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Proof Because δ ∈ S,Aδ = Bδ and a 6∈ Bδ. Let a = sB(x1, . . . , xk, y1, . . . , yl)
where s is a Skolem term, x ∈ J<δ, and y ∈ J \J<δ. Note that l > 0 because
a 6∈ Bδ. Choose x ∈ J<δ and y ∈ Jδ such that x > sup{c, x1, . . . , xk} and
y < yi for i = 1, . . . , l. By indiscernibility, if i1 < . . . < in and j1 < . . . < jn
are two sequences from J with x < i1, j1 and in, jn < y, then tB(c, i) < a

if and only if tB(c, j) < a.
Because δ is a limit point of S, we can find α < δ with α ∈ S such that

x < dα,1 and dα,n < y. But then tB(c, dα) = aα < a and hence tB(c, j) < a

for all j1, . . . , jn ∈ J with x < j1 < . . . < jn < y.

Finally, we will exploit the fact that because δ ∈ S, Iδ ∼= ω∗ and Jδ ∼= ω∗1 .

Lemma 5.3.18 i) If j1, . . . , jn ∈ Jδ and j1 < . . . < jn, then t
B(c, j) > aα

for α ∈ S with α < δ.
ii) There are j1 < . . . < jn in Jδ such that tB(c, j) < a for all a ∈ Iδ.

Proof
i) Because δ ∈ S and α < δ, dα ∈ Bδ. Because, by Lemma 5.3.11 i),

Bδ ∩ J = J<δ, dδ,1 6∈ J<δ. Thus dα,n < dδ,1.
Because

aα = tB(c, dα) < tB(c, dδ),

by indiscernibility
aα = tB(c, dα) < tB(c, j).

ii) Let z0 > z1 > . . . be a cofinal descending sequence in Iδ. For each i,
we find xi ∈ J<δ and yi ∈ Jδ such that tB(c, j) < zi for all j1, . . . , jn ∈ J
with xi < j1 < . . . < jn < yn. Because Jδ has order type ω∗1 , we can find
j1, . . . , jn ∈ Jδ such that xi < j1 < . . . < jn < yi for all i < n. Thus,
tB(c, j) < ai for i = 0, 1, 2, . . .. Thus, tB(c, j) < a for all a ∈ Iδ.

Thus, there is an element of M that is above all of the elements of I<δ

but below all of the elements of Iδ. Because A is the Skolem hull of I ,
this violates Lemma 5.3.11 ii). Thus, MA and MB are not isomorphic as
L-structures.

In this proof, we needed κ > ℵ1 so we could use the ordering ω∗1 and still
have |Aα| < κ. More care is needed to prove the theorem when κ = ℵ1.

5.4 An Independence Result in Arithmetic

Gödel’s famous Incompleteness Theorem asserts that there are sentences φ
in the language of arithmetic such that φ is true in the natural numbers
but unprovable from the Peano Axioms for arithmetic. Indeed, for any con-
sistent recursive extension T of Peano arithmetic, we can find a sentence
that is independent from T . The original independent sentences were self-
referential sentences that asserted their own unprovability or metamathe-
matical sentences asserting the consistency of the theory. People wondered
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whether the independent statements could be made more “mathematical.”
In the late 1970s, Paris and Harrington [72] showed that a slight variant
of the finite version of Ramsey’s Theorem is true but unprovable in Peano
arithmetic. The proof is an interesting application of indiscernibles.
We begin with the combinatorial statement.

Theorem 5.4.1 (Paris–Harrington Principle) For all natural num-
bers n, k,m, there is a number l such that if f : [l]n → k, then there is
Y ⊆ l such that Y is homogeneous for f , |Y | ≥ m, and if y0 is the least
element of Y , then |Y | ≥ y0.

