
7 Real Closed Fields and o-minimality

In this section, we will concentrate on the field of real numbers. Unlike alge-
braically closed fields, the theory of the real numbers does not have quantifier
elimination in Lr = {+, 1, ·, 0, 1}, the language of rings. The proof of Corollary
6.5 shows that any field with quantifier elimination is strongly minimal, whereas
in R, if φ(x) is the formula ∃z z

2 = x, then φ defines an infinite coinfinite de-
finable set. In fact, algebraically closed fields are the only infinite fields with
quantifier eliination.

In fact, the ordering is the only obstruction to quantifier elimination. We will
eventually analyze the real numbers in the language Lor = {+,−, · · · , <, 0, 1}
and show that we have quantifier elimination in this language. Because the
ordering x < y is definable in the real field by the formula

∃ z (z �= 0 ∧ x + z
2 = y),

any subset of Rn definable using an Lor-formula is already definable using an
Lr-formula). We will see that quantifier elimination in Lor leads us to a good
geometric understanding of the definable sets.

We begin by reviewing some of the necessary algebraic background on or-
dered fields. All of the algebraic results stated in this chapter are due to Artin
and Schreier.

Definition 7.1 We say that a field F is orderable if there is a linear order <

of F making (F,<) an ordered field.

Although there are unique orderings of the fields R and Q, orderable fields
may have many possible orderings. The field of rational functions Q(X) has 2ℵ0

distinct orderings. To see this, let x be any real number transcendental over
Q. The evaluation map f(X) �→ f(x) is a field isomorphism between Q(X) and
Q(x), the subfield of R generated by x. We can lift the ordering of the reals to
an ordering Q(X) by f(X) < g(X) if and only if f(x) < g(x). Because X < q if
and only if x < q, choosing a different transcendental real would yield a different
ordering. These are not the only orderings. We can also order Q(X) by making
X infinite or infinitesimally close to a rational.

There is a purely algebraic characterization of the orderable fields.

Definition 7.2 We say that F is formally real if −1 is not a sum of squares.
In any ordered field all squares are nonnegative. Thus, every orderable field

is formally real. The following result shows that the converse is also true.

Theorem 7.3 If F is a formally real field, then F is orderable. Indeed, if a ∈ F

and −a is not a sum of squares of elements of F , then there is an ordering of

F where a is positive.

Because the field of complex numbers is the only proper algebraic exten-
sion of the real field, the real numbers have no proper formally real algebraic
extensions. Fields with this property will play a key role.
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Definition 7.4 A field F is real closed if it is formally real with no proper
formally real algebraic extensions.

Although it is not obvious at first that real closed fields form an elementary
class, the next theorem allows us to axiomatize the real closed fields.

Theorem 7.5 Let F be a formally real field. The following are equivalent.

i) F is real closed.

ii) F (i) is algebraically closed (where i
2 = −1).

iii) For any a ∈ F , either a or −a is a square and every polynomial of odd

degree has a root.

Corollary 7.6 The class of real closed fields is an elementary class of Lr-

structures.

Proof We can axiomatize real closed fields by:
i) axioms for fields
ii) for each n ≥ 1, the axiom

∀x1 . . .∀xn x
2
1 + . . . + x

2
n + 1 �= 0

iii) ∀x∃y (y2 = x ∨ y
2 + x = 0)

iv) for each n ≥ 0, the axiom

∀x0 . . .∀x2n∃y y
2n+1 +

2n�

i=0

xiy
i = 0.

Although we can axiomatize real closed fields in the language of rings, we
already noticed that we do not have quantifier elimination in this language.
Instead, we will study real closed fields in Lor, the language of ordered rings. If
F is a real closed field and 0 �= a ∈ F , then exactly one of a and −a is a square.
This allows us to order F by

x < y if and only if y − x is a nonzero square.

It is easy to check that this is an ordering and it is the only possible ordering
of F .

