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1 Language, Structures and Theories

In mathematical logic, we use first-order languages to describe mathematical
structures. Intuitively, a structure is a set that we wish to study equipped
with a collection of distinguished functions, relations, and elements. We then
choose a language where we can talk about the distinguished functions, relations,
and elements and nothing more. For example, when we study the ordered
field of real numbers with the exponential function, we study the structure
(R,+, ·, exp, <, 0, 1), where the underlying set is the set of real numbers, and we
distinguish the binary functions addition and multiplication, the unary function
x 7→ ex, the binary order relation, and the real numbers 0 and 1. To describe
this structure, we would use a language where we have symbols for +, ·, exp, <
, 0, 1 and can write statements such as ∀x∀y exp(x) · exp(y) = exp(x + y) and
∀x (x > 0 → ∃y exp(y) = x). We interpret these statements as the assertions
“exey = ex+y for all x and y” and “for all positive x, there is a y such that
ey = x.”

For another example, we might consider the structure (N,+, 0, 1) of the
natural numbers with addition and distinguished elements 0 and 1. The natural
language for studying this structure is the language where we have a binary
function symbol for addition and constant symbols for 0 and 1. We would write
sentences such as ∀x∃y (x = y + y ∨ x = y + y + 1), which we interpret as the
assertion that “every number is either even or 1 plus an even number.”

Definition 1.1 A language L is given by specifying the following data:
i) a set of function symbols F and positive integers nf for each f ∈ F ;
ii) a set of relation symbols R and positive integers nR for each R ∈ R;
iii) a set of constant symbols C.
The numbers nf and nR tell us that f is a function of nf variables and R is

an nR-ary relation.
Any or all of the sets F , R, and C may be empty. Examples of languages

include:
i) the language of rings Lr = {+,−, ·, 0, 1}, where +,− and · are binary

function symbols and 0 and 1 are constants;
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ii) the language of ordered rings Lor = Lr∪{<}, where < is a binary relation
symbol;

iii) the language of pure sets L = ∅;
iv) the language of graphs is L = {R} where R is a binary relation symbol.
Next, we describe the structures where L is the appropriate language.

Definition 1.2 An L-structure M is given by the following data:
i) a nonempty set M called the universe, domain, or underlying set of M;
ii) a function fM : Mnf →M for each f ∈ F ;
iii) a set RM ⊆MnR for each R ∈ R;
iv) an element cM ∈M for each c ∈ C.
We refer to fM, RM, and cM as the interpretations of the symbols f , R,

and c. We often write the structure as M = (M,fM, RM, cM : f ∈ F , R ∈ R,
and c ∈ C). We will use the notation A,B,M,N, . . . to refer to the underlying
sets of the structures A,B,M,N , . . ..

For example, suppose that we are studying groups. We might use the lan-
guage Lg = {·, e}, where · is a binary function symbol and e is a constant
symbol. An Lg-structure G = (G, ·G , eG) will be a set G equipped with a binary
relation ·G and a distinguished element eG . For example, G = (R, ·, 1) is an
Lg-structure where we interpret · as multiplication and e as 1; that is, ·G = ·
and eG = 1. Also, N = (N,+, 0) is an Lg-structure where ·N = + and eG = 0.
Of course, N is not a group, but it is an Lg-structure.

Usually, we will choose languages that closely correspond to the structure
that we wish to study. For example, if we want to study the real numbers as
an ordered field, we would use the language of ordered rings Lor and give each
symbol its natural interpretation.

We will study maps that preserve the interpretation of L.

Definition 1.3 Suppose thatM and N are L-structures with universes M and
N , respectively. An L-embedding η :M→ N is a one-to-one map η : M → N
that preserves the interpretation of all of the symbols of L. More precisely:

i) η(fM(a1, . . . , anf
)) = fN (η(a1), . . . , η(anf

)) for all f ∈ F and a1, . . . , an ∈
M ;

ii) (a1, . . . , amR
) ∈ RM if and only if (η(a1), . . . , η(amR

)) ∈ RN for all R ∈ R
and a1, . . . , amj

∈M ;
iii) η(cM) = cN for c ∈ C.
A bijective L-embedding is called an L-isomorphism. If M ⊆ N and the

inclusion map is an L-embedding, we say either that M is a substructure of N
or that N is an extension of M.

For example:
i) (Z,+, 0) is a substructure of (R,+, 0).
ii) If η : Z → R is the function η(x) = ex, then η is an Lg-embedding of

(Z,+, 0) into (R, ·, 1).
The cardinality of M is |M |, the cardinality of the universe of M. If η :

M → N is an embedding then the cardinality of N is at least the cardinality
of M.
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We use the language L to create formulas describing properties of L-structures.
Formulas will be strings of symbols built using the symbols of L, variable sym-
bols v1, v2, . . ., the equality symbol =, the Boolean connectives ∧, ∨, and ¬,
which we read as “and,” “or,” and “not”, the quantifiers ∃ and ∀, which we
read as “there exists” and “for all”, and parentheses ( , ).

Definition 1.4 The set of L-terms is the smallest set T such that
i) c ∈ T for each constant symbol c ∈ C,
ii) each variable symbol vi ∈ T for i = 1, 2, . . ., and
iii) if t1, . . . , tnf

∈ T and f ∈ F , then f(t1, . . . , tnf
) ∈ T .

For example, ·(v1,−(v3, 1)), ·(+(v1, v2),+(v3, 1)) and +(1,+(1,+(1, 1))) are
Lr-terms. For simplicity, we will usually write these terms in the more standard
notation v1(v3 − 1), (v1 + v2)(v3 + 1), and 1 + (1 + (1 + 1)) when no confusion
arises. In the Lr-structure (Z,+, ·, 0, 1), we think of the term 1 + (1 + (1 + 1))
as a name for the element 4, while (v1 + v2)(v3 + 1) is a name for the function
(x, y, z) 7→ (x+ y)(z + 1). This can be done in any L-structure.

Suppose that M is an L-structure and that t is a term built using variables
from v = (vi1 , . . . , vim). We want to interpret t as a function tM : Mm → M .
For s a subterm of t and a = (ai1 , . . . , aim) ∈ M , we inductively define sM(a)
as follows.

i) If s is a constant symbol c, then sM(a) = cM.
ii) If s is the variable vij , then sM(a) = aij .
iii) If s is the term f(t1, . . . , tnf

), where f is a function symbol of L and
t1, . . . , tnf

are terms, then sM(a) = fM(tM1 (a), . . . , tMnf
(a)).

The function tM is defined by a 7→ tM(a).
For example, let L = {f, g, c}, where f is a unary function symbol, g is

a binary function symbol, and c is a constant symbol. We will consider the
L-terms t1 = g(v1, c), t2 = f(g(c, f(v1))), and t3 = g(f(g(v1, v2)), g(v1, f(v2))).
Let M be the L-structure (R, exp,+, 1); that is, fM = exp, gM = +, and
cM = 1.

Then
tM1 (a1) = a1 + 1,

tM2 (a1) = e1+ea1
, and

tM3 (a1, a2) = ea1+a2 + (a1 + ea2).

We are now ready to define L-formulas.