Proof We argue as in the proof of the finite version of Ramsey’s Theorem.
Suppose that there is no such l. For l < ω, let Tl = {f : [{0, . . . , l− 1}]n →
k : there is no Y homogeneous for f with |Y | ≥ m,minY }. Clearly, each
Tl is finite, and if f ∈ Tl+1 there is a unique g ∈ Tl such that g ⊂ f . Thus,
if we order T =

⋃

Tl by inclusion, we get a finite branching tree. Because
each Tl is nonempty, T is an infinite finite branching tree and by König’s
Lemma there is f0 ⊂ f1 ⊂ f2 ⊂ . . . with fi ∈ Ti.
Let f =

⋃

fi. Then f : [N]n → k. By Ramsey’s Theorem, there is an
infinite X ⊆ N homogeneous for f . Let x1 be the least element of X ,
and choose s ≥ x1,m. Let x1, . . . , xl be the first l-elements of X and let
l > xl. Then, Y = {x1, . . . , xl} is homogeneous for fs and |Y | ≥ m,minY ,
a contradiction.

Although the proof above is only a minor variant of the proof of the
finite version of Ramsey’s Theorem, the use of the infinite version of Ram-
sey’s Theorem is in this case unavoidable. We will show that the Paris–
Harrington Principle cannot be proved in Peano arithmetic. The approach
we give here is due to Kanamori and McAloon [48].

Definition 5.4.2 Let X ⊆ ω. We say that f : [X ]n → ω is regressive if
f(A) < minA for all A ∈ [X ]n. We say that Y ⊆ X is min-homogeneous
for f , if whenever A,B ∈ [Y ]n and minA = minB, then f(A) = f(B).

If a < b, we let (a, b) and [a, b] denote {x : a < x < b} and {x : a ≤ x ≤
b}, respectively.
We will consider the combinatorial principle.

(∗) For all c,m, n, k, there is d such that if f1, . . . , fk : [d]n → d are
regressive, then there is Y ⊆ [c, d] such that |Y | ≥ m and Y is min-
homogeneous for each fi.

We will show that (∗) is true but not provable in Peano arithmetic. We
begin by giving a finite combinatorial proof that (∗) follows from the Paris–
Harrington Principle. This proof can be formalized in Peano arithmetic.
This tells us that not only is (∗) true but also if it is not provable in Peano
arithmetic, then neither is the Paris-Harrington Principle.
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Lemma 5.4.3 For all c,m, n, k < ω, there is d < ω such that if g : [d]n →
k, then there is a homogeneous set Y ⊆ [c, d) with |Y | ≥ m+ 2n, min Y +
n+ 1.

Proof By the Paris–Harrington Principle, there is a d such that for any
partition h : [d]n → k + 1 there is a homogeneous set Z with |Z| ≥ c +
m + 2n + 1, minZ. Given g : [d]n → k, we define h : [d]n → k + 1 by
h({a1, . . . , an}) = k if some ai < c+ n+ 1; otherwise,

h({a1, . . . , an}) = g({a1 − n− 1, . . . , an − n− 1}).

Let Z be a homogeneous set for h with |Z| ≥ c + m + 2n + 1,minZ.
Because |Z| ≥ c+m + 2n + 1, we can find a1, . . . , an ∈ Z such that each
ai ≥ c+ n + 1. Then h({a1, . . . , an}) 6= k and we must have h(A) 6= k for
all A ∈ [Z]n. Thus, every element of Z is greater than or equal to c+n+1.
Let Y = {a − n − 1 : a ∈ Z}. Then Y ⊆ [c, d) is homogeneous for g and
|Y | = |Z| ≥ c+m+ 2n+ 1,minZ. But minZ = min Y + n+ 1.

Lemma 5.4.4 For all c,m, n, k, there is d such that, if f1, . . . , fk : [d]n →
d are regressive, then there is X ⊆ [c, d) such that |Y | ≥ m and X is
min-homogeneous for each fi.

Proof By Lemma 5.4.3, there is a d < ω such that for all g : [d]n+1 → 3k,
there is Y ⊆ [c, d) homogeneous for g with |Y | ≥ m+ n,minY + n+ 1.
Suppose that f1, . . . , fk : [d]n → d are regressive. For i ≤ l, define gi :

[d]n+1 → 3. Suppose that as follows: if A = {a0, . . . , an} where a0 < a1 <

. . . < an, then

gi(A) =







0 if fi(a0, a1, . . . , an−1) < fi(a0, a2, . . . , an)
1 if fi(a0, a1, . . . , an−1) = fi(a0, a2, . . . , an)
2 if fi(a0, a1, . . . , an−1) > fi(a0, a2, . . . , an).