Definition 7.7 We let RCF be the Lor-theory axiomatized by the axioms above
for real closed fields and the axioms for ordered fields.

The models of RCF are exactly real closed fields with their canonical order-
ing. Because the ordering is defined by the Lr-formula

∃z (z �= 0 ∧ x + z
2 = y),

the next result tells us that using the ordering does not change the definable
sets.
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Proposition 7.8 If F is a real closed field and X ⊆ F
n is definable by an

Lor-formula, then X is definable by an Lr-formula.

Proof Replace all instances of ti < tj by ∃v (v �= 0 ∧ v
2 + ti = tj), where ti

and tj are terms occurring in the definition of X.

The next result suggests another possible axiomatization of RCF.

Theorem 7.9 An ordered field F is real closed if and only if whenever p(X) ∈
F [X], a, b ∈ X, a < b, and p(a)p(b) < 0, there is c ∈ F such that a < c < b and

p(c) = 0.

Definition 7.10 If F is a formally real field, a real closure of F is a real closed
algebraic extension of F .

By Zorn’s Lemma, every formally real field F has a maximal formally real
algebraic extension. This maximal extension is a real closure of F .

The real closure of a formally real field may not be unique. Let F = Q(X),
F0 = F (

√
X), and F1 = F (

√
−X). By Theorem 7.3, F0 and F1 are formally

real. Let Ri be a real closure of Fi. There is no isomorphism between R0 and
R1 fixing F because X is a square in R0 but not in R1. Thus, some work needs
to be done to show that any ordered field (F,<) has a real closure where the
canonical order extends the ordering of F .

Lemma 7.11 If (F,<) is an ordered field, 0 < x ∈ F , and x is not a square in

F , then we can extend the ordering of F to F (
√

x).

Proof We can extend the ordering to F (
√

x) by 0 < a + b
√

x if and only if
i) b = 0 and a > 0, or
ii) b > 0 and (a > 0 or x >

a2

b2 ), or
iii) b < 0 and (a < 0 and x <

a2

b2 ).

Corollary 7.12 If (F,<) is an ordered field, there is a real closure R of F such

that the canonical ordering of R extends the ordering on F .

Proof

By successive applications of Lemma 7.11, we can find an ordered field (L, <)
extending (F,<) such that every positive element of F has a square root in L.
We now apply Zorn’s Lemma to find a maximal formally real algebraic extension
R of L. Because every positive element of F is a square in R, the canonical
ordering of R extends the ordering of F .

Although a formally real field may have nonisomorphic real closures, if (F,<

) is an ordered field there will be a unique real closure compatible with the
ordering of F .
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Theorem 7.13 If (F,<) is an ordered field, and R1 and R2 are real closures

of F where the canonical ordering extends the ordering of F , then there is a

unique field isomorphism φ : R1 → R2 that is the identity on F .

Note that because the ordering of a real closed field is definable in Lr, φ also
preserves the ordering. We often say that any ordered field (F,<) has a unique
real closure. By this we mean that there is a unique real closure that extends
the given ordering.

Quantifier Elimination for Real Closed Fields

We are now ready to prove quantifier elimination.

Theorem 7.14 The theory RCF admits elimination of quantifiers in Lor.

Proof We use the quantifier elimination tests of §5. Suppose K and L are real
closed ordered fields and A is a common substructure. Then A is an ordered
integral domain. We extend the ordering on A to its fraction field to obtain an
ordered subfield F0 ⊆ K ∩L. Let F be the real closure of F0. By uniqueness of
real closures, F is isomorphic, as an ordered field, to the algebraic closure of F0

inside K and L. Without loss of generality we may assume F ⊆ K ∩ L.
It suffices then to show that if φ(v, w) is a quantifier-free formula, a ∈ F ,

b ∈ K and K |= φ(b, a), then there is b
� ∈ F such that F |= φ(b�, a).

