of the intervals $\left[a_{n}, c_{n}\right]$ and $\left[c_{n}, b_{n}\right]$ is half the length of I_{n}. Thus they both have length $\frac{12 M}{2} \frac{2 M}{2^{n}}=\frac{2 M}{2^{n+1}}$ If $x_{i} \in I_{n}$, then $x_{i} \in\left[a_{n}, c_{n}\right]$ or $x_{i} \in\left[c_{n}, b_{n}\right]$, possibly both. Thus at least one of the sets

$$
\left\{i: x_{i} \in\left[a_{n}, c_{n}\right]\right\} \text { and }\left\{i: x_{i} \in\left[c_{n}, b_{n}\right]\right\}
$$

is infinite. If the first is infinite, we let $a_{n+1}=a_{n}$ and $b_{n+1}=c_{n}$. If the second is infinite, we let $a_{n+1}=c_{n}$ and $b_{n+1}=b_{n}$. Let $I_{n+1}=\left[a_{n+1}, b_{n+1}\right]$ Then i) and ii) are satisfied.

By the Nested Interval Theorem, there is $\alpha \in \bigcap_{n=1}^{\infty} I_{n}$. We next find a subsequence converging to α.

Choose $i_{1} \in \mathbb{N}$ such that $x_{i_{1}} \in I_{1}$. Suppose we have i_{n}. We know that $\left\{i: x_{i} \in I_{n+1}\right\}$ is infinite. Thus we can choose $i_{n+1}>i_{n}$ such that $x_{i_{n+1}} \in I_{n+1}$. This allows us to construct a sequence of natural numbers

$$
i_{1}<i_{2}<i_{3}<\ldots
$$

where $i_{n} \in I_{n}$ for all $n \in \mathbb{N}$.
We finish the proof by showing that the subsequence $\left(x_{i_{n}}\right)_{n=1}^{\infty} \rightarrow \alpha$. Let $\epsilon>0$. Choose N such that $\epsilon>\frac{2 M}{2^{N}}$. Suppose $n \geq N$. Then $x_{i_{n}} \in I_{n}$ and $\alpha \in I_{n}$. Thus

$$
\left|x_{i_{n}}-\alpha\right| \leq \frac{2 M}{2^{n}} \leq \frac{2 M}{2^{N}}<\epsilon
$$

for all $n \geq N$ and $\left(x_{i_{n}}\right)_{n=1}^{\infty} \rightarrow \alpha$.

2 Bounding and the Extreme Value Theorem

Theorem 5 (Bounding Theorem) If $f:[a, b] \rightarrow \mathbb{R}$ is continous, then there is $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in[a, b]$.

Proof For purposes of contradiction, suppose not. Then for any $n \in \mathbb{N}$ we can find $x_{n} \in[a, b]$ such that $\left|f\left(x_{n}\right)\right|>n$. By the Bolzano-Weierstrass Theorem, we can find a convergent subsequence $x_{i_{1}}, x_{i_{2}}, \ldots$. Note that $\mid f\left(x_{i_{n}} \mid>\right.$ $i_{n} \geq n$. Thus, replacing $\left(x_{n}\right)_{n=1}^{\infty}$ by $\left(x_{i_{n}}\right)_{n=1}^{\infty}$, we may, without loss of generality, assume that $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent. Suppose $\left(x_{n}\right)_{n=1}^{\infty} \rightarrow x$. By Lemma $1, x \in[a, b]$. By Lemma 2,

$$
\left(f\left(x_{n}\right)\right)_{n=1}^{\infty} \rightarrow f(x)
$$

But the sequence $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ is unbounded, and hence divergent, a contradication.

Theorem 6 (Extreme Value Theorem) Suppose $a<b$. If $f:[a, b] \rightarrow \mathbb{R}$, then there are $c, d \in[a, b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in[a, b]$.