Definition 1.5 We say that φ is an atomic L-formula if φ is either
i) t1 = t2, where t1 and t2 are terms, or
ii) R(t1, . . . , tnR

), where R ∈ R and t1, . . . , tnR
are terms.

The set of L-formulas is the smallest set W containing the atomic formulas
such that

i) if φ is in W, then ¬φ is in W,
ii) if φ and ψ are in W , then (φ ∧ ψ) and (φ ∨ ψ) are in W, and
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iii) if φ is in W, then ∃vi φ and ∀vi φ are in W.
Here are three examples of Lor-formulas.
• v1 = 0 ∨ v1 > 0.
• ∃v2 v2 · v2 = v1.
• ∀v1 (v1 = 0 ∨ ∃v2 v2 · v1 = 1).
Intuitively, the first formula asserts that v1 ≥ 0, the second asserts that v1 is

a square, and the third asserts that every nonzero element has a multiplicative
inverse. We would like to define what it means for a formula to be true in a
structure, but these examples already show one difficulty. While in any Lor-
structure the third formula will either be true or false, the first two formulas
express a property that may or may not be true of particular elements of the
structure. In the Lor-structure (Z,+,−, ·, <, 0, 1), the second formula would be
true of 9 but false of 8.

We say that a variable v occurs freely in a formula φ if it is not inside a
∃v or ∀v quantifier; otherwise, we say that it is bound.1 For example v1 is free
in the first two formulas and bound in the third, whereas v2 is bound in both
formulas. We call a formula a sentence if it has no free variables.

LetM be an L-structure. We will see that each L-sentence is either true or
false in M. On the other hand, if φ is a formula with free variables v1, . . . , vn,
we will think of φ as expressing a property of elements of Mn. We often write
φ(v1, . . . , vn) to make explicit the free variables in φ. We must define what it
means for φ(v1, . . . , vn) to hold of (a1, . . . , an) ∈Mn.

Definition 1.6 Let φ be a formula with free variables from v = (vi1 , . . . , vim),
and let a = (ai1 , . . . , aim) ∈Mm. We inductively define M |= φ(a) as follows.

i) If φ is t1 = t2, then M |= φ(a) if tM1 (a) = tM2 (a).
ii) If φ is R(t1, . . . , tnR

), then M |= φ(a) if (tM1 (a), . . . , tMnR
(a)) ∈ RM.

iii) If φ is ¬ψ, then M |= φ(a) if M 6|= ψ(a).
iv) If φ is (ψ ∧ θ), then M |= φ(a) if M |= ψ(a) and M |= θ(a).
v) If φ is (ψ ∨ θ), then M |= φ(a) if M |= ψ(a) or M |= θ(a).
vi) If φ is ∃vjψ(v, vj), then M |= φ(a) if there is b ∈ M such that M |=

ψ(a, b).
vii) If φ is ∀vjψ(v, vj), then M |= φ(a) if M |= ψ(a, b) for all b ∈M .
If M |= φ(a) we say that M satisfies φ(a) or φ(a) is true in M.

Remarks 1.7 • There are a number of useful abbreviations that we will use:
φ → ψ is an abbreviation for ¬φ ∨ ψ, and φ ↔ ψ is an abbreviation for (φ →
ψ) ∧ (ψ → φ). In fact, we did not really need to include the symbols ∨ and ∀.
We could have considered φ∨ψ as an abbreviation for ¬(¬φ∧¬ψ) and ∀vφ as an
abbreviation for ¬(∃v¬φ). Viewing these as abbreviations will be an advantage

1To simplify some bookkeeping we will tacitly restrict our attention to formulas where in
each subformula no variable vi has both free and bound occurrences. For example we will not
consider formulas such as (v1 > 0 ∨ ∃v1 v1 · v1 = v2), because this formula could be replaced
by the clearer formula v1 > 0∨∃v3 v3 · v3 = v2 with the same meaning. There are some areas
of mathematical logic where one wants to be frugal with variables, but we will not consider
such issues here. See [?] for a definition of satisfaction for arbitrary formulas.
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when we are proving theorems by induction on formulas because it eliminates
the ∨ and ∀ cases.

We also will use the abbreviations
n∧
i=1

ψi and
n∨
i=1

ψi for ψ1 ∧ . . . ∧ ψn and

ψ1 ∨ . . . ∨ ψn, respectively.
• In addition to v1, v2, . . . , we will use w, x, y, z, ... as variable symbols.
• It is important to note that the quantifiers ∃ and ∀ range only over ele-

ments of the model. For example the statement that an ordering is complete
(i.e., every bounded subset has a least upper bound) cannot be expressed as a
formula because we cannot quantify over subsets. The fact that we are limited
to quantification over elements of the structure is what makes it “first-order”
logic.

When proving results about satisfaction in models, we often must do an
induction on the construction of formulas. The next proposition asserts that if
a formula without quantifiers is true in some structure, then it is true in every
extension. It is proved by induction on quantifier-free formulas.

Proposition 1.8 Suppose that M is a substructure of N , a ∈ M , and φ(v) is
a quantifier-free formula. Then, M |= φ(a) if and only if N |= φ(a).

Proof
Claim If t(v) is a term and b ∈ M , then tM(b) = tN (b). This is proved by
induction on terms.

If t is the constant symbol c, then cM = cN .
If t is the variable vi, then tM(b) = bi = tN (b).
Suppose that t = f(t1, . . . , tn), where f is an n-ary function symbol, t1, . . . , tn

are terms, and tMi (b) = tNi (b) for i = 1, . . . , n. BecauseM⊆ N , fM = fN |Mn.
Thus,

tM(b) = fM(tM1 (b), . . . , tMn (b))
= fN (tM1 (b), . . . , tMn (b))
= fN (tN1 (b), . . . , tNn (b))
= tN (b).

We now prove the proposition by induction on formulas.
If φ is t1 = t2, then

M |= φ(a)⇔ tM1 (a) = tM2 (a)⇔ tN1 (a) = tN2 (a)⇔ N |= φ(a).

If φ is R(t1, . . . , tn), where R is an n-ary relation symbol, then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM

⇔ (tM1 (a), . . . , tMn (a)) ∈ RN

⇔ (tN1 (a), . . . , tNn (a)) ∈ RN

⇔ N |= φ(a).
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Thus, the proposition is true for all atomic formulas.
Suppose that the proposition is true for ψ and that φ is ¬ψ. Then,

M |= φ(a)⇔M 6|= ψ(a)⇔ N 6|= ψ(a)⇔ N |= φ(a).

Finally, suppose that the proposition is true for ψ0 and ψ1 and that φ is
ψ0 ∧ ψ1. Then,

M |= φ(a) ⇔ M |= ψ0(a) and M |= ψ1(a)
⇔ N |= ψ0(a) and M |= ψ1(a)
⇔ N |= φ(a).

We have shown that the proposition holds for all atomic formulas and that
if it holds for φ and ψ, then it also holds for ¬φ and φ ∧ ψ. Because the set
of quantifier-free formulas is the smallest set of formulas containing the atomic
formulas and closed under negation and conjunction, the proposition is true for
all quantifier-free formulas.

Elementary Equivalence and Isomorphism

We next consider structures that satisfy the same sentences.