Note that
p(X) �= 0 ↔ (p(X) > 0 ∨ −p(X) > 0)

and
p(X) �> 0 ↔ (p(X) = 0 ∨ −p(X) > 0).

With this in mind, we may assume that φ is a disjunction of conjunctions of
formulas of the form p(v, w) = 0 or p(v, w) > 0. As in Theorem 6.1, we may
assume that there are polynomials p1, . . . , pn and q1, . . . , qm ∈ F [X] such that

φ(v, a) ↔
n�

i=1

pi(v) = 0 ∧
m�

i=1

qi(v) > 0.

If any of the polynomials pi(X) is nonzero, then b is algebraic over F . Be-
cause F has no proper formally real algebraic extensions, in this case b ∈ F .
Thus, we may assume that

φ(v, a) ↔
m�

i=1

qi(v) > 0.

The polynomial qi(X) can only change signs at zeros of qi and all zeros of qi

are in F . Thus, we can find ci, di ∈ F such that ci < b < di and qi(x) > 0 for
all x ∈ (ci, di). Let c = max(c1, . . . , cm) and d = min(d1, . . . , dm). Then, c < d

and
�m

i=1 qi(x) > 0 whenever c < x < d. Thus, we can find b
� ∈ F such that

F |= φ(b�, a).
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Corollary 7.15 RCF is complete, model complete and decidable. Thus RCF is

the theory of (R,+, ·, <) and RCF is decidable.

Proof By quantifier elimination, RCF is model complete.
Every real closed field has characteristic zero; thus, the rational numbers are

embedded in every real closed field. Therefore, Ralg, the field of real algebraic
numbers (i.e., the real closure of the rational numbers) is a subfield of any real
closed field. Thus, for any real closed field R, Ralg ≺ R, so R ≡ Ralg.

In particular, R ≡ Ralg ≡ R.
Because RCF is complete and recursively axiomatized, it is decidable.

Semialgebraic Sets

Quantifier elimination for real closed fields has a geometric interpretation.

Definition 7.16 Let F be an ordered field. We say that X ⊆ F
n is semial-

gebraic if it is a Boolean combination of sets of the form {x : p(x) > 0}, where
p(X) ∈ F [X1, . . . ,Xn].

By quantifier elimination, the semialgebraic sets are exactly the definable
sets. The next corollary is a geometric restatement of quantifier elimination. It
is analogous to Chevalley’s Theorem (6.4) for algebraically closed fields.

Corollary 7.17 (Tarski–Seidenberg Theorem) The semialgebraic sets are

closed under projection.

The next corollary is a typical application of quantifier elimination.

Corollary 7.18 If F |= RCF and A ⊆ F
n is semialgebraic, then the closure

(in the Euclidean topology) of A is semialgebraic.

Proof We repeat the main idea of Lemma 1.26. Let d be the definable function

d(x1, . . . , xn, y1, . . . , yn) = z if and only if z ≥ 0 ∧ z
2 =

n�

i=1

(xi − yi)2.

The closure of A is
{x : ∀� > 0 ∃y ∈ A d(x, y) < �}.

Because this set is definable, it is semialgebraic.

We say that a function is semialgebraic if its graph is semialgebraic. The
next result shows how we can use the completeness of RCF to transfer results
from R to other real closed fields.

Corollary 7.19 Let F be a real closed field. If X ⊆ F
n is semialgebraic, closed

and bounded, and f is a continuous semialgebraic function, then f(X) is closed

and bounded.
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Proof If F = R, then X is closed and bounded if and only if X is compact.
Because the continuous image of a compact set is compact, the continuous image
of a closed and bounded set is closed and bounded.

In general, there are a, b ∈ F and formulas φ and ψ such that φ(x, a) defines
X and ψ(x, y, b) defines f(x) = y. There is a sentence Φ asserting:

∀u,w [if ψ(x, y, w) defines a continuous function with domain φ(x, u)
and φ(x, u) is a closed and bounded set, then the range of the func-
tion is closed and bounded].