Let g : [d]n → 3k by g(A) = (g1(A), . . . , gl(A)). By Lemma 5.4.3, there is
Y ⊆ (c, d) homogeneous for g with |Y | ≥ min Y + n+ 1,m+ n. Clearly, Y
is homogeneous for each gi. Let y0 < y1 < . . . < ys list Y . For j = 1, ..., s−
n+1, let aj = (yj , yj+1, . . . , yj+n−1). Because fi is regressive fi(y0, aj) < y0
for each j ≤ s−n+1. But s+1 = |Y | ≥ y0+n+1. Thus s−n+1 ≥ y0+1.
Thus, we must have fi(y0, aj) = fi(y0, al) for some j 6= l. Because Y is
homogeneous, the sequence fi(y0, a1), fi(y0, a2), . . . , fi(y0, as−n+1) is either
increasing, decreasing, or constant. At least two values are equal. Thus, they
must all be equal and gi is constantly zero on [Y ]n+1.
Let z1 < . . . < zn−1 be the largest n − 1 elements of Y , and let X =

Y \ {z1, . . . , zn}. Because |Y | ≥ m + n, |X | ≥ m. We claim that X is
min-homogeneous for each fi. Suppose that x1 < x2 < . . . < xn. Then
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fi(x1, x2, . . . , xn−1, xn) = fi(x1, x3, . . . , xn−1, z1)

= fi(x1, x4, . . . , z1, z2)

...

= fi(x1, z1, . . . , zn−1).

But the same argument shows that if y2, . . . , yn−1 ∈ X with x1 < y2 <

. . . < yn−1, then

fi(x1, y2, . . . , yn−1) = fi(x1, z1, . . . , zn−1) = fi(x1, x2, . . . , xn−1, xn).

Thus, X is min-homogeneous for each fi.

The independence proof will use a strong form of indiscernibles. Let
Γ be a finite set of formulas in the language of arithmetic and M be
a model of Peano arithmetic. We say that I ⊆ M is a sequence of
diagonal indiscernibles for Γ if whenever φ(u1, . . . , um, v1, . . . , vn) ∈ Γ
x0, . . . , xn, y1, . . . , yn ∈ I with x0 < x1 < . . . < xn and x0 < y1 < . . . < yn
and a1, . . . , am < x0, then

M |= φ(a, x1, . . . , xn)↔ φ(a, y1, . . . , yn).

We first show how the combinatorial principle (∗) allows us to find sets
of diagonal indiscernibles in the standard model N.

Lemma 5.4.5 For any c, l,m, n and formulas φ1(u1, . . . , uk, v1, . . . , vn),. . .,
φl(u1, . . . , uk, v1, . . . , vn) in the language of arithmetic, there is a set I of
diagonal indiscernibles for φ1, . . . , φl with |I | ≥ m and min I > c.

Proof We may assume that m > 2n. By the Finite Ramsey Theorem,
we can find w such that w → (m + n)2n+1

l+1 . By (∗), we can find s such
that whenever f1, . . . , fk : [s]2n+1 → s are regressive there is Y ⊆ [c, s)
with |Y | ≥ w and Y is min-homogeneous for each fj . We define regressive
functions fj : [s]

2n+1 → l for j = 1, . . . , k and a partition g : [s]2n+1 → l+1
as follows. Let X = {x0, . . . , x2n} where x0 < x1 < . . . < x2n < l. If

φi(a, x1, . . . , xn)↔ φi(a, xn+1, . . . , x2n)

for all i ≤ l and a1, . . . , am < x0, then let fj(X) = 0 for all j and let
g(X) = 0. Otherwise, let g(X) = i and (f1(X), . . . , fk(X)) = a be such
that

φg(X)(a, x1, . . . , xn) 6↔ φg(X)(a, xn+1, . . . , x2n).