Definition 1.9 We say that two L-structures M and N are elementarily
equivalent and write M≡ N if

M |= φ if and only if N |= φ

for all L-sentences φ.
We let Th(M), the full theory of M, be the set of L-sentences φ such that

M |= φ. It is easy to see that M ≡ N if and only if Th(M)= Th(N ). Our
next result shows that Th(M) is an isomorphism invariant of M. The proof
uses the important technique of “induction on formulas.”

Theorem 1.10 Suppose that j :M→N is an isomorphism. Then, M≡ N .

Proof We show by induction on formulas that M |= φ(a1, . . . , an) if and only
if N |= φ(j(a1), . . . , j(an)) for all formulas φ.

We first must show that terms behave well.
Claim Suppose that t is a term and the free variables in t are from v =
(v1, . . . , vn). For a = (a1, . . . , an) ∈ M , we let j(a) denote (j(a1), . . . , j(an)).
Then j(tM(a)) = tN (j(a)).

We prove this by induction on terms.
i) If t = c, then j(tM(a)) = j(cM) = cN = tN (j(a)).
ii) If t = vi, then j(tM(a)) = j(ai) = tN (j(ai)).
iii) If t = f(t1, . . . , tm), then

j(tM(a)) = j(fM(tM1 (a), . . . , tMm (a)))
= fN (j(tM1 (a)), . . . , j(tMm (a)))
= fN (tN1 (j(a)), . . . , tNm(j(a)))
= tN (j(a)).
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We proceed by induction on formulas.
i) If φ(v) is t1 = t2, then

M |= φ(a) ⇔ tM1 (a) = tM2 (a)
⇔ j(tM1 (a)) = j(tM2 (a)) because j is injective
⇔ tN1 (j(a)) = tN2 (j(a))
⇔ N |= φ(j(a)).

ii) If φ(v) is R(t1, . . . , tn), then

M |= φ(a) ⇔ (tM1 (a), . . . , tMn (a)) ∈ RM

⇔ (j(tM1 (a)), . . . , j(tMn (a))) ∈ RN

⇔ (tN1 (j(a)), . . . , tNn (j(a))) ∈ RN

⇔ N |= φ(j(a)).

iii) If φ is ¬ψ, then by induction

M |= φ(a)⇔M 6|= ψ(a)⇔ N 6|= ψ(j(a))⇔ N |= φ(j(a)).

iv) If φ is ψ ∧ θ, then

M |= φ(a) ⇔ M |= ψ(a) and M |= θ(a)
⇔ N |= ψ(j(a)) and N |= θ(j(a))⇔ N |= φ(j(a)).

v) If φ(v) is ∃w ψ(v, w), then

M |= φ(a) ⇔ M |= ψ(a, b) for some b ∈M
⇔ N |= ψ(j(a), c) for some c ∈ Nbecause j is onto
⇔ N |= φ(j(a)).

Theories

Let L be a language. An L-theory T is simply a set of L-sentences. We say that
M is a model of T and write M |= T if M |= φ for all sentences φ ∈ T .

The set T = {∀x x = 0,∃x x 6= 0} is a theory. Because the two sentences in
T are contradictory, there are no models of T . We say that a theory is satisfiable
if it has a model.

We say that a class of L-structures K is an elementary class if there is an
L-theory T such that K = {M :M |= T}.

One way to get a theory is to take Th(M), the full theory of an L-structure
M. In this case, the elementary class of models of Th(M) is exactly the class
of L-structures elementarily equivalent to M. More typically, we have a class
of structures in mind and try to write a set of properties T describing these
structures. We call these sentences axioms for the elementary class.

We give a few basic examples of theories and elementary classes that we will
return to frequently.
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Example 1.11 Infinite Sets

Let L = ∅.
Consider the L-theory where we have, for each n, the sentence φn given by

∃x1∃x2 . . . ∃xn
∧

i<j≤n

xi 6= xj .

The sentence φn asserts that there are at least n distinct elements, and an
L-structure M with universe M is a model of T if and only if M is infinite.

Example 1.12 Linear Orders

Let L = {<}, where < is a binary relation symbol. The class of linear orders is
axiomatized by the L-sentences
∀x ¬(x < x),
∀x∀y∀z ((x < y ∧ y < z)→ x < z),
∀x∀y (x < y ∨ x = y ∨ y < x).
There are a number of interesting extensions of the theory of linear orders.

For example, we could add the sentence

∀x∀y (x < y → ∃z (x < z ∧ z < y))

to get the theory of dense linear orders, or we could instead add the sentence

∀x∃y (x < y ∧ ∀z(x < z → (z = y ∨ y < z)))

to get the theory of linear orders where every element has a unique successor.
We could also add sentences that either assert or deny the existence of top or
bottom elements.

Example 1.13 Equivalence Relations

Let L = {E}, where E is a binary relation symbol. The theory of equivalence
relations is given by the sentences
∀x E(x, x),
∀x∀y(E(x, y)→ E(y, x)),
∀x∀y∀z((E(x, y) ∧ E(y, z))→ E(x, z)).
If we added the sentence

∀x∃y(x 6= y ∧ E(x, y) ∧ ∀z (E(x, z)→ (z = x ∨ z = y)))

we would have the theory of equivalence relations where every equivalence class
has exactly two elements. If instead we added the sentence

∃x∃y(¬E(x, y) ∧ ∀z(E(x, z) ∨ E(y, z)))
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and the infinitely many sentences

∀x∃x1∃x2 . . . ∃xn

 ∧
i<j≤n

xi 6= xj ∧
n∧
i=1

E(x, xi)


we would axiomatize the class of equivalence relations with exactly two classes,
both of which are infinite.

Example 1.14 Graphs

Let L = {R} where R is a binary relation. We restrict our attention to irreflexive
graphs. These are axiomatized by the two sentences
∀x ¬R(x, x),
∀x∀y (R(x, y)→ R(y, x)).

Example 1.15 Groups

Let L = {·, e}, where · is a binary function symbol and e is a constant symbol.
We will write x · y rather than ·(x, y). The class of groups is axiomatized by
∀x e · x = x · e = x,
∀x∀y∀z x · (y · z) = (x · y) · z,
∀x∃y x · y = y · x = e.

We could also axiomatize the class of Abelian groups by adding ∀x∀y x·y = y ·x.
Let φn(x) be the L-formula

x · x · · ·x︸ ︷︷ ︸
n−times

= e;

which asserts that nx = e.
We could axiomatize the class of torsion-free groups by adding {∀x (x =

e∨¬φn(x)) : n ≥ 2} to the axioms for groups. Alternatively, we could axiomatize
the class of groups where every element has order at most N by adding to the
axioms for groups the sentence

∀x
∨
n≤N

φn(x).

Note that the same idea will not work to axiomatize the class of torsion groups
because the corresponding sentence would be infinitely long. In the next chapter,
we will see that the class of torsion groups is not elementary.

Let ψn(x, y) be the formula

x · x · · ·x︸ ︷︷ ︸
n−times

= y;

which asserts that xn = y. We can axiomatize the class of divisible groups by
adding the axioms {∀y∃x ψn(x, y) : n ≥ 2}.

It will often be useful to deal with additive groups instead of multiplicative
groups. The class of additive groups is the collection structures in the language
L = {+, 0}, axiomatized as above replacing · by + and e by 0.
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Example 1.16 Ordered Abelian Groups

Let L = {+, <, 0}, where + is a binary function symbol, < is a binary relation
symbol, and 0 is a constant symbol. The axioms for ordered groups are

the axioms for additive groups,
the axioms for linear orders, and
∀x∀y∀z(x < y → x+ z < y + z).

Example 1.17 Left R-modules

Let R be a ring with multiplicative identity 1. Let L = {+, 0} ∪ {r : r ∈ R}
where + is a binary function symbol, 0 is a constant, and r is a unary function
symbol for r ∈ R. In an R-module, we will interpret r as scalar multiplication
by R. The axioms for left R-modules are

the axioms for additive commutative groups,
∀x r(x+ y) = r(x) + r(y) for each r ∈ R,
∀x (r + s)(x) = r(x) + s(x) for each r, s ∈ R,
∀x r(s(x)) = rs(x) for r, s ∈ R,
∀x 1(x) = x.

Example 1.18 Rings and Fields

Let Lr be the language of rings {+,−, ·, 0, 1}, where +, −, and · are binary
function symbols and 0 and 1 are constants. The axioms for rings are given by

the axioms for additive commutative groups,
∀x∀y∀z (x− y = z ↔ x = y + z),
∀x x · 0 = 0,
∀x∀y∀z (x · (y · z) = (x · y) · z),
∀x x · 1 = 1 · x = x,
∀x∀y∀z x · (y + z) = (x · y) + (x · z),
∀x∀y∀z (x+ y) · z = (x · z) + (y · z).
The second axiom is only necessary because we include − in the language

(this will be useful later). We axiomatize the class of fields by adding the axioms
∀x∀y x · y = y · x,
∀x (x 6= 0→ ∃y x · y = 1).
We axiomatize the class of algebraically closed fields by adding to the field

axioms the sentences

∀a0 . . . ∀an−1∃x xn +
n−1∑
i=0

aix
i = 0

for n = 1, 2, . . .. Let ACF be the axioms for algebraically closed fields.
Let ψp be the Lr-sentence ∀xx+ . . .+ x︸ ︷︷ ︸

p−times

= 0, which asserts that a field has

characteristic p. For p > 0 a prime, let ACFp = ACF ∪{ψp} and ACF0 = ACF
∪{¬ψp : p > 0}, be the theories of algebraically closed fields of characteristic p
and characteristic zero, respectively.
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Example 1.19 Ordered Fields

Let Lor = Lr ∪ {<}. The class of ordered fields is axiomatized by the axioms
for fields,

the axioms for linear orders,
∀x∀y∀z (x < y → x+ z < y + z),
∀x∀y∀z ((x < y ∧ z > 0)→ x · z < y · z).

Example 1.20 Differential Fields

Let L = Lr ∪ {δ}, where δ is a unary function symbol. The class of differential
fields is axiomatized by

the axioms of fields,
∀x∀y δ(x+ y) = δ(x) + δ(y),
∀x∀y δ(x · y) = x · δ(y) + y · δ(x).

Example 1.21 Peano Arithmetic

Let L = {+, ·, s, 0}, where + and · are binary functions, s is a unary function,
and 0 is a constant. We think of s as the successor function x 7→ x + 1. The
Peano axioms for arithmetic are the sentences
∀x s(x) 6= 0,
∀x (x 6= 0→ ∃y s(y) = x),
∀x x+ 0 = x,
∀x ∀y x+ (s(y)) = s(x+ y),
∀x x · 0 = 0,
∀x∀y x · s(y) = (x · y) + x,

and the axioms Ind(φ) for each formula φ(v, w), where Ind(φ) is the sentence
∀w [(φ(0, w) ∧ ∀v (φ(v, w)→ φ(s(v), w)))→ ∀x φ(x,w)].
The axiom Ind(φ) formalizes an instance of induction. It asserts that if

a ∈M , X = {m ∈M :M |= φ(m, a)}, 0 ∈ X, and s(m) ∈ X whenever m ∈ X,
then X = M .

Logical Consequence

Definition 1.22 Let T be an L-theory and φ an L-sentence. We say that φ is
a logical consequence of T and write T |= φ if M |= φ whenever M |= T .

We give two examples.

Proposition 1.23 a) Let L = {+, <, 0} and let T be the theory of ordered
Abelian groups. Then, ∀x(x 6= 0→ x+ x 6= 0) is a logical consequence of T .

b) Let T be the theory of groups where every element has order 2. Then,
T 6|= ∃x1∃x2∃x3(x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3).

Proof
a) Suppose that M = (M,+, <, 0) is an ordered Abelian group. Let a ∈

M \ {0}. We must show that a+ a 6= 0. Because (M,<) is a linear order a < 0

11



or 0 < a. If a < 0, then a+ a < 0 + a = a < 0. Because ¬(0 < 0), a+ a 6= 0. If
0 < a, then 0 < a = 0 + a < a+ a and again a+ a 6= 0.

b) Clearly, Z/2Z |= T ∧ ¬∃x1∃x2∃x3(x1 6= x2 ∧ x2 6= x3 ∧ x1 6= x3).

In general, to show that T |= φ, we give an informal mathematical proof
as above that M |= φ whenever M |= T . To show that T 6|= φ, we usually
construct a counterexample.

Definable Sets

Definition 1.24 Let M = (M, . . .) be an L-structure. We say that X ⊆ Mn

is definable if and only if there is an L-formula φ(v1, . . . , vn, w1, . . . , wm) and
b ∈ Mm such that X = {a ∈ Mn : M |= φ(a, b)}. We say that φ(v, b) defines
X. We say that X is A-definable or definable over A if there is a formula
ψ(v, w1, . . . , wl) and b ∈ Al such that ψ(v, b) defines X.

We give a number of examples using Lr, the language of rings.
• Let M = (R,+,−, ·, 0, 1) be a ring. Let p(X) ∈ R[X]. Then, Y = {x ∈

R : p(x) = 0} is definable. Suppose that p(X) =
m∑
i=0

aiX
i. Let φ(v, w0, . . . , wn)

be the formula
wn · v · · · v︸ ︷︷ ︸

n−times

+ . . .+ w1 · v + w0 = 0

(in the future, when no confusion arises, we will abbreviate such a formula as
“wnvn + . . . + w1v + w0 = 0”). Then, φ(v, a0, . . . , an) defines Y . Indeed, Y is
A-definable for any A ⊇ {a0, . . . , an}.
• Let M = (R,+,−, ·, 0, 1) be the field of real numbers. Let φ(x, y) be the

formula
∃z(z 6= 0 ∧ y = x+ z2).