By the remarks above, R |= Φ. Therefore, by the completeness of RCF,
F |= Φ and the range of f is closed and bounded.

Model-completeness has several important applications. A typical applica-
tion is Abraham Robinson’s simple proof of Artin’s positive solution to Hilbert’s
17th problem.

Definition 7.20 Let F be a real closed field and f(X) ∈ F (X1, . . . ,Xn) be
a rational function. We say that f is positive semidefinite if f(a) ≥ 0 for all
a ∈ F

n.

Theorem 7.21 (Hilbert’s 17th Problem) If f is a positive semidefinite ra-

tional function over a real closed field F , then f is a sum of squares of rational

functions.

Proof Suppose that f(X1, . . . ,Xn) is a positive semidefinite rational function
over F that is not a sum of squares. By Theorem 7.3, there is an ordering of
F (X) so that f is negative. Let R be the real closure of F (X) extending this
order. Then

R |= ∃v f(v) < 0

because f(X) < 0 in R. By model-completeness

F |= ∃v f(v) < 0,

contradicting the fact that f is positive semidefinite.
We will show that quantifier elimination gives us a powerful tool for under-

standing the definable subsets of a real closed field.

Definition 7.22 Let L ⊇ {<}. Let T be an L-theory extending the theory
of linear orders. We say that T is o-minimal if for all M |= T if X ⊆ M is
definable, then X is a finite union of points and intervals with endpoints in
M ∪ {±∞}.

We can think of o-minimality as an analog of strong minimality for ordered
structures. Strong minimality says that the only definable subsets in dimension
one can be defined using only equality–i.e., the ones that can be defined in any
structure. O-minimality says the only sets that can be defined in one dimension
are the ones definable in any ordered structure.

Corollary 7.23 RCFis an o-minimal theory.
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Proof Let R |= RCF. We need to show that every definable subset of R is a
finite union of points and intervals with endpoints in R ∪ {±∞}. By quantifier
elimination, very definable subset of R is a finite Boolean combination of sets
of the form

{x ∈ R : p(x) = 0}

and
{x ∈ R : q(x) > 0}.

Solution sets to nontrivial equations are finite, whereas sets of the second form
are finite unions of intervals. Thus, any definable set is a finite union of points
and intervals.

Next we will show that definable functions in one variable are piecewise
continuous. The first step is to prove a lemma about R that we will transfer to
all real closed fields.

Lemma 7.24 If f : R → R is semialgebraic, then for any open interval U ⊆ R
there is a point x ∈ U such that f is continuous at x.

Proof

case 1: There is an open set V ⊆ U such that f has finite range on V .
Pick an element b in the range of f such that {x ∈ V : f(x) = b} is infinite.

By o-minimality, there is an open set V0 ⊆ V such that f is constantly b on V .
case 2: Otherwise.

We build a chain U = V0 ⊃ V1 ⊃ V2 . . . of open subsets of U such that the
closure V n+1 of Vn+1 is contained in Vn. Given Vn, let X be the range of f

on Vn. Because X is infinite, by o-minimality, X contains an interval (a, b) of
length at most 1

n . The set Y = {x ∈ Vn : f(x) ∈ (a, b)} contains a suitable open
interval Vn+1. Because R is locally compact,

∞�

i=1

Vi =
∞�

i=1

Vi �= ∅.

If x ∈
�∞

i=1 Vi, then f is continuous at x.

The proof above makes essential use of the completeness of the ordering of
the reals. However, because the statement is first order, it is true for all real
closed fields, by the completeness of RCF.

Corollary 7.25 Let F be a real closed field and f : F → F is a semialgebraic

function. Then, we can partition F into I1 ∪ . . . ∪ Im ∪ X, where X is finite

and the Ij are pairwise disjoint open intervals with endpoints in F ∪{±∞} such

that f is continuous on each Ij.

