
8 The Pila-Zannier proof of the Manin-Mumford
Conjecture

My goal in these lecture notes is to describe a variant of the Pila-Zannier proof
of the Manin-Mumford Conjecture.3

Theorem 8.1 Let A be an abelian variety defined over a number field. Suppose

V ⊆ A is an irreducible subvariety. There are finitely many cosets of algebraic

subgroups b1 + B1, . . . , bn + Bn such that each bi + B ⊆ V and V ∩ Tor(A) ⊆
b1 + Tor(B1) ∪ . . . ∪ bn + Tor(Bn). In particular, if V contains no cosets of

infinite algebraic subgroups, then V ∩ Tor(A) is finite.

The novelty of the Pila-Zanier proof is that it relies on a result of Pila and
Wilkie on the asymptotics of rational points on sets definable in o-minimal
structures. As such it is the only proof of Manin-Mumford that relies on real–
rather than p-adic–methods.

Let x ∈ Q, x = a
b where a, b ∈ Z and gcd(a, b) = 1, we define h(x) the height

of x to be the maximum of |a| and |b|. If x = (x1, . . . , xn) ∈ Qn we let h(x) be
the maximum of h(x1), . . . , h(xn).

For X ⊆ Rn and r ∈ R we let N(X, r) be the number of points in X ∩ Qn

of height at most r.
For X ⊆ Rn we let X

alg be the union of all connected infinite semialgebraic
subsets of X.

Theorem 8.2 (Pila-Wilkie) Suppose X ⊆ Rn is definable in an o-minimal

expansion of R. Then for any � > 0 there is a constant c such that

N(X \ X
alg

, r) < cr
�

for all r ≥ 1.

The case of Tori

As an instructive example we will first prove the theorem where we work with
Gd

m, a power of the multiplicative group rather than an Abelian variety.

Step 1 Move to an o-minimal setting.
Let g : [0, 1]d → Cd be defined be the function

g(x1, . . . , xd) = (2πix1, . . . , 2πixd)

and let exp : Cd → Gd
m be the function

exp(y1, . . . , yd) = (ey1 , . . . , e
yd).

3These lectures are based on notes of Anand Pillay.
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Let f = exp ◦g.
If a ∈ Gm has order n, then a = e

2πi m
n where 0 < m < n and m and n are

relatively prime. Thus Tor(Gd
m) is contained in the image of f on [0, 1]d ∩ Qd.

Let X = f
−1(V ).

If we identify Cd with R2d in the usual way, then

f(x1, . . . , xn) = (cos(2πx1), sin(2π(x1), . . . , cos(2πxn), sin(2π(xn)).

In particular, then f and X are definable in the o-minimal structure Ran.

Step 2 Understand X
alg

If x ∈ X
alg, then there is a connected one-dimensional semialgebraic set C

such that x ∈ C. By quantifier elimination it is easy to see the C is a piece of
a real algebraic curve.

Our analysis will use Ax’s differential field version of Schanuel’s Conjecture.

Theorem 8.3 (Ax) Let (K, δ) be a differential field with constants k. Suppose

y1, . . . , yn, z1, . . . zn ∈ K such that δ(yi) = δ(zi)
zi

for i = 1, . . . , n. Suppose the

transcendence degree of k(y1, . . . , yn, z1, . . . , zn) over k is at most n, then there

are integers m1, . . . ,mn such that:

i)
n�

i=1

z
mi
i ∈ k,

and

ii)
n�

i=1

miyi ∈ k.

If B is an infinite irreducible algebraic subgroup of Gd
m. There is a k × d

integer matrix M = (ai,]) such that

z ∈ B ↔
d�

j=1

z
ai,j

j = 1, for i = 1, . . . , k.

Define LB ⊆ Cd, LB = {y : My = 0}.
Suppose C ⊆ X is a connected one-dimensional semialgebraic set and x is a

generic point of C, in the sense of the o-minimal structure Ran. As above, let
y = g(x) and z = exp(y).

Lemma 8.4 Let B be a minimal irreducible algebraic subgroup of Gd
m such that

y ∈ b + LB for some b ∈ Cd. Then the transcendence degree of C(z) over C is

the dimension of B and exp(b) + B is contained in V .4

4To make the transition to the case of Abelian varieties smoother, we abuse notation and
write cosets in Gd

m additively.
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Proof Let l be the dimension of LB. Since x is a generic point we must
have l > 0.We may, without loss of generality, assume that y1, . . . , yl satisfies
no equation

�
miyi = c where mi ∈ Z and c ∈ C. We claim that z1, . . . , zl

are algebraically independent over C. Suppose not. Since x ∈ C, td(y/C) =
td(x/C) = 1. Then td(y1 . . . , yl, z1, . . . , zl/C) is at most n. Thus by Ax, there
are m1, . . . ,ml such that

�
miyi ∈ C, a contradiction.