Because a < b if and only if M |= φ(a, b), the ordering is ∅-definable.
• Let M = (Z,+,−, ·, 0, 1) be the ring of integers. Let X = {(m,n) ∈ Z2 :

m < n}. Then, X is definable (indeed ∅-definable). By Lagrange’s Theorem,
every nonnegative integer is the sum of four squares. Thus, if we let φ(x, y) be
the formula

∃z1∃z2∃z3∃z4(z1 6= 0 ∧ y = x+ z2
1 + z2

2 + z2
3 + z2

4),

then X = {(m,n) ∈ Z2 :M |= φ(m,n)}.
• Let F be a field and M = (F [X],+,−, ·, 0, 1) be the ring of polynomials

over F . Then F is definable in M. Indeed, F is the set of units of F [X] and is
defined by the formula x = 0 ∨ ∃y xy = 1.
• Let M = (C(X),+,−, ·, 0, 1) be the field of complex rational functions in

one variable. We claim that C is defined in C(X) by the formula

∃x∃y y2 = v ∧ x3 + 1 = v.
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For any z ∈ C we can find x and y such that y2 = x3 + 1 = z. Suppose that
h is a nonconstant rational function and that there are nonconstant rational
functions f and g such that h = g2 = f3 + 1. Then t 7→ (f(t), g(t)) is a
nonconstant rational function from an open subset of C into the curve E given
by the equation y2 = x3 + 1. But E is an elliptic curve and it is known (see for
example [?]) that there are no such functions.

A similar argument shows that C is the set of rational functions f such that
f and f + 1 are both fourth powers. These ideas generalize to show that C is
definable in any finite algebraic extension of C(X).
• Let M = (Qp,+,−, ·, 0, 1) be the field of p-adic numbers. Then Zp the

ring of p-adic integers is definable. Suppose p 6= 2 (we leave Q2 for Exercise ??)
and φ(x) is the formula ∃y y2 = px2 + 1. We claim that φ(x) defines Zp.

First, suppose that y2 = pa2 +1. Let v denote the p-adic valuation. Because
v(pa2) = 2v(a) + 1, if v(a) < 0, then v(pa2) is an odd negative integer and
v(y2) = v(pa2 + 1) = v(pa2). On the other hand, v(y2) = 2v(y), an even
integer. Thus, if M |= φ(a), then v(a) ≥ 0 so a ∈ Zp.

On the other hand, suppose that a ∈ Zp. Let F (X) = X2− (pa2 +1). Let F
be the reduction of F mod p. Because v(a) ≥ 0, v(pa) > 0 and F (X) = X2 − 1
and F

′
= 2X. Thus, F (1) = 0 and F

′
(1) 6= 0 so, by Hensel’s Lemma, there is

b ∈ Zp such that F (b) = 0. Hence M |= φ(a).
• Let M = (Q,+,−, ·, 0, 1) be the field of rational numbers. Let φ(x, y, z)

be the formula
∃a∃b∃c xyz2 + 2 = a2 + xy2 − yc2

and let ψ(x) be the formula

∀y∀z ([φ(y, z, 0) ∧ (∀w(φ(y, z, w)→ φ(y, z, w + 1)))]→ φ(y, z, x)).

A remarkable result of Julia Robinson (see [?]) shows that ψ(x) defines the
integers in Q.
• Consider the natural numbers N as an L = {+, ·, 0, 1} structure. The

definable sets are quite complex. For example, there is an L-formula T (e, x, s)
such that N |= T (e, x, s) if and only if the Turing machine with program coded
by e halts on input x in at most s steps (see, for example, [?]). Thus, the Turing
machine with program e halts on input x if and only if N |= ∃s T (e, x, s), so
the set of halting computations is definable. It is well known that this set is not
computable (see, for example, [?]). This leads to an interesting conclusion.

Proposition 1.25 The full L-theory of the natural numbers is undecidable (i.e.,
there is no algorithm that when given an L-sentence ψ as input will always halt
answering “yes” if N |= ψ and “no” if N |= ¬ψ).

Proof For each e and x, let φe,x be the L-sentence

∃s T (1 + . . .+ 1︸ ︷︷ ︸
e−times

, 1 + . . .+ 1︸ ︷︷ ︸
x−times

, s).
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If there were such an algorithm we could decide whether the program coded by
e halts on input x by asking whether N |= φe,x.

Recursively enumerable sets have simple mathematical definitions. By the
Matijasevič–Robinson–Davis–Putnam solution to Hilbert’s 10th Problem (see
[?]) for any recursively enumerable set A ⊆ Nn there is a polynomial

p(X1, . . . , Xn, Y1, . . . , Ym) ∈ Z[X,Y ]

such that
A = {x ∈ Nn : N |= ∃y1 . . . ∃ym p(x, y) = 0}.

The following example will be useful later.

Lemma 1.26 Let Lr be the language of ordered rings and (R,+,−, ·,
<, 0, 1) be the ordered field of real numbers. Suppose that X ⊆ Rn is A-definable.
Then, the topological closure of X is also A-definable.

Proof Let φ(v1, . . . , vn, a) define X. Let ψ(v1, . . . , vn, w) be the formula

∀ε

[
ε > 0→ ∃y1, . . . , yn (φ(y, w) ∧

n∑
i=1

(vi − yi)2 < ε)

]
.

Then, b is in the closure of X if and only if M |= ψ(b, a).

How do we show that X ⊂ Mn is not definable? The following proposition
will often be useful.

Proposition 1.27 Let M be an L-structure. If X ⊂ Mn is A-definable, then
every L-automorphism of M that fixes A pointwise fixes X setwise (that is, if
σ is an automorphism of M and σ(a) = a for all a ∈ A, then σ(X) = X).

Proof Let ψ(v, a) be the L-formula defining X where a ∈ A. Let σ be an
automorphism of M with σ(a) = a, and let b ∈Mn.

In the proof of Theorem 1.10, we showed that if j : M → N is an isomor-
phism, then M |= φ(a) if and only if N |= φ(j(a)). Thus

M |= ψ(b, a)↔M |= ψ(σ(b), σ(a))⇔M |= ψ(σ(b), a).

In other words, b ∈ X if and only if σ(b) ∈ X as desired.
We give a sample application.

Corollary 1.28 The set of real numbers is not definable in the field of complex
numbers.

Proof If R were definable, then it would be definable over a finite A ⊂ C. Let
r, s ∈ C be algebraically independent over A with r ∈ R and s 6∈ R. There is
an automorphism σ of C such that σ|A is the identity and σ(r) = s. Thus,
σ(R) 6= R and R is not definable over A.
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This proof worked because C has many automorphisms. The situation is
much different for R. Any automorphism of the real field must fix the rational
numbers. Because the ordering is definable it must be preserved by any auto-
morphism. Because the rationals are dense in R, the only automorphism of the
real field is the identity. Most subsets of R are undefinable (there are 22ℵ0 sub-
sets of R and only 2ℵ0 possible definitions), but we cannot use Proposition 1.27
to show any particular set is undefinable. In fact, the converse to Proposition
1.27 holds for sufficiently rich models.
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2 The Compactness Theorem

Let T be an L-theory and φ an L-sentence. To show that T |= φ, we must
show that φ holds in every model of T . Checking all models of T sounds like a
daunting task, but in practice we usually show that T |= φ by giving an informal
mathematical proof that φ is true in every model of T . One of the first great
achievements of mathematical logic was giving a rigorous definition of “proof”
that completely captures the notion of “logical consequence.”