Proof Let

D = {x : F |= ∃� > 0 ∀δ > 0 ∃y |x− y| < δ ∧ |f(x)− f(y)| > �}
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be the set of points where f is discontinuous. Because D is definable, by o-
minimality D is either finite or has a nonempty interior. By Corollary 7.23,
D must be finite. Thus, F \ D is a finite union of intervals on which F is
continuous.

If F is real closed, then o-minimality tells us what the definable subsets of
F look like. Definable subsets of F

n are also relatively simple.

Definition 7.26 We inductively define the collection of cells as follows.
• X ⊆ F

n is a 0-cell if it is a single point.
• X ⊆ F is a 1-cell if it is an interval (a, b), where a ∈ F ∪ {−∞}, b ∈

F ∪ {+∞}, and a < b.
• If X ⊆ F

n is an n-cell and f : X → F is a continuous definable function,
then Y = {(x, f(x)) : x ∈ X} is an n-cell.

• Let X ⊆ F
n be an n-cell. Suppose that f is either a continuous definable

function from X to F or identically −∞ and g is either a continuous definable
function from X to F such that f(x) < g(x) for all x ∈ X or g is identically
+∞; then

Y = {(x, y) : x ∈ X ∧ f(x) < y < g(x)}
is an n + 1-cell.

In a real closed field, every nonempty definable set is a finite disjoint union
of cells. The proof relies on the following lemma.

Lemma 7.27 (Uniform Bounding) Let X ⊆ F
n+1 be semialgebraic. There

is a natural number N such that if a ∈ F
n and Xa = {y : (a, y) ∈ X} is finite,

then |Xa| < N .

Proof First, note that Xa is infinite if and only if there is an interval (c, d)
such that (c, d) ⊆ Xa. Thus {(a, b) ∈ X : Xa is finite} is definable. Without
loss of generality, we may assume that for all a ∈ F

n, Xa is finite. In particular,
we may assume that

F |= ∀x∀c∀d¬[c < d ∧ ∀y(c < y < d → y ∈ Xa)].

Consider the following set of sentences in the language of fields with constants
added for each element of F and new constants c1, . . . , cn. Let Γ be

RCF + Diag(F ) +




∃y1, . . . , ym




�

i<j

yi �= yj ∧
m�

i=1

yi ∈ Xc



 : m ∈ ω






Suppose that Γ is satisfiable. Then, there is a real closed field K ⊇ F and
elements c ∈ K

n such that Xc is infinite. By model-completeness, F ≺ K.
Therefore

K |= ∀x∀c, d ¬[c < d ∧ ∀y (c < y < d → y ∈ Xa)].
This contradicts the o-minimality of K. Thus, Γ is unsatisfiable and there is an
N such that

RCF + Diag(F ) |= ∀x ¬



∃y1, . . . , yN




�

i<j

yi �= yj ∧
N�

i=1

yi ∈ Xx







 .
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In particular, for all a ∈ F
n
, |Xa| < N .

We now state the Cell Decomposition Theorem and give the proof for subsets
of F

2. In the exercises, we will outline the results needed for the general case.

Theorem 7.28 (Cell Decomposition) Let X ⊆ F
m be semialgebraic. There

are finitely many pairwise disjoint cells C1, . . . , Cn such that X = C1∪ . . .∪Cn.

Proof (for m = 2) For each a ∈ F , let

Ca = {x : ∀� > 0∃y, z ∈ (x− �, x + �) [(a, y) ∈ X ∧ (a, z) �∈ X]}.

We call Ca the critical values above a. By o-minimality, there are only finitely
many critical values above a. By uniform bounding, there is a natural number
N such that for all a ∈ F , |Ca| ≤ N . We partition F into A0, A1, . . . , AN , where
An = {a : |Ca| = n}.

