
A Real Algebra

We prove some of the algebraic facts needed in Section 7. All of these results
are due to Artin and Schreier. See Lang’s Algebra §XI for more details.

All fields are assumed to be of characteristic 0.

Definition A.1 A field K is real if −1 can not be expressed as a sum of squares
of elements of K. In general, we let

�
K

2 be the sums of squares from K.

If F is orderable, then F is real because squares are nonnegative with respect
to any ordering.

Lemma A.2 Suppose that F is real and a ∈ F \ {0}. Then, at most one of a

and −a is a sum of squares.

Proof If a and b are both sums of squares, then a
b = a

b2 b is a sum of squares.
Thus, if F is real, at least one of a and −a is not in

�
F

2.

Lemma A.3 If F is real and −a ∈ F \
�

F
2, then F (

√
a) is real. Thus, if F

is real and a ∈ F , then F (
√

a) is real or F (
√
−a) is real.

Proof We may assume that
√

a �∈ F . If F (
√

a) is not real, then there are
bi, ci ∈ F such that

−1 =
�

(bi + ci
√

a)2 =
�

(b2
i + 2cibi

√
a + c

2
i a).

Because
√

a and 1 are a vector space basis for F (
√

a) over F ,

−1 =
�

b
2
i + a

�
c
2
i .

Thus

−a =
1 +

�
b
2
i�

c
2
i

=
��

b
2
i

� ��
c
2
i

�
+

��
c
2
i

�

(
�

c
2
i )

2

and −a ∈
�

F
2, a contradiction.

Lemma A.4 If F is real, f(X) ∈ F [X] is irreducible of odd degree n, and

f(α) = 0, then F (α) is real.

Proof We proceed by induction on n. If n = 1, this is clear. Suppose, for
purposes of contradiction, that n > 1 is odd, f(X) ∈ F [X] is irreducible of
degree n, f(α) = 0, and F (α) is not real. There are polynomials gi of degree at
most n−1 such that −1 =

�
gi(α)2. Because F is real, some gi is nonconstant.

Because F (α) ∼= F [X]/(f), there is a polynomial q(X) ∈ F [X] such that

1 =
�

g
2
i (X) + q(X)f(X).
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The polynomial
�

g
2
i (X) has a positive even degree at most 2n − 2. Thus, q

has odd degree at most n − 2. Let β be the root of an irreducible factor of q.
By induction, F (β) is real, but −1 =

�
g
2
i (β), a contradiction.

Definition A.5 We say that a field R is real closed if and only if R is real and
has no proper real algebraic extensions.

If R is real closed and a ∈ R, then, by Lemmas A.2 and A.3, either a ∈ R
2

or −a ∈ R
2. Thus, we can define an order on R by

a ≥ 0⇔ a ∈ R
2
.

Moreover, this is the only way to define an order on R because the squares must
be nonnegative. Also, if R is real closed, every polynomial of odd degree has a
root in R.

Lemma A.6 Let F be a real field. There is R ⊇ F a real closed algebraic

extension. We call R a real closure of F .

Proof Let I = {K ⊇ F : K real, K/F algebraic}. The union of any chain of
real fields is real; thus, by Zorn’s Lemma, there is a maximal R ∈ I. Clearly, R

has no proper real algebraic extensions; thus, R is real closed.

Corollary A.7 If F is any real field, then F is orderable. Indeed, if a ∈ F and

−a �∈
�

F
2, then there is an ordering of F , where a > 0.

Proof By Lemma A.3, F (
√

a) is real. Let R be a real closure of F . We order
F by restricting the ordering of R because a is a square in R, a > 0.

The following theorem is a version of the Fundamental Theorem of Algebra.

Theorem A.8 Let R be a real field such that

i) for all a ∈ R, either
√

a or
√
−a ∈ R and

ii) if f(X) ∈ R[X] has odd degree, then f has a root in R.

If i =
√
−1, then K = R(i) is algebraically closed.

Proof

Claim 1 Every element of K has a square root in K.
Let a + bi ∈ K. Note that a+

√
a2+b2

2 is nonnegative for any ordering of R.
Thus, by i), there is c ∈ R with

c
2 =

a +
√

a2 + b2

2
.

If d = b
2c , then (c + di)2 = a + bi.

Let L ⊇ K be a finite Galois extension of R. We must show that L = K.
Let G = Gal(L/R) be the Galois group of L/R. Let H be the 2-Sylow subgroup
of G.
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Claim 2 G = H.
Let F be the fixed field of H. Then F/R must have odd degree. If F = R(x),

then the minimal polynomial of x over R has odd degree, but the only irreducible
polynomials of odd degree are linear. Thus, F = R and G = H.

Let G1 = Gal(L/K). If G1 is nontrivial, then there is G2 a subgroup of G1

of index 2. Let F be the fixed field of G2. Then, F/K has degree 2. But by
Claim 1, K has no extensions of degree 2. Thus, G1 is trivial and L = K.