A proof of φ from T is a finite sequence of L-formulas ψ1, . . . , ψm such that
ψm = φ and ψi ∈ T or ψi follows from ψ1, . . . , ψi−1 by a simple logical rule for
each i. We write T ` φ if there is a proof of φ from T . Examples of “simple”
logical rules are:

“from φ and ψ conclude φ ∧ ψ,” or
“from φ ∧ ψ conclude φ.”
It will not be important for our purposes to go into the details of the proof

system, but we stress the following points. (See [?], for example, for complete
details of one possible proof system.)
• Proofs are finite.
• (Soundness) If T ` φ, then T |= φ.
• If T is a finite set of sentences, then there is an algorithm that, when given

a sequence of L-formulas σ and an L-sentence φ, will decide whether σ is a proof
of φ from T .

Note that the last point does not say that there is an algorithm that will
decide if T ` φ. It only says that there is an algorithm that can check each
purported proof.

We say that a language L is recursive if there is an algorithm that decides
whether a sequence of symbols is an L-formula. We say that an L-theory T is
recursive if there is an algorithm that, when given an L-sentence φ as input,
decides whether φ ∈ T .

Proposition 2.1 If L is a recursive language and T is a recursive L-theory,
then {φ : T ` φ} is recursively enumerable; that is, there is an algorithm, that
when given φ as input will halt accepting if T ` φ and not halt if T 6` φ.

Proof There is σ0, σ1, σ2, . . ., a computable listing of all finite sequences of
L-formulas. At stage i of our algorithm, we check to see whether σi is a proof of
ψ from T . This involves checking that each formula either is in T (which we can
check because T is recursive) or follows by a logical rule from earlier formulas
in the sequence σi and that the last formula is φ. If σi is a proof of φ from T ,
then we halt accepting; otherwise we go on to stage i+ 1.

Remarkably, the finitistic syntactic notion of “proof” completely captures
the semantic notion of “logical consequence.”

Theorem 2.2 (Gödel’s Completeness Theorem) Let T be an L-theory and
φ an L-sentence, then T |= φ if and only if T ` φ.
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The Completeness Theorem gives a criterion for testing whether an L-theory
is satisfiable. We say that an L-theory T is inconsistent if T ` (φ∧¬φ) for some
sentence φ; otherwise we say that T is consistent. Because our proof system is
sound, any satisfiable theory is consistent. The Completeness Theorem implies
that the converse is true.

Corollary 2.3 T is consistent if and only if T is satisfiable.

Proof Suppose that T is not satisfiable. Because there are no models of T ,
every model of T is a model of (φ ∧ ¬φ). Thus, T |= (φ ∧ ¬φ) and by the
Completeness Theorem T ` (φ ∧ ¬φ).

This has a deceptively simple consequence.

Theorem 2.4 (Compactness Theorem) T is satisfiable if and only if every
finite subset of T is satisfiable.

Proof Clearly, if T is satisfiable, then every subset of T is satisfiable. On the
other hand, if T is not satisfiable, then T is inconsistent. Let σ be a proof of a
contradiction from T . Because σ is finite, only finitely many assumptions from
T are used in the proof. Thus, there is a finite T0 ⊆ T such that σ is a proof of
a contradiction from T0. But then T0 is a finite unsatisfiable subset of T .

Although it is a simple consequence of the Completeness Theorem and the
finite nature of proof, the Compactness Theorem is the cornerstone of model
theory. Because it will not be useful for us to understand the exact nature of
our proof system, we will not prove the Completeness Theorem. Instead, in the
next section, we will give a second proof of the Compactness Theorem that does
not appeal directly to the Completeness Theorem.

Basic Applications of Compactness

We conclude this section with several standard applications of the Compactness
Theorem.

Corollary 2.5 Suppose T has arbitrarily large finite models, then T has an
infinite model.

Proof Let φn be the sentence:

∃v1 . . . ∃vn
∧

i<j≤n

vi 6= vj .

Let T ∗ = T ∪ {φn : n = 1, 2, . . .}. Clearly any model of T ∗ is an infinite model
of T . If ∆ ⊂ T ∗ is finite, then for some N , ∆ ⊂ T ∪ {φ1, . . . , φN}. There is
A |= T with |A| ≥ N , thus A |= ∆. By the Compactness Theorem, T ∗ has a
model.

17



Proposition 2.6 Let L = {·,+, <, 0, 1} and let Th(N) be the full L-theory of
the natural numbers. There is M |= Th(N) and a ∈ M such that a is larger
than every natural number.

Proof Let L∗ = L ∪ {c} where c is a new constant symbol and let

T = Th(N) ∪ {1 + 1 + . . .+ 1︸ ︷︷ ︸
n−times

< c : for n = 1, 2, . . .}.

If ∆ is a finite subset of T , we can make N a model of ∆ by interpreting c
as a suitably large natural number. Thus, T is finitely satisfiable and there is
M |= T . If a ∈M is the interpretation of c, then a is larger than every natural
number.

Proposition 2.7 Let L be a language containing {·, e}, the language of groups,
let T be an L-theory extending the theory of groups, and let φ(v) be an L-
formula. Suppose that for all n there is Gn |= T and gn ∈ Gn with finite order
greater than n such that Gn |= φ(gn). Then, there is G |= T and g ∈ G such
that G |= φ(g) and g has infinite order. In particular, there is no formula that
defines the torsion points in all models of T .

Proof Let L∗ = L ∪ {c}, where c is a new constant symbol. Let T ∗ be the
L-theory

T ∪ {φ(c)} ∪ {c · c · · · c︸ ︷︷ ︸
n−times

6= e : n = 1, 2, . . .}.

If G is a model of T ∗ and g is the interpretation of c in G then G |= φ(g) and g
has infinite order. Hence, it suffices to show that T ∗ is satisfiable.

Let ∆ ⊆ T ∗ be finite. Then

∆ ⊆ T ∪ {φ(c)} ∪ {c · c · · · c︸ ︷︷ ︸
n−times

6= e : n = 1, 2, . . . ,m}

for some m. View Gm as an L∗ structure by interpreting c as the element gm.
Because Gm |= T ∪ {φ(gm)} and gm has order greater than m, Gm |= ∆. Thus,
T ∗ is finitely satisfiable and hence, by the Compactness Theorem, satisfiable.

Example 2.8 Four Coloring Graphs

Let G = (V,E) be a graph such that every finite subgraph can be four colored.2

We claim that G can be four colored. Let L = {R,B, Y,G} ∪ {cv : v ∈ V }. Let
Γ be the L-theory with axioms:

i) ∀x [(R(x)∧¬B(x)∧¬Y (x)∧¬G(x))∨. . .∨(¬R(x)∧¬B(x)∧¬Y (x)∧G(x))]

ii) if (v, w) ∈ E add the axiom: ¬(R(cv) ∧R(cw)) ∧ . . . ∧ ¬(G(cv) ∧G(cw)).

2That is, we can color the vertices with four colors so that no adjacent vertices have the
same color. For example, the Four Color Theorem says that every finite planar graph can be
four colored.
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If ∆ is a finite subset of Γ, let V∆ be the verticies such that cv is used in
∆. Since the restriction of G to V∆ is four colorable, ∆ is consistent. Thus Γ is
consistent. Let A |= Γ.