For each n ≤ N , we have a definable function fn : A1 ∪ . . . ∪ An → F by
fn(a) = nth element of Ca. As above, Xa = {y : (a, y) ∈ X}.

For n ≤ N and a ∈ An, we define Pa ∈ 22n+1, the pattern of X above a, as
follows.
If n = 0, then Pa(0) = 1 if and only if Xa = F . Suppose that n > 0.

Pa(0) = 1 if and only if x ∈ Xa for all x < f1(a).
Pa(2i− 1) = 1 if and only if fi(a) ∈ X.

For i < n, Pa(2i) = 1 if and only if x ∈ Xa for all x ∈ (fi(a), fi+1(a)).
P (2n) = 1 if and only if x ∈ Xa for all x > fn(a).
For each possible pattern σ ∈ 22n+1, let An,σ = {a ∈ An : Pa = σ}.

Each An,σ is semialgebraic. For each An,σ, we will give a decomposition of
{(x, y) ∈ X : x ∈ An,σ} into disjoint cells. Because the An,σ partition F , this
will suffice.

Fix one An,σ. By Corollary 7.25, we can partition An,σ = C1 ∪ . . . ∪ Cl,
where each Cj is either an interval or a singleton and fi is continuous on Cj for
i ≤ n, j ≤ l. We can now give a decomposition of {(x, y) : x ∈ An,σ} into cells
such that each cell is either contained in X or disjoint from X.

For j ≤ l, let Dj,0 = {(x, y) : x ∈ Cj and y < f(1)}.
For j ≤ l and 1 ≤ i ≤ n, let Dj,2i−1 = {(x, fi(x)) : x ∈ Cj}.
For j ≤ l and 1 ≤ i < n, let Dj,2i = {(x, y) : x ∈ Cj , fi(x) < y < fi+1(x)}.
For j ≤ l, let Dj,2n = {(x, y) : x ∈ Cj , y > fn(x)}.
Clearly, each Dj,i is a cell,

�
Dj,i = {(x, y) : x ∈ An,σ}, and each Dj,i

is either contained in X or disjoint from X. Thus, taking the Dj,i that are
contained in X, we get a partition of {(x, y) ∈ X : x ∈ An,σ} into disjoint cells.

o-minimal Expansions of R
The proofs above used very little about semialgebraic sets beyond o-minimality.
Indeed, they would work in any o-minimal expansion of the real field. Indeed,
there is a rich theory of definable sets in o-minimal expansions of the reals. We
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will survey some of the results in this section. For full details, see van den Dries
book Tame topology and o-minimal structures.

Let R = (R,+, ·, <, . . .) be an o-minimal expansion of the reals, i.e., a struc-
ture obtained by adding extra structure to the reals such that Th(R) is o-
minimal. Below by “definable” we will mean definable in R.

Theorem 7.29 Assume R is an o-minima expansion of R.

i) Every definable subset of Rn is a finite union of cells.

ii) If f : X → Rn is definable, there is a finite partition of X into cells

X1,∪, Xn such that f |Xi is continuous for each i. Indeed, for any r ≥ 0, we

can choose the partition such that f |Xi is Cr for each i.

An easy consequence of ii) is that definable sets have only finitely many
connected components. Much more is true, for example:

• Definable bounded sets can be definably triangulated.
• Suppose X ⊆ Rn+m is definable. For a ∈ Rm let

Xa = {x = (x1, . . . , xn) ∈ Rn : (x, a) ∈ X}.

There are only finitely many definable homeomorphism types for the sets Xa.

• (Curve selection) If X ⊆ Rn is definable and a is in the closure of X, then
there is a continuous definable f : (0, 1) → X such that

lim
x→1

f(x) = a.

• If G is a definable group, then G is definably isomorphic to a Lie group.
• If we assume in addition that all definable functions are majorized by poly-

nomials, then many of the metric properties of semialgebraic sets and asymptotic
properties of semialgebraic functions also generalize.