Because each function fj is regressive, there is Y ⊆ [c, s) min-homogeneous
for each fj with |Y | ≥ w. By choice of w there is X ⊆ Y and i ≤ k such
that |X | ≥ m+ n and g(A) = i for A ∈ [X ]2n+1.
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Suppose that i > 0. Because m > 2n, |X | > 3n. Thus, we can find
x0 < x1 < . . . < x3n in X . Because X is min-homogeneous for each fj , we
can find aj < x0 such that

aj = fj(x0, x1, . . . , x2n)

= fj(x0, x1, . . . , xn, x2n+1, . . . , x3n)

= fj(x0, xn+1, . . . , x2n).

Let a = (a1, . . . , ak). But then,

φi(a, x1, . . . , xn) 6↔ φi(a, xn+1, . . . , x2n),

φi(a, x1, . . . , xn) 6↔ φi(a, x2n+1, . . . , x3n)

and
φi(a, xn+1, . . . , x2n) 6↔ φi(a, x2n+1, . . . , x3n).

But this is impossible because at least two of the formulas must have the
same truth value. Thus i = 0.
Let z1 < . . . < zn be the n-largest elements of X and let I = X \

{z1, . . . , zn}. Then, |I | ≥ m and we claim that I is the desired sequence
of diagonal indiscernibles. If x0 < x1 < . . . < xn and y1 < . . . < yn are
sequences from I with x0 < y1 and a < x0, then for any i ≤ k,

φi(a, x1, . . . , xn)↔ φi(a, z1, . . . , zn)

and
φi(a, y1, . . . , yn)↔ φi(a, z1, . . . , zn).

Thus
φi(a, x1, . . . , xn)↔ φi(a, y1, . . . , yn)

and I is a set of diagonal indiscernibles.

Note that aside from appealing to the Paris–Harrington Principle in the
proof of Lemma 5.4.3, the three proofs above are straightforward finite
combinatorics that could easily be formalized in Peano arithmetic.
We will look for diagonal indiscernibles for a rather simple class of for-

mulas.

Definition 5.4.6 The set of ∆0-formulas is the smallest set D of formulas
in the language of arithmetic such that:
i) every quantifier-free formula is in D;
ii) if φ, ψ ∈ D, then φ ∧ ψ, φ ∨ ψ, and ¬φ are in D;
iii) if φ ∈ D and t is any term, then ∃v < t φ and ∀v < t φ are in D.

For example, if φ(x) is ∀v < x ∀w < x vw 6= x is a ∆0-formula defining
the set of prime numbers. The next lemma is an easy induction on formulas
that we leave to exercise 5.5.12.
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Lemma 5.4.7 Suppose that M is a model of Peano arithmetic and N ⊆
M is an initial segment of N (i.e., if a ∈ M , b ∈ N , and a < b, then
a ∈ N). If φ(v) is a ∆0-formula and a ∈ N , then M |= φ(a) if and only if
N |= φ(a).

Diagonal indiscernibles can be used to find initial segments that are models
of Peano arithmetic.

Lemma 5.4.8 Suppose that M is a model of Peano arithmetic and x0 <

x1 < . . . is a sequence of diagonal indiscernibles for all ∆0-formulas. Let
N = {y ∈ M : y < xi for some i < ω}. Then, N is closed under addition
and multiplication, and if N is the substructure of M with underlying set
N , then N is a model of Peano arithmetic.

Proof Suppose that i < j < k < l and a < xi. If a + xj ≥ xk , then we
can find b ≤ a such that b + xj = xk. By indiscernibility, b + xj = xl, so
xk = xl, a contradiction. Thus a + xj < xk. It follows that N is closed
under addition. Indeed xi + xj ≤ xk .
Suppose that i < j < k < l. We claim that axj < xk for all a < xi. If

not, then, by induction, we can find a < xi such that axj < xk ≤ (a+1)xj .
By indiscernibility, xl ≤ (a + 1)xj . But, adding xj to the first two terms,
we see that (a+1)xj < xk +xj . By the remarks above, xk +xj ≤ xl. Thus,
xl ≤ (a + 1)xj < xl, a contradiction. Thus axj < xk. It follows that N is
closed under multiplication.
Next, we show that truth of arbitrary formulas in N can be reduced to

the truth of ∆0-formulas in M.
Suppose that φ(w) is the formula ∃v1∀v2∃v3 . . . ∃vnψ(w, v1, . . . , vn), where