Proof Let $A=\{f(x): a \leq x \leq b\}$. Then $A \neq \emptyset$ and, by the Bounding Theorem, A is bounded above and below. Let $\alpha=\sup A$. We claim that there is $d \in[a, b]$ with $f(d)=\alpha$.

Since $\alpha=\sup A$, for each $n \in \mathbb{N}$, there is $x_{n} \in[a, b]$ with $\alpha-\frac{1}{n}<f\left(x_{n}\right) \leq \alpha$. Note that $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ converges to α. By the BolzanoWeierstrass Theorem, we can find a convergent subseqence. Replacing $\left(x_{n}\right)_{n=1}^{\infty}$ by a subsequence if necessary, we may assume $\left(x_{n}\right)_{n=1}^{\infty} \rightarrow d$ for some $d \in[a, b]$. Then $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty} \rightarrow f(d)$. Thus $f(d)=\alpha$. Note that $f(x) \leq \alpha=f(d)$ for all $x \in[a, b]$.

Similarly, we can find $c \in[a, b]$ with $f(c)=\beta=\inf A$ and $f(c) \leq f(x)$ for all $x \in[a, b]$.

3 Intermediate Value Theorem

Theorem 7 (Intermediate Value Theorem) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a)<0<f(b)$, then there is $a<c<b$ with $f(c)=0$.

Proof We start to build a sequence of intervals

$$
I_{0} \supseteq I_{1} \supseteq I_{2} \supseteq \ldots
$$

such that $I_{n}=\left[a_{n}, b_{n}\right], f\left(a_{n}\right)<0<f\left(b_{n}\right)$ and $b_{n}-a_{n}=\frac{b-a}{\left(2^{n}\right.}$. Let $a_{0}=$ $a, b_{0}=b$ and $I_{0}=\left[a_{0}, b_{0}\right]$. Then $f\left(a_{0}\right)<0<b_{0}$ and $b-a=(b-a) / 2^{0}$.

Suppose we are given $I_{n}=\left[a_{n}, b_{n}\right]$ with $f\left(a_{n}\right)<0<f\left(b_{n}\right)$ and $b_{n}-a_{n}=$ $b-a /$ over 2^{n}. Let $d=\frac{b_{n}-a_{n}}{2}$. If $f(d)=0$, then we have found $a<d<b$ with $f(d)=0$ and are done. If $f(d)>0$, let $a_{n+1}=a_{n}, b_{n+1}=d$. If $f(d)<0$, let $a_{n+1}=d$ and

Let $I_{n+1}=\left[b_{n+1}, a_{n+1}\right]$. Then $I_{n+1} \subset I_{n}, f\left(a_{n+1}\right)<0<f\left(b_{n+1}\right)$ and $b_{n+1}-a_{n+1}=\frac{b-a}{2^{n}}$.

By the nested interval theorem, there is $c \in \bigcap_{n=0}^{\infty} I_{n}$. We claim that $f(c)=0$.

Since $a_{n}, c \in I_{n},\left|a_{n}-c\right| \leq \frac{b-a}{2^{n}}$ for all $n \in \mathbb{N}$. If $\epsilon>0$, choose N such that $\frac{b-a}{2^{N}}<\epsilon$. Then $\left|a_{n}-c\right|<\epsilon$ for all $n \geq N$. Hence $\left(a_{n}\right)_{n=1}^{\infty}$ converges to c. Thus, by Lemma 2, $\left(f\left(a_{n}\right)\right)_{n=1}^{\infty}$ converges to $f(c)$. Since $f\left(a_{n}\right) \leq 0$ for all n, we must have $f(c) \leq 0$.

Similarly, $\left(b_{n}\right)_{n=1}^{\infty} \rightarrow c$ and $\left(f\left(b_{n}\right)\right)_{n=1}^{\infty} \rightarrow f(c)$. But each $f\left(b_{n}\right)>0$, thus $f(c) \geq 0$. Hence $f(c)=0$.

Thus there is $a<c<b$ with $f(c)=0$.