Of course, this leads to the question: are there interesting o-minimal expan-
sions of R?

Ran and subanalytic sets

Most of the results on o-minimal structures mentioned above were proved before
we knew of any interesting o-minimal structures other than the real field. The
first new example of an o-minimal theory was given by van den Dries.

Let Lan = L ∪ { �f : for some open U ⊃ [0, 1]n, f : U → R is analytic}.
We define �f : Rn → R by

�f(x) =
�

f(x) x ∈ [0, 1]n
0 otherwise.

We let Ran be the resulting Lan-structure. Denef and van den Dries proved that
Ran is o-minimal and that Ran has quantifier elimination if we add a function

D(x, y) =
�

x/y if 0 ≤ |x| ≤ |y|
0 otherwise
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to the language. Quantifier elimination is proven by using the Weierstrass prepa-
ration theorem to replace arbitrary analytic functions of several variables by an-
alytic functions that are polynomial in one of the variables. Tarski’s elimination
procedure is then used to eliminate this variable.

Denef and van den Dries also showed that if f : R → R is definable in
Ran, then f is asymptotic to a rational function. In particular, although we
can define the restriction of the exponential function to bounded intervals, we
cannot define the exponential function globally. It is also impossible to define
the sine function globally; for its zero set would violate o-minimality.

Although Ran may seem unnatural, the definable sets form an interesting
class.

We say that X ⊆ Rn is semi-analytic if for all x in Rn there is an open
neighborhood U of x such that X ∩ U is a finite Boolean combination of sets
{x ∈ U : f(x) = 0} and {x ∈ U : g(x) > 0} where f, g : U → R are analytic.
We say that X ⊆ Rn is subanalytic if for all x in Rn there is an open U and
Y ⊂ Rn+m a bounded semianalytic set such that X ∩ U is the projection of Y

into U . It is well known that subanalytic sets share many of the nice properties
of semialgebraic sets.

If X ⊂ Rn is bounded, then X is definable in Ran if and only if X is sub-
analytic. Indeed Y ⊆ Rn is definable in Ran if and only if it is the image of a
bounded subanalytic set under a semialgebraic map. Most of the known prop-
erties of subanalytic sets generalize to sets defined in any polynomial bounded
o-minimal theory.

Exponentiation

The big breakthrough in the subject came in 1991. While quantifier elimination
for Rexp is impossible, Wilkie proved the next best thing.

Theorem 7.30 (Wilkie) Let φ(x1, . . . , xm) be an �Lexp formula. Then there

is n ≥ m and f1, . . . , fs ∈ Z[x1, . . . , xn, e
x1 , . . . , e

xn ] such that φ(x1, . . . , xn) is

equivalent to

∃xm+1 . . .∃xn f1(x1, . . . , xn, e
x1 , . . . , e

xn) = . . . = fs(x1, . . . , xn, e
x1 , . . . , e

xn) = 0.

Thus every formula is equivalent to an existential formula (this property is
equivalent to model completeness) and every definable set is the projection of
an exponential variety.

Wilkie’s proof depends heavily on the following special case of a theorem of
Khovanski. Before Wilkie’s theorem, Khovanski’s result was the best evidence
that Rexp is o-minimal; indeed Khovanski’s theorem is also the crucial tool
needed to deduce o-minimality from model completeness.

Theorem 7.31 (Khovanski) If f1, . . . , fm : Rn → R are exponential poly-

nomials, then {x ∈ Rn : f1(x) = . . . fn(x) = 0} has finitely many connected

components.
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If X ⊆ R is definable in Rexp then by Wilkie’s Theorem there is an expo-
nential variety V ⊆ Rn such that X is the projection of V . By Khovanski’s
Theorem V has finitely many connected components and X is a finite union of
points and intervals. Thus Rexp is o-minimal.