Corollary A.9 Suppose that R is real. Then R is real closed if and only if R(i)
is algebraically closed.

Proof

(⇒) By Theorem A.8.
(⇐) R(i) is the only algebraic extension of R, and it is not real.

Let (R,<) be an ordered field. We say that R has the intermediate value

property if for any polynomial p(X) ∈ R[X] if a < b and p(a) < 0 < p(b), then
there is c ∈ (a, b) with p(c) = 0.

Lemma A.10 If (R,<) is an ordered field with the intermediate value property,

then R is real closed.

Proof Let a > 0 and let p(X) = X
2 − a. Then p(0) < 0, and p(1 + a) > 0;

thus, there is c ∈ R with c
2 = a.

Let

f(X) = X
n +

n−1�

i=0

aiX
i

where n is odd. For M large enough, f(M) > 0 and f(−M) < 0; thus, there is
a c such that f(c) = 0.

By Theorem A.8, R(i) is algebraically closed. Because R is real, it must be
real closed.

Lemma A.11 Suppose that R is real closed and < is the unique ordering, then

(R,<) has the intermediate value property.

Proof Suppose f(X) ∈ R[X], a < b, and f(a) < 0 < f(b). We may assume
that f(X) is irreducible (for some factor of f must change signs). Because R(i)
is algebraically closed, either f(X) is linear, and hence has a root in (a, b), or

f(X) = X
2 + cX + d,

where c
2 − 4d < 0. But then

f(X) =
�
X +

c

2

�2
+

�
d− c

2

4

�

and f(x) > 0 for all x.

We summarize as follows.
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Theorem A.12 The following are equivalent.

i) R is real closed.

ii) For all a ∈ R, either a or −a has a square root in R and every polynomial

of odd degree has a root in R.

iii) We can order R by a ≥ 0 if and only if a is a square and, with respect

to this ordering, R has the intermediate value property.

Finally, we consider the question of uniqueness of real closures. We first
note that there are some subtleties. For example, there are nonisomorphic real
closures of F = Q(

√
2). The field of real algebraic numbers is one real closure

of F . Because a+ b
√

2 �→ a− b
√

2 is an automorphism of F ,
√

2 is not in
�

F
2.

Thus, by Corollary B.5, F (
√
−2) is real. Let R be a real closure of F containing

F (
√
−2). Then, R is not isomorphic to the real algebraic numbers over F .

This is an example of a more general phenomenon. It is proved by successive
applications of Lemmas A.2 and A.3.

Lemma A.13 If (F,<) is an ordered field, then there is a real closure of F in

which every positive element of F is a square.

Because Q(
√

2) has two distinct orderings, it has two nonisomorphic real
closures. The field Q(t) of rational functions over Q has 2ℵ0 orderings and
hence 2ℵ0 nonisomorphic real closures.

The next theorem shows that once we fix an ordering of F , there is a unique
real closure that induces the ordering.

Theorem A.14 Let (F,<) be an ordered field. Let R0 and R1 be real closures

of F such that (Ri, <) is an ordered field extension of (F,<). Then, R0 is

isomorphic to R1 over F and the isomorphism is unique.

The proof of Theorem A.14 uses Sturm’s algorithm.

Definition A.15 Let R be a real closed field. A Sturm sequence is a finite
sequence of polynomials f0, . . . , fn such that:

i) f1 = f
�
0;

ii) for all x and 0 ≤ i ≤ n− 1, it is not the case that fi(x) = fi+1(x) = 0;
iii) for all x and 1 ≤ i ≤ n − 1, if fi(x) = 0, then fi−1(x) and fi+1(x) have

opposite signs;
iv) fn is a nonzero constant.

If f0, . . . , fn is a Sturm sequence and x ∈ R, define v(x) to be the number
of sign changes in the sequence f0(x), . . . , fn(x).

Suppose that f ∈ R[X] is nonconstant and does not have multiple roots.
We define a Sturm sequence as follows:

f0 = f ;
f1 = f

�.
Given fi nonconstant, use the Euclidean algorithm to write

fi = gifi−1 − fi+1
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where the degree of fi+1 is less than the degree of fi−1. We eventually reach a
constant function fn.

Lemma A.16 If f has no multiple roots, then f0, . . . , fn is a Sturm sequence.

Proof

iv) If fn = 0, then fn−1|fi for all i. But f has no multiple roots; thus f and
f
� have no common factors, a contradiction.

ii) If fi(x) = fi+1(x) = 0, then by induction fn(x) = 0, contradicting iv).
iii) If 1 ≤ i ≤ n− 1 and fi(x) = 0, then fi−1(x) = −fi+1(x). Thus, fi−1(x)

and fi+1(x) have opposite signs.