Thus z is an (algebraic) generic point of exp(b)+B. Since z ∈ V , exp(b)+B ⊆
V .

Corollary 8.5 If a ∈ X
alg ∩Qd, then f(a) ∈ b + B where b is a torsion point

of A, B is an infinite algebraic subgroup of A and b + B ⊆ V .

Step 3 Finiteness of Qd ∩X \ X
alg

We may, without loss of generality, assume that V ∩Tor(Gd
m) is Zariski dense

in V . If not, then we can proceed by first proving the result for each irreducible
component of the Zariski closure of V ∩ Tor(Gd

m). Then, any automorphism of
C that fixes the roots of unity will fix V . Thus V is defined over a number field
k. We may assume that k is a Galois extension of Q of degree l.

Suppose a = (a1, . . . , ad) ∈ V ∩ Tor(Gd
m). If σ is an automorphism of C,

fixing k, then σ(a) ∈ V ∩ Tor(Gd
m).

Let a1 have order exactly ni then a has order n where n is the least com-
mon multiple of n1, . . . , nm. If b is a primitive n

th-root of unity, then Q(b) =
Q(a1, . . . , ad). Thus the degree of k(a)/k is at most φ(n) and at least φ(n)/l.,
where φ(n) is Euler’s function, i.e.,

φ(n) = |{m : 1 ≤ x < n, x relatively prime to n}|.

The asymptotics of φ(n) are well understood. In particular, for any 0 < � < 1,

n
�
< φ(n)

for large enough n.5 In particular there is M such that if a ∈ Tor(Gd
m) is a

torsion point of order n > M , then a has at least n1/2

l conjugates over k.
Suppose a ∈ V ∩Tor(Gd

m) is not in an infinite coset b + B where b + B ⊆ V .
Then the same is true of all conjugates of a over k. If a has order n, there is
x ∈ (X \ X

alg) ∩Qd such that f(x) = a and h(x) = n. Thus if (X \ X
alg) ∩Qd

is infinite, then

N(X \ X
alg

, n) ≥ n
1/2

l

for infinitely many n. But this contradicts the Pila-Wilkie Theorem.

Corollary 8.6 There is a finite set F such that every element of V ∩Tor(Gd
m)

is either contained in F or contained in b + B where b ∈ Tor(Gd
m) and B is an

infinite irreducible algebraic subgroup of Gd
m.

5Better bounds can be found using the Prime Number Theorem.
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We say that an infinite irreducible coset b + B is maximal b + B ⊆ V and
there is no irreducible algebraic subgroup C ⊃ B with b + C ⊆ V . We need to
show there are only finitely many maximal cosets b + B ⊆ V .

Step 4 Finitely many choices for B.
Bombieri and Zannier proved, in the Abelian variety case, that there are

only finitely many B such that b+B is a maximal coset in V . This follows from
the next two lemmas.

Lemma 8.7 For any M there are only finitely many subgroups of Gd
m of degree

M .

Proof For any dimension m < d, there is a definable family (Wy : y ∈ Y ) of all
subvarieties of Gd

m of dimension m and degree M . There is a definable Y0 ⊆ Y

such that y ∈ Y0 if and only if Wy is a subgroup. Since semi-abelian varieties
have no infinite definable families of subgroups Y0 is finite.6

Lemma 8.8 There is a number M , depending on the dimension and the degree

of V such that if b + B is a maximal coset then the degree of B is at most M .

Proof Suppose b + B is a maximal coset. We build a sequence of subvarieties
V = V1 ⊃ V2 ⊃ . . . ⊃ Vm as follows. Given Vi if there is g ∈ B such that

dim(Vi ∩ Vi + g) < dimVi,

then choose some such g and let Vi+1 be an irreducible component of the inter-
section containing b + B. If there is no such g ∈ B, we let m = i. Let W = Vi.
Since m < dimV , we can bound deg W in terms of the dimension and degree of
W .

Note that b ∈ W and B + W = W .
We next build a sequence W = W1 ⊃ W2 ⊃ . . . ⊃ Wm such that b+B ⊆ Wi

and B + Wi = W + i for all i. Start with Wi. If there is x ∈ Wi such that

dim(Wi ∩ (b− x) + Wi) < dimWi

then we choose some such x. Let Y1, . . . , Ym be the irreducible components of
Wi ∩ (b− x) + Wi. Note that b + B ⊆ (b− x) + Wi. Thus b + B is contained in
one irreducible component, say Y1. Let B0 = {b ∈ B : b+Y1 = Y1}. Then B0 is
a finite index subgroup of B. But B is irreducible, so B = B0 and B +Y1 = Y1.
Let Y1 = Wi+1. If there is no such x, we let m = i and stop.

Let Z = Wm. Once again, we can bound the degree of Z in terms of the
dimension and degree of V . We also have that Zis irreducible, b + B ⊆ Z,
Z + B = B and b− z + Z = Z for all z ∈ Z.

Let C = {a ∈ Gd
m : a + Z = Z}. Then C is an algebraic subgroup of A and

B ⊆ C. Since C + Z = Z and b ∈ Z, b + C ⊆ Z ⊆ V , thus, by the maximality
of V , C is a finite union of B cosets.

6This is really much easier for Gd
m where we can easily describe the subgroups.
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On the other hand, B ⊆ b−Z, while, by construction of Z, b−Z ⊆ C. Since
Z is irreducible we must have B = b−Z. Thus we can bound the degree of B.

We can now finish the proof. We claim that for any infinite irreducible
subgroup B, there are only finitely many maximal cosets b + B ⊆ V where b is
a torision point of A.

Suppose for contradiction that there are infinitely many maximal torsion
cosets b + B ⊆ V . Consider the projection map π : A → A/B. Let W = {a :
a + B ⊆ V }. Let W

� be the projection of W . If V contains infinitely many
maximal torsion cosets b + B, then W

� contains infinitely many torsion points.
By the arguments above we can find b ∈ W such that b + B is a maximal coset
and π(b) is contained is an infinite torision coset π(b) + C of W

�. But that
b + π

−1(C) is a coset in V with π
−1(C) ⊃ B, contradicting the maximality of

B.

Abelian Varieties

We outline the changes that need to be made to adapt the argument for Abelian
varieties rather than the multiplicative group.

Step 1

We let expA : Cd → A be the usual exponential map. Let Λ = ⊕2d
i=1Zλi be

the kernel of expA. Let g : [0, 1]2d → Cd be the map

g(x1, . . . , x2n) =
n�

i=1

xiλi

and let f be the composition expA ◦g. Once again, we can view f as a function
definable in Ran and Tor(A) is contained in the image of [0, 1]2d ∩Q2d.

Step 2

We need the extension of Ax’s theorem for abelian, or semiabelian varieties
defined over the constants due independently to Bertrand and Kirby.

Theorem 8.9 (Bertrand/Kirby) Let K be a differential field with constants

k. Suppose A is a semiabelian variety defined over k with Lie algebra LA. Let

lA : A → LA and lLA : LA → LA be the logarithmic derivatives. Suppose

(y, z) ∈ LA × A with lLAy = lAz. If td(y, z/k) ≤ dimA + 1, then there is a

proper algebraic B ≤ A such that:

i) z ∈ B + b, for some b ∈ A(k);
ii) y ∈ LB + c, for some c ∈ LA(k).

Step 3

We need the following Theorem of Masser.

Theorem 8.10 (Masser) Suppose A is an abelian variety defined over a num-

ber field k. There is l > 0, c > 0 and N > 0 such that if a is a torsion point of

A of order n ≥ N , then the degree of a over k is at least cn
1/l.

The remainder of the proof is as above.
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Semiabelian Varieties

Let’s consider the case where G is a semiabelian variety defined over a number
field. Suppose Gd

m is a subgroup of G and the projection map π : G → A has
kernel Gd

m and A is an abelian variety. We suppose that G, A and π are all
defined over a number field k.

The n-torsion subgroup of G is of the form B ⊕ C where B is the n-torsion
of A and π maps C isomorphically onto the n-torsion of A. If g ∈ G has order
n, then g = b + c where b ∈ B has order n1, c ∈ C has order n2 and n is the
least common multiple of n1 and n2. At least one of n1 and n2 is at least

√
n.

Suppose n2 ≥
√

n. For n large enough and c and l as in Theorem 8.10, π(c) has
at least cn

1
2l conjugates over k. then the same is true of c and g. The argument

is similar if n1 ≥
√

n.

Questions

• Raynaud showed, using specialization arguments, that one could deduce the
general version of Manin-Mumbford, from the number field version. Masser’s
Theorem is the one place we used the number field assumption. Are there
extensions of Masser’s Theorem that would allow us to deduce the general result
by these methods?
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