Color G by coloring v as A colors cv.

Theorem 2.9 (Upward Löwenheim–Skolem Theorem) Suppose Γ is an
L-theory. If Γ has an infinite model, then it has a model of cardinality κ for
every κ ≥ max(|L|,ℵ0).

Proof Let I be a set of cardinality κ. Let L∗ = L ∪ {cα : α ∈ I}. Let

Γ∗ = Γ ∪ {cα 6= cβ : α 6= β}.

If ∆ is a finite subset of Γ∗, then in any infinite model A of Γ we can interpret
the constants such that A |= ∆. Thus Γ has a model of size at most κ. But
certainly any model of Γ∗ has size at least κ (the map α 7→ ĉα is one to one).

The next lemma is an easy consequence of the Completeness Theorem, but
it also can be deduced from the Compactness Theorem.

Lemma 2.10 If T |= φ, then ∆ |= φ for some finite ∆ ⊆ T .

Proof Suppose not. Let ∆ ⊆ T be finite. Because ∆ 6|= φ, ∆ ∪ {¬φ} is satisfi-
able. Thus, T ∪ {¬φ} is finitely satisfiable and, by the Compactness Theorem,
T 6|= φ.
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3 Ultraproducts and Compactness

In this section we will give an alternative proof of the Compactness Theorem
using ultraproducts, an algebraic method of averaging structures.

Let I be an infinite set. We let

P(I) = {A : A ⊆ I}

be the power set of I.

Definition 3.1 We say that F ⊆ P(I) is a filter if
i) I ∈ F , ∅ 6∈ F ;
ii) If A ∈ F and A ⊆ B, then B ∈ F ;
iii) If A,B ∈ F then A ∩B ∈ F .

We say that F is an ultrafilter if in addition,
iv) for all A ⊆ I either A ∈ F or I \A ∈ F .

Example 3.2 Cof = {A ⊆ I : I \A is finite} is a filter.

Example 3.3 Let I = R then F = {A : R \ A has Lebesgue measure zero}, is
a filter.

If F is a filter, we think of elements of F as llarge, so if A ∈ F we think of
A as large and that i ∈ A for almost all i ∈ I.

We can think of an ultrafilter F as finitely additive two valued measures
µ : P(I)→ {0, 1}, where µ(A) = 1 if and only if A ∈ F.

Lemma 3.4 If F ⊆ P(I) is a filter, A ⊆ I and I \A 6∈ F , then

F ′ = {C : there is B ∈ F , C ⊇ A ∩B}

is an ultrafilter and A ∈ F ′.

Proof Since I ⊇ I ∩A, I ∈ F ′.
If ∅ ∈ F ′, then there is B ∈ F such that A ∩ B = ∅. But then B ⊆ I \ A

and I \A ∈ F , a contradiction.
It is easy to see that F ′ is closed under superset.
If C1, C2 ∈ F ′ there are B1, B2 ∈ F such that Ci ⊇ Bi ∩A. Then C1 ∩C2 ⊇

B1 ∩B2 ∩A, so C1 ∩ C2 ∈ F ′.

Corollary 3.5 If F ⊆ P(I) is a filter, then there is an ultrafilter U ⊇ F .

Proof Let I = {F ′ : F ⊆ F ′ ⊆ P(I) is a filter}.
If (X,<) is a linearly ordered set, Fx ∈ I for x ∈ X and Fx ⊆ Fy for x < y,

then F∗ =
⋃
x∈X Fx is a filter. Thus we can apply Zorn’s Lemma to find U ∈ I

maximal. Suppose A ⊆ I. If I \A 6∈ U , then, by the Lemma and the maximality
of U , A ∈ U .
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Corollary 3.6 There are non-principal ultrafilters.

Proof Let U ⊇ Cof be an ultrafilter. Then U contains no finite sets.

Our proof of the existence of non-prinicipal ultrafilters is non-constructive as
it depends heavily on the Axiom of Choice. Unfortunately, some use of choice
is unavoidable.

We will use ultrafilters to give a new construction of models. Let L be a first
order language. Suppose that Mi is an L-structure for all i ∈ I with universe
Mi. Let U ⊆ P(I) be an ultrafilter.

We define ∼ on
∏
i∈IMi by

f ∼ g ⇔ {i ∈ I : f(i) = g(i)} ∈ U .

Lemma 3.7 ∼ is an equivalence relation

Proof Let f, g, h ∈
∏
i∈IMi. Clearly f ∼ f and if f ∼ g, then g ∼ f .

Suppose f ∼ g and g ∼ h. Since

{i : f(i) = h(i)} ⊇ {i : f(i) = g(i)} ∩ {i : g(i) = h(i)} ∈ U ,

f ∼ h.
For f ∈

∏
i∈I , let [f ] be the ∼-equivalence class of f and let

M =

{
[f ] : f ∈

∏
i∈I

Mi

}
.

We will interpret the symbols of L in M to construct an L-structureM, which
we also denote

∏
Mi/U .

If c is a constant symbol of L, let f ∈
∏
Mi be the function f(i) = cMi and

let cM = [f ].
Let R be an n-ary relation symbol of L.

Lemma 3.8 f1, . . . , fn, g1, . . . , gn ∈
∏
Mi such that fj ∼ gj for all j = 1, . . . , n.

Then

{i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi} ∈ U ⇔ {i ∈ I : (g1(i), . . . , gn(i)) ∈ RMi} ∈ U .

Proof Suppose {i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi} ∈ U . Then {i ∈ I :
(g1(i), . . . , gn(i)) ∈ RMi} contains

{i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi}∩{i ∈ I : g1(i) = f1(i)}∩. . .∩{i ∈ I : gn(i) = fn(i)}.

Since U is a filter this later set is in U .
The other direction is symmetric.

We define

RM = {([f1], . . . , [fn]) : {i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi} ∈ U}.
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By the Lemma, this is well-defined and does not depend on the choice of repre-
sentatives for the equivalence classes.

Let F be an n-ary function symbol of L. Let f1, . . . , fn, g1, . . . , gn ∈
∏
Mi

with fj ∼ gj for j = 1, . . . , n. Define fn+1, gn+1 ∈
∏
Mi by

fn+1(i) = F (f1(i), . . . , fn(i)) and gn+1(i) = F (g1(i), . . . , gn(i)).

Exercise 3.9 Argue as in Lemma 3.8 that fn+1 ∼ gn+1.

We define FM : Mn →M by

F ([f1], . . . , [fn]) = [g]

where g(i) = F (f1(i), . . . , fn(i)). By Exercise 3.9 this is well defined and does
not depend on choice of representatives.

We have now completely defined the structure M =
∏
Mi/U . We call M

an ultraproduct of (Mi : i ∈ I)
The following exercise is an easy induction on terms.

Exercise 3.10 If t is an L-term, then tM(f1, . . . , fn) = [g] where g(i) =
tMi(f1(i), . . . , fn(i)).

We can now state the Fundamental Theorem of Ultraproducts.

Theorem 3.11 (  Los’s Theorem) Let φ(v1, . . . , vn) be any L-formula Then

M |= φ([f1], . . . , [fn])⇔ {i :Mi |= φ(f1(i), . . . , fn(i))} ∈ U .

Proof We prove this by induction on complexity of formulas
1) Suppose φ is t1 = t2 where t1 and t2 are terms.

Define gj(i) = tMi
j (f1(i), . . . , fn(i)). Then

M |= t1([f1], . . . , [fn]) = t2([f1], . . . , [fn])⇔ [g1] = [g2]

⇔ {i : tMi
1 (f1(i), . . . , fn(i)) = tMi

2 (f1(i), . . . , fn(i)} ∈ U

as desired.
2) Suppose φ is R(t1, . . . , tm).

For j = 1, . . . ,m let gj(i) = tMi
i (f1(i), . . . , fn(i)). Then

M |= φ([f1], . . . , [fn]) ⇔ {i : (g1(i), . . . , gn(i)) ∈ RMi} ∈ U
⇔ {i :Mi |= φ(f1(i), . . . , fn(i))} ∈ U

3) Suppose the theorem is true for θ and ψ, and φ is θ ∧ ψ. (We suppress the
parameters [f1], . . . , [fn])

Then

M |= φ ⇔ M |= ψ and M |= θ
⇔ {i :Mi |= ψ} ∈ U and {i :Mi |= ψ} ∈ U
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⇔ {i :Mi |= ψ ∧ θ} ∈ U

4) Suppose the theorem is true for ψ and φ is ¬ψ Then

M |= φ ⇔ M 6|= ψ
⇔ {i :Mi |= ψ} 6∈ U
⇔ {i :Mi |= ¬ψ} ∈ U

5) Suppose the theorem is true for ψ(v) and φ is ∃v ψ(v).
If M |= ∃v ψ(v), then there is g such that M |= ψ([g]). But then

{i :Mi |= ∃v ψ(v)} ⊇ {i :Mi |= ψ(g(i))} ∈ U

On the other hand if A = {i : Mi |= ∃v ψ(v)} ∈ U define g ∈
∏
Mi such

that Mi |= ψ(g(i)) for all i ∈ A. Then M |= ψ([g]), so M |= φ.

Note that step 4) is the only place in the construction that we used that U
is an ultrafilter rather than just a filter.

Exercise 3.12 Let U be a non-princpal ultrafilter on the set of prime numbers.
For each prime p, let Falg

p be the algebraic closure of Fp the field with p elements.
Prove that

∏
Fp/U is an algebraically closed field of characteristic 0.

Another Proof of Compactness

We can use  Los’s Theorem to give a proof of the Compactness Theorem that
avoids the Completeness Theorem.

Let Γ be an L-theory such that every finite ∆ ⊆ Γ has a model. Let I be
the collection of finite subsets of Γ.

For φ ∈ Γ let
Xφ = {∆ ∈ I : ∆ |= φ}

and let
F = {Y ⊆ I : Xφ ⊆ Y for some φ ∈ Γ}.

We claim that F is a filter. It is easy to see that I ∈ F , ∅ 6∈ F and F is
closed under superset. Also if Y1, Y2 ∈ F there are φ1, φ2 such that Xφi ⊆ Yi.
Then Xφ1∧φ2 = Xφ1 ∩Xφ2 , so

Xφ1∧φ2 ⊆ Y1 ∩ Y2

and Y1 ∩ Y2 ∈ F
Let U ⊇ F be an ultrafilter. For ∆ ∈ I, letM∆ |= ∆ and letM =

∏
M∆/U .

Since Xφ ∈ U for all φ ∈ Γ, by  los’s Theorem M |= Γ.

23



Ultrapowers and Elementary Extensions

Fix M and L structure and let U be an ultrafilter on an infinite set I. An
interesting special case of the ultraproduct construction is when we take all of
the Mi =M. In this case we let M∗ =MI/U .

Exercise 3.13 Prove that if M is finite or U is principal, then M∼=M∗.

For each a ∈M , let fa : I →M be the constant function fa(i) = a. If a 6= b,
then [fa] 6= [fb]. By Los’s Theorem if a1, . . . , an ∈ M and φ is an L-formula,
then

M |= φ(a1, . . . , an)⇔M∗ |= φ([fa1 ], . . . , [fan
])

IdentifyingM and it’s image under the embedding a 7→ [fa] we can think of
M as substructure of M∗. Then for a1, . . . , an ∈M .

M |= φ(a1, . . . , an)⇔M∗ |= φ(a1, . . . , an).

Definition 3.14 If M ⊆ N we say that N is an elementary extension of M
and write M≺ N if

M |= φ(a)⇔ N |= φ(a)

for all a ∈M .

We have argued that M∗ is an elementary extension of M. This is only
interesting if we can also prove M∗ properly extends M.

Proposition 3.15 If |I| ≤ |M| and U is a non-principal ultrafilter, then M∗
is a proper extension of M.

Proof Let f : I →M be injective. Then for all a ∈M , |{i : f(i) = fa(i)}| ≤ 1.
Since U is non-principal, f 6∼ fa. Thus [f ] ∈M∗ \M .

Cardinalities of Ultraproducts

Suppose we have (Mi : i ∈ I) and an ultrafilter U ⊆ P(I).

Exercise 3.16 Suppose {i ∈ I : |Mi| = n} ∈ U , then |
∏
Mi/U| = n

Exercise 3.17 If we also have (Ni : i ∈ I) and {i : |Mi| = |Ni|} ∈ U , then
|
∏
Mi/U | = |

∏
Ni/U |.

Exercise 3.18 If λ ≤ |Mi| ≤ κ for all i ∈ I, then

λ ≤
∏
Mi/U ≤ κ|I|.

For the rest of these Exercises we will assume I = N.

Exercise 3.19 Suppose that for all n ∈ N, {i : |Mi| = n} 6∈ U and U is
non-principal.
a) Show there is a family X of functions f : N→ N such that:
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i) |X| = 2ℵ0

ii) for each f ∈ X f(n) < 2n

iii)f 6= g ∈ X, then {n : f(n) = g(n)} is finite.
[Hint: For α : N→ {0, 1} let fα(n) =

∑n−1
i=0 α(i)2i].

b) Show there is a partition I =
⋃∞
n=0An such that

i) each An 6∈ U
ii) if i ∈ An, then |Mi| ≥ 2i.

[Hint: Let An = {i : 2n ≤ |Mi| < 2n+1 or i = n and |Mi| ≥ ℵ0}.]
For i ∈ I let n(i) be unique such that i ∈ An(i). For i ∈ I choose (mi,j :

0 ≤ j < 2n(i)) distinct elements of Mi. For f ∈ X, let αf ∈
∏
Mi such that

αf (i) = mi,f(n(i)).

c) Prove that if f 6= g ∈ X, then αf 6∼ αg. Conclude that |
∏
Mi/U | ≥ 2ℵ0 .

Corollary 3.20 Suppose that U is a non-prinicpal ultrafilter on N, |Mn| ≤ ℵ0

for all n, and {n : |Mn| = m} 6∈ U for any m, Then |
∏
Mi/U | = 2ℵ0 .

Exercise 3.21 Let U be a non-principal ultrafilter on the set of primes. Prove∏
Falg
p /U is isomorphic to C the field of complex numbers.
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