ψ(w, v) is quantifier-free. By adding dummy variables, every formula can
be put in this form. Let a < xi.
Because the sequence x0 < x1 < . . . is unbounded in I , then N |= φ(a)

if and only if ∃i1 > i∀i2 > i1 . . . ∃in > in−1 :

N |= ∃v1 < xi1∀v2 < xi2 . . . ∃vn < xin ψ(a, v1, . . . , vn).

By Lemma 5.4.7, N |= φ(a) if and only if ∃i1 > i ∀i2 > i1 . . . ∃in > in−1 :

M |= ∃v1 < xi1∀v2 < xi2 . . .∃vn < xin ψ(a, v1, . . . , vn).

By diagonal indiscernibility, N |= φ(a) if and only if

M |= ∃v1 < xi+1∀v2 < xi+2 . . .∃vn < xi+n ψ(a, v1, . . . , vn).

Next, we show that induction holds in N . Let φ(u,w) be a formula in the
language of arithmetic. Suppose that a, b ∈ N and N |= φ(b, a). Choose i0
such that a, b < xi0 . If φ is ∃v1∀v2 . . .∃vn ψ(u,w, v) where ψ is ∆0, then,
by the analysis above, if i < i1 < . . . < in, then for c < xi

N |= φ(c, a)⇔M |= ∃v1 < xi1∀v2 < xi2 . . . ∃vn < xin ψ(c, a, v1, . . . , vn).
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Because induction holds in M, there is a least c < xi0 such that N |=
φ(c, a). Thus, N is a model of Peano Arithmetic.

To prove the independence of the Paris–Harrington Principle from Peano
arithmetic, we will assume familiarity with formalizing finite combinatorics
and syntactic manipulations in arithmetic via coding. We summarize what
we will need and refer the reader to [50] §9 for more complete details.
There are formulas S(u), l(u, v), e(u, x) in the language of arithmetic such

that in the standard model S(u) defines the set of codes for finite sequence,
l(u, v) if u codes a set of length v, and e(v, u, i) if v is the ith element of
the sequence coded by v. All basic properties of finite sets and sequences
are provable in Peano arithmetic. Using these predicates, we can formalize
the Paris–Harrington Principle and (∗) as sentences in the language of
arithmetic. We can pick our coding of finite sets such that ifX ⊆ {0, . . . , a−
1}, then the code for X is less than 22a

.
Next, we use some basic facts about coding syntax in the language of

arithmetic. For each formula φ, we let dφe be the Gödel code for φ. There
is a formula Form0(v) that defines the set of Gödel codes for ∆0-formulas,
and there is a formula Sat0(u, v, w) such that Sat0(u, v, w) asserts that u
is a code for a ∆0-formula with free variables from v1, . . . , vw, v codes a se-
quence a of length w, and the formula with code u holds of the sequence a.
We call Sat0 a truth-definition for ∆0-formulas. All basic metamathemati-
cal properties of formulas and satisfaction for ∆0-formulas are provable in
Peano arithmetic.

Theorem 5.4.9 The combinatorial principle (∗) and the Paris–Harrington
Principle are not provable in Peano arithmetic.