Using the o-minimality of Rexp one can improve some of Khovanski’s results
on “fewnomials”. From algebraic geometry we know that we can bound the
number of connected components of a hypersurface in Rn uniformly in the degree
of the defining polynomial. Khovanski showed that it is also possible to bound
the number of connected component uniformly in the number of monomials in
the defining polynomial. We will sketch the simplest case of this. Let Fn,m be
the collection of polynomials in R[X1, . . . ,Xn] with at most m monomials. For
p ∈ Fn,m let

V
+(p) = {x = (x1, . . . , xn) ∈ Rn :

n�

i=1

xi ≥ 0 ∧ p(x) = 0}.

We claim that there are only finitely many homeomorphism types of V
+(p) for

p ∈ Fn,m. Let Φm,n(x1, . . . , xn, r1,1 . . . , r1,n, . . . , rm,1, . . . , rm,n, a1, . . . , am) be
the formula

∃w1 . . . , wm ((
�

i=1m

e
wi = xi) ∧

m�

i=1

ai

n�

j=1

e
wiri,j = 0).

We see that Φ expresses
m�

i=1

ai

n�

j=1

x
ri,j

j = 0.

Let Xr,a denote the set of x ∈ Rn such that Φ(x, r, a) holds. By o-minimality,
{Xr,a : r ∈ Rmn

, a ∈ Rm} represents only finitely many homeomorphism types.

In addition to answering the question of o-minimality, some headway has
been made on the problem of decidability. Making heavy use of Wilkie’s methods
and Khovanski’s theorem, Macintyre and Wilkie have shown that if Schanuel’s
Conjecture in is true then the first order theory of Rexp is decidable. Where
Schanuel’s Conjecture is the assertion that if λ1, . . . , λn are complex numbers
linearly independent over Q, then the transcendence degree of the field

Q(λ1, . . . , λn, e
λ1 , . . . , e

λn)

is at least n.

Miller provided an interesting counterpoint to Wilkie’s theorem. Using ideas
of Rosenlicht he showed that ifR is any o-minimal expansion of the real field that
contains a function that is not majorized by a polynomial, then exponentiation
is definable in R.

Let Lan,exp be Lan ∪ {ex} and let Ran,exp be the real numbers with both ex-
ponentiation and restricted analytic functions. Using the Denef-van den Dries
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quantifier elimination for Ran and a mixture of model-theoretic and valuation
theoretic ideas, van den Dries, Macintyre, and I were able to show that Ran,exp

has quantifier elimination if we add log to the language. Using quantifier elim-
ination and Hardy field style arguments (but avoiding the geometric type of
arguments used by Khovanski) we were able to show that Ran,exp is o-minimal.

Since the language Lan,exp has size 2ℵ0 , one would not expect to give a sim-
ple axiomatization of the first order theory of Ran,exp. Ressayre noticed that
the model-theoretic analysis of Ran,exp uses very little global information about
exponentiation. This observation leads to a “relative” axiomatization. The the-
ory Th(Ran,exp) is axiomatized by the theory of Ran and axioms asserting that
exponentiation is an increasing homomorphism from the additive group onto
the multiplicative group of positive elements that majorizes every polynomial.

Using this axiomatization and quantifier elimination one can show that any
definable function is piecewise given by a composition of polynomials, exp, log,
and restricted analytic functions on [0, 1]n. For example, the definable function
f(x) = e

ex − e
x2 − 3x is eventually increasing and unbounded. Thus for some

large enough r ∈ R there is a function g : (r, +∞) → R such that f(g(x)) = x for
x > r. The graph of g is the definable set {(x, y) : x > r and e

ey−e
y2−3y = x}.

Thus g is a definable function and there is some way to express g explicitly as
a composition of rational functions, exp, log, and restricted analytic functions.
In most cases it is in no way clear how to get these explicit representations of
an implicitly defined function. One important corollary is that every definable
function is majorized by an iterated exponential.
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