Theorem A.17 (Sturm’s Algorithm) Suppose that R is a real closed field,

a, b ∈ R, and a < b. Let f be a polynomial without multiple roots. Let f =
f0, . . . , fn be a Sturm sequence such that fi(a) �= 0 and fi(b) �= 0 for all i.

Then, the number of roots of f in (a, b) is equal to v(a)− v(b).

Proof Let z1 < . . . < zm be all the roots of the polynomials f0, . . . , fn that are
in the interval (a, b). Choose c1, . . . , cm−1 with zi < ci < zi+1. Let a = c0 and
b = cm. For 0 ≤ i ≤ m − 1, let ri be the number of roots of f in the interval
(ci, ci+1). Clearly,

�
ri is the number of roots of f in the interval (a, b). On

the other hand,

v(a)− v(b) =
m−1�

i=0

(v(ci)− v(ci+1)).

Thus, it suffices to show that if c < z < d and z is the only root of any fi in
(c, d), then

v(d) =
�

v(c)− 1 z is a root of f

v(c) otherwise .

If fi(b) and fi(c) have different signs, then fi(z) = 0. We need only see what
happens at those places.

If z is a root of fi, i > 0, then fi+1(z) and fi−1(z) have opposite signs and
fi+1 and fi−1 do not change signs on [c, d]. Thus, the sequences fi−1(c), fi(c), fi+1(c)
and fi−1(d), fi(d), fi+1(d) each have one sign change. For example, if fi−1(z) >

0 and fi−1(z) < 0, then these sequences are either +,+,− or +,−,+, and in
either case both sequences have one sign change.

If z is a root of f0, then, because f
�(z) �= 0, f is monotonic on (c, d). If f

is increasing on (c, d), the sequence at c starts −,+, . . . and the sequence at d

starts +,+, . . .. Similarly, if f is decreasing, the sequence at c starts +,−, . . .,
and the sequence at b starts −,−, . . .. In either case, the sequence at c has one
more sign change than the sequence at d. Thus, v(c)− v(d) = 1, as desired.

Corollary A.18 Suppose that (F,<) is an ordered field. Let f be a nonconstant

irreducible polynomial over F . If R0 and R1 are real closures of F compatible

with the ordering, then f has the same number of roots in both R0 and R1.
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Proof Let f0, . . . , fn be the Sturm sequence from Lemma A.16. Note that
each fi ∈ F [X]. We can find M ∈ F such that any root of fi is in (−M,M) (if
g(X) = X

n +
�

aiX
i, then any root of g has absolute value at most 1+

�
|ai|,

for example). Then, the number of roots of f in Ri is equal to v(−M)− v(M),
but v(M) depends only on F .

Lemma A.19 Suppose (F,<) is an ordered field and R0 and R1 are real clo-

sures of F such that (Ri, <) is an ordered field extension of (F,<). If α ∈ R0\F ,

there is an ordered field embedding of F (α) into R1 fixing F .

Proof Let f ∈ F [X] be the minimal polynomial of α over F . Let α1 < . . . < αn

be all zeros of f in R0. By Corollary B.18, f has exactly n zeros β1 < . . . <

βn ∈ R1. Let
σ : F (α1, . . . ,αn)→ F (β1, . . . ,βn)

be the map obtained by sending αi to βi. We claim that σ is an ordered field
isomorphism.

For i = 1, . . . , n − 1, let γi =
√

αi+1 − αi ∈ R0. By the Primitive Element
Theorem, there is a ∈ F such that

F (a) = F (α1, . . . ,αn, γ1, . . . , γn−1).

Let g ∈ F [X] be the minimal polynomial of a over F . By Corollary B.18, g has
a zero b ∈ R1 and there is a field isomorphism φ : F (a) → F (b). Because F (a)
contains n zeros of F , so does F (b). Thus β1, . . . ,βn ∈ F (b) and for each i there
is a j such that φ(αi) = βj . But

φ(γi)2 = φ(αi+1)− φ(αi).

Thus φ(αi) = βi for i = 1, . . . , n. We still must show that σ is order preserving.
Suppose c ∈ F (α1, . . . ,αn) and c > 0. There is d ∈ R0 such that d

2 = c.
Arguing as above, we can find a field embedding

ψ : F (α1, . . . ,αn, d) ⊆ R1

fixing F . As above, ψ(αi) = βi and ψ ⊇ σ. Because

ψ(d)2 = ψ(c) = σ(c),

we have σ(c) > 0. Thus σ is order preserving.

Proof of Theorem A.14 Let P be the set of all order preserving σ : K → R1

where F ⊆ K → R0 and σ|F is the identity. By Zorn’s Lemma, there is a
maximal σ : K → R1 in P. By identifying K and σ(K) and applying the
previous lemma, we see that K = R0. A similar argument shows that σ(K) =
R1.

Uniqueness follows because the ith root of f(X) in R0 must be sent to the
ith root of f(X) in R1.
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