Proof By the remarks after Lemma 5.4.4, it suffices to show that (∗) is
unprovable. Suppose that M is a nonstandard model of Peano arithmetic
and c is a nonstandard element of M. Suppose thatM |= (∗). We will use
Lemma 5.4.8 to construct an initial segment of M where (∗) fails.
Because the Finite Ramsey Theorem is provable in Peano arithmetic,

there is a least w ∈ M such that M |= w → (3c + 1)2c+1
c . Let d ∈ M

be least such that if f1, . . . , fc : [d]2c+1 → d are regressive, then there is
Y ⊆ (c, d) with |Y | ≥ w and Y min-homogeneous for each fi.
Using the truth predicate for ∆0-sets, we can follow the proof of Lemma

5.4.5 inside M and obtain I ⊂ (c, d) with |I | ≥ c such that M believes I
is a set of diagonal indiscernibles for all ∆0-formulas from M with Gödel
code at most c, free variables from v1, . . . , vc, and parameter variables from
w1, . . . , wc. In particular, I is a set of diagonal indiscernibles for all standard
∆0-formulas.
Let x0 < x1 < . . . be an initial segment of I , and let N be the initial

segment of M with universe N = {y ∈ M : y < xi for some i = 1, 2, . . .}.
By Lemma 5.4.8, N is a model of Peano arithmetic. Clearly, c ∈ N and
d 6∈ N . We claim that w ∈ N . Because the finite version of Ramsey’s
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Theorem is provable in Peano arithmetic, there is w′ ∈ N such that N |=
w′ → (3c+1)2c+1

c . Because all functions from [w′]2c+1 → c and all subsets
of w′ that are coded inM are coded inN ,M |= w′ → (3c+1)2c+1

c . Because
w was minimal, w ≤ w′ and w ∈ N . By a similar argument, if d′ ∈ N and
N |= ∀f1, . . . , fc : [d′]2c+1 → d′ is regressive, there is Y ⊆ (c, d′) min-
homogeneous for each fi with |Y | ≥ w. Then, this is also true in M; thus,
by choice of d, d ≤ d′. Because d 6∈ N , this is a contradiction. Thus, (∗)
fails in N and (∗) is not provable from Peano arithmetic.

5.5 Exercises and Remarks

Exercise 5.5.1 Show that 6 → (3)22 (i.e., if there are six people at a
party, you can either find three mutual acquaintances or three mutual non-
acquaintances).

Exercise 5.5.2 Let L = {E}, where E is a binary relation symbol, and
let T be the theory of an equivalence relation with infinitely many classes
each of which is infinite. Show that in anyM |= T we can find infinite sets
of indiscernibles I0 and I1 such that tp(I0) 6= tp(I1), but if J is any other
infinite set of indiscernibles, then tp(J) = tp(Ii) for i = 0 or 1.

Exercise 5.5.3 Let G be the free group on generators X . Show that X is
a set of indiscernibles in G.

Exercise 5.5.4 Show that if M is κ-saturated, then there is I ⊆ M , a
sequence of order indiscernibles with |I | = κ.

Exercise 5.5.5 Show that, for any countably infinite L-structure M, we
can find (Nn : n < ω), a descending elementary chain (i.e., Nn+1 ≺ Nn for
each n) of elementary extensions of M, such that M =

⋂

n<ωN . [Hint:
Let N0 be the Skolem hull of M and an infinite set of indiscernibles.]

Exercise 5.5.6 We say that a theory T has the order property if and only
if there is a formula φ(v1, . . . , vn, w1, . . . , wn) and M |= T with x1, x2, . . .

in Mn such that M |= φ(xi, xj) if and only if i < j.
a) Show that if φ has the order property in T , then T is not κ-stable for

any infinite κ. [Hint: Let (A,<) and B be as in Lemma 5.2.12. Find N |= T

containing (xa : a ∈ A) such that N |= φ(xa, xb) if and only if a < b. Argue
as in Theorem 5.2.13 that |Sn({xb : b ∈ B})| > |B|.]
b) Show that T has the order property if and only if there is a formula

ψ(v, w) and M |= T with a1, b1a2, bn . . . such that T |= ψ(ai, bj) if and
only if i < j.[Hint: (⇒) Let φ(v1, v2, w1, w2) be ψ(v1, w2). Let ci = (ai, bi).
Show that φ(ci, cj) if and only if i < j. The other direction is even easier.]

Exercise 5.5.7 Let L = {U0, U1, . . . , Un, E1, . . . , En}, where each Ui is
unary and Ei is binary, and let T be the L-theory:


