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Abstract — The main aim of this project consists in giving an unusual approach of singular homology theory
through the Dold-Thom theorem, which states in particular the following interesting result in algebraic topology:

H̃n(X; Z) = πn+1
(
SP (ΣX̃)

)
,

for any integer n ≥ 0 and any pointed space X (see the theorem 3.2.11). In other words, we will be led throughout
these very few pages toward a relation at the crossing between homology and homotopy theories. After considering
elementary notions in category theory, we will then sprinkle some pushouts and exact sequences on our reasonings
in order to work on homotopy and homology theories. Furthermore, the suspension and the reduced cone will reveal
themselves as very useful tools, without taking cofibrations nor CW-complexes into account. Thus, we will adopt a
homotopic point of view as developed in the reference [AGP02], instead of the common geometric one as in [Hat01,
page 108], and we will deeply explore various properties of some axioms and categories.
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Introduction

To classify in various ways different objects has always been an important goal for mathematicians throughout
generations. For some reason, it is more particularly interesting to distinguish objects according to the number of
wholes one can enumerate: this is homotopy theory. In this sense, we often say that a doughnut could be seen as
a coffee cup since both of them "contain" one single whole. Nonetheless, it remains quite complicate to clarify the
definition of whole, as far as it is actually the absence of "matter".

This is one of the reasons why the fundamental group π1 was introduced: given an object with wholes, we try to
coil some loops around the wholes, and then we classify together objects in which loops coil in a similar way around
wholes.

As always, once they clearly understood this notion, mathematicians then wanted to find generalizations to higher
dimensions: this is why they introduced homotopy groups πn for n ≥ 0. Now, instead of evaluating wholes with
loops, we work with multidimensional spheres. However, at this point, computations become so much intricate that
they chose to consider another theory: homology.

All of sudden, computations are easier; we will even see some particular cases in this project. Indeed, the cunning
results from transforming in a certain way topological space into abelian groups. Nevertheless, the other side of the
coin is that homlogy is more delicate to introduce...

Now, if we want all this work to be interesting, we need to find links between homotopy and homology theories. To
this end, a relation between those two theories will be provided by the Dold-Thom theorem.
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— Part 1 —

Axiomatic homology

In this part, the goal is to introduce the axioms developed by Samuel Eilenberg and Norman E. Steenrod in mid
XXth century (see the reference [ES45, pages 117-120]). To do so, we will need to define some concepts taken from
category theory, such as functors, pushouts or also natural transformations. We will moreover consider a few kinds
of equivalences, namely not only isomorphisms ∼=, but also homotopy equivalences ' and weak equivalences ∼.
Finally, suspensions and reduced cones will be very useful tools in order to compute the homology of the n-spheres.

I. Category theory

1. Generalities
Category theory will be the solid foundation of this project. Most of what we will see is provided by the reference
[Bor94]. This theory actually gives a generalization of the organisation we can find between mathematical objects
and morphisms.

Definitions 1.1.1. A category C is the following data:

(i) A collection Ob(C), whose elements are called objects.

(ii) For each pair of objects X, Y ∈ Ob(C), we define a set C(X, Y ) whose elements f ∈ C(X, Y ) are called
morphisms from X to Y and written f : X → Y .

(iii) A composition:

∀X, Y, Z ∈ Ob(C),
{
C(X, Y )× C(Y, Z) → C(X, Z),

(f, g) 7→ g ◦ f,
subjects to :

• Associativity: for any objects X, Y, Z, W ∈ Ob(C), we have:

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

where f ∈ C(X, Y ), g ∈ C(Y, Z) and h ∈ C(Z, W ).
• Identity: for all object X ∈ Ob(C), there is a morphism idX ∈ C(X, X) such that:

f ◦ idX = f and idX ◦ f ′ = f ′,

where f ∈ C(X, Y ), f ′ ∈ C(Y, X) and Y ∈ Ob(C).

Remark 1.1.2. The identity idX is the only morphism from X to X which plays the role of an identity for the
composition law. Indeed, if 1X ∈ C(X, X) is another such morphism, then:

idX = idX ◦ 1X = 1X .

Notation 1.1.3. We denote Mor(C) the set of all the morphisms of C:

Mor(C) := {morphisms of C} =
⋃

X,Y ∈Ob(C)

C(X, Y ).
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Definition 1.1.4. A morphism f ∈ C(X, Y ) is an isomorphism of C if there exists g ∈ C(Y,X) such that
g ◦ f = IdX and f ◦ g = IdY . In such a case, we note X ∼= Y . Moreover, we denote Iso(C) ⊆ Mor(C) the set of
isomorphisms of C.

Examples. Here are two exemples of categories. You can find the table 1 in appendix that inventories a complete
list of the categories used in this project.

(i) C := Top (category of topological spaces),
Ob(Top) := {topological spaces},
Mor(Top) := {continuous maps} (where composition is the usual),
Iso(Top) = {homeomorphisms}.
Note that we can similarly introduce Top∗, taking pointed spaces (X, x0) and pointed continuous maps
f : (X, x0)→ (Y, y0) (i.e. f : X → Y is continuous and f(x0) = y0).

(ii) C := Gr (category of groups),
Ob(Gr) := {groups},
Mor(Gr) := {homomorphims of groups},
Iso(Gr) = {isomorphisms of groups}.
In the same way, we can introduce the category Ab of the abelian groups.

Definition 1.1.5. A functor F : C → D between categories C and D is given by two maps of set:

F : Ob(C)→ Ob(D) and F : C(X, Y )→ D(F (X), F (Y )),

for all X, Y ∈ Ob(C), such that:

(i) F preserves composition: for all g ∈ C(Y, Z) and f ∈ C(X, Y ), we have F (g ◦C f) = F (g) ◦D F (f), where
X, Y, Z ∈ Ob(C).

(ii) F preserves identities: F (idX) = idF (X), where X ∈ Ob(C).

Remark 1.1.6. Given two functors F : C → D and G : D → E , we can construct a third functor: G ◦ F : C → E ,
where ◦ is the usual composition in Set.
One can define a very similar notion: contravariant functors. Note that contravariant functors are not functors,
but they will verify alike properties.

Definition 1.1.7. Let C and D be two categories. A contravariant functor F : C → D is a mapping
that associates to each object X in C an object F (X) in D, and to each morphism f : X → Y of C a morphism
f∗ := F (f) : F (Y )→ F (X) in D, such that:

(i) F (f ◦C g) = F (g) ◦D F (f) for all f : Y → Z and g : X → Y in C,

(ii) F (idX) = idF (X) for any X ∈ Ob(C).

Proposition 1.1.8. Given a functor F : C → D, if f ∈Mor(C) is an isomorphism, then so is F (f) in D.
In other words, if we have A ∼= B for two objects A and B of C, then we have F (A) ∼= F (B) in D.

Proof. Let be X and Y two objects of C, and f ∈ Iso(C) an isomorphism from X to Y . We can find a morphism
g ∈ C(Y, X) such that g ◦ f = IdX and f ◦ g = IdY . As F lands in Mor(D), we have that F (f) and F (g) are
morphisms of D. Now F (f) is well an isomorphism from F (X) to F (Y ) because:

F (g) ◦ F (f) = F (g ◦ f) = F (idX) = idF (X) and F (f) ◦ F (g) = F (f ◦ g) = F (idY ) = idF (Y ).

Remark 1.1.9. This is why we can consider two homeomorphic relative space as being the same. This result
remains true for the contravariant functors.

Remark 1.1.10. One could wander if it is possible to build the category of the categories, with categories as
objects and functors as morphisms. Nonetheless, as detailed in [Bor94, page 6], it would induces a contraction with
the definition of set.
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Remark 1.1.11. In algebraic topology, what is interesting is to have functors F : C → D, where C is something
topological and D is something algebraic. For instance, the fundamental group π1 : Top∗ → Gr is such a functor.
Indeed, for any continuous map f : (X, x0)→ (Y, f(x0)) in Top∗, one can see that:

π1(f) = f∗ :
{
π1(X, x0) → π1(Y, f(x0)),

[c] 7→ [f ◦ c],

is a group homomorphism. It also satisfies the association (g◦f)∗ = g∗◦f∗, and the identity (Id(X, x0))∗ = idπ1(X, x0).
Note that we will see the same result in 1.2.13 as a particular case of a more general result.

Remark 1.1.12. One can find in the literature the notion of forgetful functors: they are functors that "lose
some data". Here are a few examples:

(i) U : Top→ Set, (X, τ) 7→ X, and that maps a continuous map f to the corresponding map f .

(ii) U : Gr→ Set, (G, +) 7→ G, and that maps a group homomorphism f to the corresponding map f .

(iii) U : Top∗ → Top, (X, x0, τ) 7→ (X, τ), and that maps a continuous pointed map f to the corresponding
continuous map f .

Conversely, here are two examples of free functors that "gain some data":

(i) V : Set→ Ab, X 7→ Z〈X〉.

(ii) V : Set→ Top, X 7→ (X, discrete topology), where every set is open.

Definition 1.1.13. A commutative diagram in a category C is a diagram:

A C

B D,

f

h g

k

such that g ◦ f = k ◦ h, where A, B, C, D ∈ Ob(C), and f, g, k, h ∈Mor(C).

Remark 1.1.14. We can extend this definition to more complex diagram shapes. And more generally, if a
diagram "contains" a couple of squares (or any other "elementary diagram shape"), we consider that the diagram
commutes if, and only if, each single shape is commutative.

2. Some properties and definitions in Set, Top and Gr
Before going any further, we want to recall two general results in Top∗ and Gr that we will use many time throughout
this project.

Proposition 1.1.15. Universal Property of Quotient Space. Let (X, x0) and (Y, y0) be pointed spaces
in Top∗. We also consider an equivalence relation ≈ on X, and [−] : (X, x0) → (X/ ≈, [x0]) the
canonical projection, where X/ ≈ is furnished with the quotient space topology. Then, given
any continuous map f : (X, x0) → (Y, y0) in Top∗ that is ≈-invariant (i.e. x ≈ x′ implies f(x) = f(x′)),
there exists a unique continuous map f̄ : (X/ ≈, [x0]) → (Y, y0) such that the following diagram
commutes:

(X, x0) (Y, y0)

(X/≈, [x0])

f

[−]

∃!f̄

(1.1)

Proof. As f is ≈-invariant, one can define the map f̄ : [x] 7→ f(x), and we observe it is the only map that
preserves the commutativity of the diagram (1.1). Moreover, it well sends [x0] to y0, so f̄ is pointed. Now, let us
show that f̄ is continuous. We consider an open set U ⊂ Y . As f is continuous, its inverse image f−1(U) is open
in X. Then, as the topology on X/≈ is the quotient topology, i.e. the finest that allows the natural projection [−]
to be continuous, we have that [f−1(U)] is also open, that is to say f̄−1(U) is well open in X/≈.

Proposition 1.1.16. Universal Property of Quotient Group. Let G and H be two groups in Gr. We also
consider a normal subgroup N / G of G, and π : G → G/N the canonical projection. Then, given
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any group homomorphism φ : G → H in Gr which verifies N ⊆ ker(φ), there exists a unique group
homomorphism φ̄ : G/N → H such that the following diagram commutes:

G H

G/N

φ

π

∃!φ̄

(1.2)

Proof. First, notice that the quotient G/N := {gN | g ∈ G} is well a group since N is normal: the operation
is (gN) · (hN) := (gh)N for any gN and hN in G/N . Indeed, this operation is well defined because it does not
depend on the choice of representatives g and h: for any gN = aN and hN = bN in G/N ,

(gh)N = g(hN) = g(bN) = g(Nb) = (gN)b = (aN)b = (Na)b = N(ab) = (ab)N.

If N = {0}, then G/N is isomorphic to G and the result is trivial. So we can assume w.l.o.g. that N 6= {0}, and
thus we can find an n ∈ N such that n 6= 0. We want to show that the map φ̄ : gN 7→ φ(g) is a well-defined group
homomorphism. If gN = hN , then as N ⊆ ker(φ), we have:

φ̄(gN) = φ(g) = φ(g nn−1) = φ(g)φ(n)︸︷︷︸
=0

φ(n−1) = 0 = φ(h)φ(n)︸︷︷︸
=0

φ(n−1) = φ(h) = φ̄(hN),

which means that φ̄ is well defined. And we can see it is also a group homomorphism since:

∀gN, hN ∈ G/N, φ̄((gN) · (hN)) = φ̄((gh)N) = φ(gh) = φ(g)φ(h) = φ̄(gN) φ̄(hN).

Moreover, by construction, one can see that φ̄ is the only group homomorphism that preserves the commutativity
of the diagram (1.2).

Definitions 1.1.17. Let J ∈ Ob(Set) be an index set, and X ∈ Ob(Set) another set. A J-tuple of elements of X
is a map x ∈ Set(J, X) that we often denote (xj)j∈J , where the image of a j ∈ J is noted xj and called the j-th
coordonate of x. This is a kind of generalization of "tuple notation" to an arbitrary index set J .

Definitions 1.1.18. Let J and Aj be sets in Set, with j ∈ J . The cartesian product of {Aj}j∈J is :∏
j∈J

Aj := {J-tuples (xj)j∈J of elements of ∪j∈JAj | ∀j ∈ J, xj ∈ Aj},

and the coproduct of {Aj}j∈J is: ∐
j∈J

Aj :=
⋃
j∈J

(Aj × {j}) .

Remark 1.1.19. One can see the coproduct as a disjoint union of non-disjoint sets. With this point of view,
we can extend the definition of coproduct to Top, using the disjoint union topology (i.e. the finest topology that
allows the injections B ↪→ B

∐
C and C ↪→ B

∐
C to be continuous). Note that we can also extend the definition

of cartesian product the category Gr of groups, since a product of groups is still a group where a sum is the sum of
each coordonate of the J-tuple. We can say the same with the category Ab of abelian groups. Moreover, one can
also define the cartesian product in Top over topological spaces, endowed with product topology.

Definition 1.1.20. The direct sum of abelian groups {Aj}j∈J in Ab is:⊕
j∈J

Aj :=
{
J-tuples (xj)j∈J of elements of ∏

j∈J
Aj | xj 6= 0 for a finite number of j in J

}
⊂
∏
j∈J

Aj .

Remark 1.1.21. The direct sum
⊕

j∈J Aj defines an abelian subgroup of
∏
j∈J Aj , together with the same

operation (see the previous remark 1.1.19). We often denote
∑
j∈J xj its elements, where xj ∈ Aj for any j ∈ J ,

because it is a finite sum of non-null elements, which then stays in the group. Moreover, when J ∼= {1, ..., n} is
finite set, we have equality between the direct sum and the cartesian product:⊕

j∈{1, ..., n}

Aj =
∏

j∈{1, ..., n}

Aj .
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Now, we want to define in the category Top∗ of pointed spaces something similar to the coproduct we have in Top.
That is the reason why we introduce the wedge product.

Definition 1.1.22. In Top∗, the wedge product X ∨ Y of pointed spaces (X, x0) and (Y, y0) is:

X ∨ Y := X
∐

Y/x0 ∼ y0.

Example. Let us draw S1∐S1 and S1 ∨ S1 to see the difference:

S1∐S1 and S1 ∨ S1.

Remark 1.1.23. We have the following homeomorphism (with the subspace topology):

X ∨ Y ∼= (X × {y0}) ∪ ({x0} × Y ) = {(x, y) ∈ X × Y | x = x0 ou y = y0}.

in X×Y . Moreover, in spite of X ∨{∗} ∼= X, we do not have X
∐
{∗} ∼= X since any continuous map X → X

∐
{∗}

cannot be surjective.

3. Pushout
We want to introduce a powerful tool, pushouts, that will allow us to "glue" some mathematical objects together in
a certain sense.

Definition 1.1.24. Given a category C, and the diagram:

A C

B,

g

f (1.3)

in C, a pushout of this diagram is an object P ∈ Ob(C) together with morphisms B → P and C → P such that the
following diagram:

A C

B P,

g

f

p

respects a universal property: given any object D ∈ Ob(C) together with two morphisms B → D and C → D in
C such that the diagram:

A C

B D,

g

f

commutes, there exists a unique map p̄ in C from P to D such that the following diagram commutes:

A C

B P

D.

g

f

p

∃!p̄

Notation 1.1.25. The symbol p is there to remind us that P is a pushout.

Proposition 1.1.26. Given a diagram (1.3) in any category C, a pushout is unique up to isomorphism.

Proof. Let C be any category. We consider two pushouts P and P ′ of the diagram (1.3) in C. By definition, there
exists a unique morphisms p̄ ∈ C(P ′, P ) such that the following diagram commutes:

5



A C

B P ′

P.

g

f

p

∃!p̄

Next, changing the roles of P and P ′, we can see that there is also a unique morphisms p̄′ ∈ C(P, P ′) such that
the corresponding diagram commutes. We deduce that p̄′ is the inverse morphism of p̄, which means that p̄ is an
isomorphism, and thus that P ′ ∼= P .

The following proposition is very important: we compute the pushout in some particular cases. Through it, one
can begin to see how powerful are pushouts.

Proposition 1.1.27. Let us consider in a category C the diagram:

A C

B,

g

f (1.4)

We define the equivalence relation ≈ as the one generated by f(a) ≈ g(a) for a ∈ A. We recall
that the pushout is unique up to isomorphism (see 1.1.26).

(i) If C := Set, then the pushout is B
∐
A C := B

∐
C/≈.

(ii) If C := Top, then the pushout is B
∐
A C := B

∐
C/≈.

(iii) If C := Top∗, then the pushout is (B ∨A C, [b0]) := (B ∨C/≈, [b0]) where b0 is the basepoint of B.

(iv) If C := Ab, then the pushout is B ⊕A C := B ⊕ C/N where N is the smallest normal subgroup
of B ⊕C generated by g(ker(f)) and f(ker(g)) (in other words N is generated by the g(a) such
that f(a) = 0 and by the f(a) such that g(a) = 0, where a ∈ A).

In each case, the applications given with the pushouts are the canocial projections denoted [−].

Proof. After showing the first point (i), we will generalize its reasoning to prove the three other points.

(i) Let us show that B
∐
A C respects the universal property. We take a set D ∈ Ob(Set) and maps c : C → D

and b : B → D such that the diagram:
A C

B D

g

f c

b

(1.5)

commutes. Let us consider the map p : B
∐
C → D, such that for all xB ∈ B we have p(xB) = b(xB), and

for all xC ∈ C we have p(xC) = c(xC) (remind from the remark 1.1.19 that we consider the coproduct B
∐
C

as the disjoint union of the sets B and C). As the previous diagram (1.5) commutes, and by definition of p,
note that p(f(a)) = b(f(a)) = c(g(a)) = p(g(a)) for all a ∈ A. As the relation ≈ is generated by f(a) ≈ g(a)
for a ∈ A, we deduce p is ≈-invariant and it allows us to define the following map:

p̄ :
{
B
∐
A C → D

[x] 7→ p(x)

Now, let us show that the diagram:

A C

B B
∐
A C

D

g

f [−]
c

[−]

b

p̄

(1.6)
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is commutative. First of all, for all a ∈ A, we obviously have ([.] ◦ f)(a) = [f(a)] = [g(a)] = ([.] ◦ g)(a) by
definition of the relation ≈. Next, for all xB ∈ B, we have (p̄ ◦ [.])(xB) = p̄([xB ]) = p(xB) = b(xB). Finally,
for all xC ∈ C, we have also (p̄◦ [.])(xC) = p̄([xC ]) = p(xC) = c(xC). Thus, the diagram (1.6) is commutative.
Now, we need to show that p̄ is unique. We consider q̄ : B

∐
A C → D a map such that the diagram (1.6)

above commutes if we replace p̄ by q̄. Let [x] ∈ B
∐
A C. If x ∈ C, then we have q̄([x]) = c(x) = p̄([x])

by commutativity. If x /∈ C, then x ∈ B and we have similarly that q̄([x]) = b(x) = p̄([x]). Therefore, we
have the equality q̄ = p̄, which shows the uniqueness of p̄. Hence we showed that B

∐
A C together with the

projections [−] satisfies the universal property, and we deduce that it is the pushout of the diagram (1.4).

(ii) To show that the pushout in Top is also B
∐
A C, it is enough to precise from the previous point (i) that B

∐
A C

is a topological space and that p̄ and the projections [−] are continuous. Let us show the first statement. We
consider on B

∐
C the disjoint union topology, i.e. the finest topology that allows the injections B ↪→ B

∐
C

and C ↪→ B
∐
C to be continuous. Then, on the quotient B

∐
A C := B

∐
C/≈ we consider the quotient

topology, i.e. the finest topology that allows the canonical projection B
∐
C → B

∐
C/ ≈ to be continuous.

So B
∐
A C is a topological space, and by construction of its topology, the projections [−] : B → B

∐
A C and

[−] : C → B
∐
A C are continuous. Now, let us show that p̄ : B

∐
A C → D is continuous. The map p is

continuous because it is defined by the continuous maps b and c on each disjoint composant of the coproduct
B
∐
C, and it is also ≈-invariant as seen in (i). Applying the Universal Property of the Quotient Space,

we know there exists a unique continuous map B
∐
C/ ≈→ D, which is actually p̄, such that the following

diagram commutes:
B
∐
C D

B
∐
C/ ≈

p

[−]

p̄

Thus, the map p̄ is continuous, and the pushout is well B
∐
A C in Top∗.

(iii) We want to add some details to the first point (i) to show that (B ∨A C, [b0]) is the pushout in Top∗. We
can see as in (ii) that B ∨A C is a topological space considering the disjoint union and quotient topologies.
Moreover, we denote c0 and d0 the respective basepoints of C and D, and even though b0 and c0 are identified
in B ∨ C, one can note that if now we take p from B ∨ C to D, it stays well-defined since the maps c and d
preserve the basepoints: p(b0) = b(b0) = d0 = c(c0) = p(c0). This implies, as in (i), that p̄ : B ∨A C → D is
also well defined. Now, as in (ii), we can observe that p̄ and the projections [−] are continuous, but we still
need to verify they preserve the basepoints. We also know that [b0] = [c0] in (B ∨A C, [b0]) by definition of
B ∨ C, so the projections [−] : B → B ∨A C and [−] : C → B ∨A C preserve the basepoints. Concerning p̄,
it well associates the basepoint [b0] of B ∨A C to the basepoint p(b0) = b(b0) = d0 of D by commutativity
because b is pointed. Hence, in Top∗ the pushout is well (B ∨A C, [b0]).

(iv) Again in this point, we will complete the first point (i) to show that B ⊕A C is the pushout in Ab. We need
to prove that B ⊕A C is an abelian group and that p̄ and the projections [−] are group homomorphisms. As
explained in the remark 1.1.21, the direct sum B⊕C is an abelian group. Then, as we quotient by the normal
subgroup N , the quotient B ⊕A C is also an abelian group with the operation defined by [x] + [y] := [x+ y]
for all [x], [y] ∈ B ⊕A C. In addition, we can easily see that the projections [−] : B → B ⊕A C and
[−] : C → B ⊕A C are group homomorphisms by definition of the operation in B ⊕A C. Finally, let us take
a look at p̄ : B ⊕A C → D. Here we consider a morphism p : B ⊕ C → D slightly different from (i), that
associates (xB , xC) in B ⊕ C to b(xB) + c(xC) in D. Recall that N is generated by definition by g(ker(f))
and f(ker(g)), and see that:

∀a ∈ ker(f), p(g(a)) = b(0) + c(g(a)) (1.5)= 0 + b(f(a)) = b(0) = 0,

and similarly for any a in ker(g) we have p(f(a)) = 0. This means that N ⊆ ker(p), and we can apply the
Universal Property of Quotient Group to get the following commutative diagram:

B ⊕ C D

B ⊕ C/N

p

projection

∃!p̄

where p̄ is well a group homomorphism.
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Remark 1.1.28. This previous proposition 1.1.27 tells us pushouts can be used to "glue" mathematical objects
together. For example, in the following diagram in Top, we glue together with ≈ the images of the inclusions
together:

p

This pushout is an important example, we will see later more properties about it: this is what we call a suspension
(see the remark 1.4.17).

Notation 1.1.29. When we want to introduce a point without assigning it a name, we will simply write ∗. By
the way, observe that the notation Top∗ for the category of pointed spaces take on its full meaning.

Example. In Top∗, considering pointed spaces (A, x0) ⊂ (X, x0), we have the pushout:

(A, x0) ({∗}, ∗)

(X, x0) (X/A, [x0]),p

because we notice that X ∨A {∗} = X ∨ {∗}/ ≈(?)= X ∨ {∗}/A ∼= X/A, where the equality (?) is exact since the
relation ≈ consists in identifying A to a point.

Remark 1.1.30. In any category C, we can find a diagram that admits a pushout. For example, if we take a
morphism f : X → Y of C, we notice we have the following pushout:

X X

Y Y,

f f

p

where the symbol "=" means that we use the identity id. Indeed, let us show that Y respects the universal property.
We consider an object D together with two morphisms c : Y → D and d : X → D such that the diagram commutes:

X X

Y D.

f d

c

(1.7)

We want to find a morphism p̄ such that the following diagram commutes:

X X

Y Y

D.

f f
d

c

p̄

We can see with the "lower triangle" that the only possibility for p̄ is to be equal to c. Thanks to the commutativity
of (1.7), we have d = c ◦ f = p̄ ◦ f which is consistent with the fact that the "upper triangle" must commute. Thus,
by construction p̄ is unique and the pushout is well Y .

II. Homotopy invariants
In this section, we will define the n-th homotopy group πn for n ≥ 0 and see it is a homotopy invariant functor,
and that it lands it gives a group if n ≥ 1. See the reference [AGP02, pages 59-88] for more details.

8



1. Homotopy theory
The problem of homeomorphisms is that they are too rigid, it is usually easier to think up to homotopy. For
instance, we will see that we have the homotopy equivalence D2 ' ∗ while they are not homeomorphic: D2 6∼= ∗.
But first, let us introduce a new category in which we will define homotopy.

Notation 1.2.1. The category Toprel of relative spaces is the category whose objects and morphisms are:

Ob(Toprel) := {(X, A) | the subspace A ⊂ X is furnished with the topology induced by the topological space X},
Mor(Toprel) := {f : (X, A)→ (Y, B) | f : X → Y is continuous map such that f(A) ⊂ B};

and we use in Toprel the usual composition ◦ over continuous maps. Such objects (X, A) are called relative spaces

Remark 1.2.2. Any pointed space (X, x0) in Top∗ could be seen as the relatif space (X, {x0}) in Toprel, this is
why Top∗ ⊆ Toprel. Similarly, Any topological space X in Top could be seen as the relatif space (X, ∅) in Toprel,
tso we also have Top ⊆ Toprel.

Definitions 1.2.3. Throughout this project, let be the interval I := [0, 1] endowed with the relative topology
induced by the usual topology of R.

(i) We say any morphisms f and g from (X, A) to (Y, B) in Toprel are relative homotopic, and we note f 'A g,
if there is a continuous map:

H : (X × I, A× I)→ (Y, B),

called relative homotopy in Toprel (so H(a, t) ∈ B for all a ∈ A, t ∈ I) such that H(−, 0) = f(−) and
H(−, 1) = g(−).

(ii) In the particular case of A = ∅ = B, i.e. we work in Top, we sometimes simply denote A and B instead of
respectively (A, ∅) and (B, ∅), and we say f and g are homotopic if they are relative homotopic. Still in this
case, we note f ' g, and H is simply called homotopy.

(iii) In the case of A = ∗ = B, i.e. we work in Top∗, if two continous maps are relative homotopic f and g we say
they are pointed homotopic, we note f '∗ g and we call H pointed homotopy.

Remark 1.2.4. Each time we want to construct a new relative homotopy H ′, we need to verify its continuity.
Nevertheless, in this project, to stay brief but enough, we will give precisions about the continuity only when it
is not clear; indeed, it will be very often continuous by composition of continuous maps. We will adopt the same
attitude toward the fact that we need to show that H ′(a, t) ∈ B for all (a, t) ∈ A × I; but it will generally come
from basic properties of the functions we will manipulate.

Proposition 1.2.5. Given two relative spaces (X, A) and (Y, B) in Toprel, relative homotopy 'A is
an equivalence relation between continuous maps (X, A)→ (Y, B).

Proof. First, relative homotopy is reflexive: for any morphism f : (X, A) → (Y, B) in Toprel, it is enough
to take H(s, t) := f(s) for (s, t) ∈ X × I. Furthermore, relative homotopy is symmetric: given morphisms
f, g : (X, A) → (Y, B) in Toprel, if f is relative homotopic to g, and if we note H the corresponding relative
homotopy, then the relative homotopy H ′(s, t) := H(s, 1 − t) for (s, t) ∈ X × I give the relation g 'A f . Last,
relative homotopy is also a transitive relation: if we take three continuous maps f, g, h : (X, A)→ (Y, B) in Toprel
such that f is relative homotopic to g and g to h with the corresponding relative homotopies H and H ′, then the
relative homotopy H ′′ defined by H ′′(s, t) := H(s, 2t) for (s, t) ∈ X × [0, 1/2], and by H ′′(s, t) := H ′(s, 2t − 1)
for (s, t) ∈ X × [1/2, 1] gives thes wanted relative homotopy between f and h.

Notation 1.2.6. This is why we can take the quotient of Toprel((X,A), (Y,B)) by the relative homotopy 'A, that
we denote:

[(X, A), (Y, B)] := Toprel((X, A), (Y, B))/ 'A,

In other words, this is the set of relative homotopy classes of continuous map (X, A) → (Y, B) in Toprel, and we
denote its elements [f ], where f ∈ Toprel((X,A), (Y,B)). In particular, if we work on Top∗ ⊆ Toprel, we prefer the
notation [(X, x0), (Y, y0)]∗ for the quotient, and [f ]∗ for its elements, where f ∈ Top∗((X,x0), (Y, y0)).

Definitions 1.2.7. We say that two relative spaces (X,A) and (Y,B) in Toprel are homotopic and we denote
(X,A) ' (Y,B) if there are two continuous maps f : (X, A)→ (Y, B) and g : (Y, B)→ (X, A) such that:

g ◦ f 'A id(X,A), and f ◦ g 'B id(Y,B).
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We then call f homotopy equivalence, and g homotopy inverse.

Definition 1.2.8. Let C be any category. A functor F : Toprel → C is a homotopy invariant if for all continuous
maps f, g : (X,A)→ (Y,B) in Toprel we have: f 'A g ⇒ F (f) = F (g).

Proposition 1.2.9. For any category C, if F : Toprel → C is homotopy invariant, and given
(X, A) ' (Y, B) in Toprel, then F (X, A) and F (Y, B) are isomorphic: F (X, A) ∼= F (Y, B).

Proof. As (X, A) ' (Y, B), we can find two continuous maps f : (X, A) → (Y, B) and g : (Y, B) → (X, A) in
Toprel such that g ◦ f 'A id(X,A) and f ◦ g 'B id(Y,B). Now, as the functor F is homotopy invariant, we have:

F (g) ◦ F (f) = F (g ◦ f) = F (idX) = idF (X,A),

and similarly F (f)◦F (g) = idF (Y,B). Thus, we deduce that F (f) is an isomorphism between F (X, A) and F (Y, B),
which means in other words F (X, A) ∼= F (Y, B).

Remark 1.2.10. As similar definition of homotopy invariant could be attributed to contravariant functors, and
this result remains true for the contravariant functors.

2. The fundamental group π1
Let us define the fundamental group π1 with the notations introduced in 1.2.6.

Definition 1.2.11. Given a pointed space (X, x0), we define the fundamental group π1 as follows:

π1(X, x0) := [(I, {0, 1}), (X, {x0})] = Toprel((I, {0, 1}), (X, {x0}))/ '{0, 1} .

In other words, π1(X, x0) is the set of homotopy classes of loops of X based in x0.

Proposition 1.2.12. Given any relative space (X, A) in Toprel, we have the following homotopy
invariant functor:

[(X, A),−] :

 Toprel → Set
(Y, B) 7→ [(X,A), (Y,B)]

(f : (Y, B)→ (Z, C)) 7→ (f∗ : [(X,A), (Y,B)]→ [(X,A), (Z,C)]),

where f∗ : [g] 7→ [f ◦ g].

Proof. We split the proof into two steps.

(i) Let us show that [(X, A),−] is a functor. Consider in Toprel the continuous maps f : (Y, B) → (Z, C) and
g : (Z, C)→ (W, C). On the one hand, we can see that [(X, A),−] preserves the composition because for all
[h] ∈ [(X,A), (Y,B)] we have:

[(X, A), f ◦ g]([h]) = (f ◦ g)∗([h]) = [(f ◦ g) ◦ h] = [f ◦ (g ◦ h)]
= f∗([g ◦ h]) = f∗(g∗([h])) = [(X, A), f ] ◦ [(X, A), g]([h]).

On the other hand, we also observe that F preserves the identities since for all [h] ∈ [(X,A), (Y,B)],

[(X, A), id(Y,B)]([h]) = (id(Y,B))∗([h]) = [id(Y,B) ◦ h] = [h] = id[(X,A),(Y,B)][h].

(ii) Now let us show that [(X, A),−] is homotopy invariant. Consider two morphisms the continuous maps
f, g : (Y, B)→ (Z, C) in Toprel that are homotopic. Denote H : (Y × I, B × I)→ (Z, C) the corresponding
relative homotopy, and take [h] ∈ [(X,A), (Y,B)]. We can see that the map H ′ : (s, t) 7→ H(h(s), t) for
(s, t) ∈ X × I is a homotopy between f ◦ h and g ◦ h, which implies [f ◦ h] = [g ◦ h]. Thus we have:

∀[h] ∈ [(X,A), (Y,B)], [(X, A), f ]([h]) = f∗([h]) = [f ◦ h] = [g ◦ h] = g∗([h]) = [(X, A), g]([h]),

which means that [(X, A),−] is homotopy invariant.

Remark 1.2.13. So, we can deduce that π1(−) := [(I, {0, 1}), −] is a homotopy invariant functor.

Remark 1.2.14. One can similarly show that [−, (Y, B)] is a homotopy invariant contravariant functor Toprel →
Set for any relative space (Y, B) in Toprel.
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Proposition 1.2.15. For any pointed space (X, x0) in Top∗, we have the bijection in Set:

π1(X, x0) ∼= [(S1, ∗), (X,x0)]∗.

Proof. Recall from the definition 1.2.11 that π1(X, x0) := [(I, {0, 1}), (X, {x0})]. We claim that there is the
following bijection in Set:

Toprel((I, {0, 1}), (X, x0)) ∼= Toprel((I/{0, 1}, [0]), (X, x0)).

Indeed, for any continuous map f : (I, {0, 1}) → (X, x0) in Toprel, considering the equivalence relation ≈ on I
generated by 0 ≈ 1, we get with the Universal Property of the Quotient Space:

(I, {0, 1}) (X, x0)

(I/≈, [0])

f

π

∃!f̄ ,

where π : I → I/ ≈ is the natural quotient mapping. Conversely, we can associate to any continuous map
f̄ : (I/ ∼, {0, 1}/ ∼)→ (X, x0) in Toprel we can associate the map f := f̄ ◦ π in Toprel((I, {0, 1}), (X, x0)), which
makes the map f 7→ f̄ be a bijection by construction. So the claim is verified and, by passage to the quotients, we
obtain:

π1(X, x0) = [(I, {0, 1}), (X, x0)] ∼= [(I/{0, 1}, [0]), (X, x0)]. (1.8)

Moreover, due to the homeomorphism I/{0, 1} ∼= S1, we have the homeomorphism in Toprel:

(I/{0, 1}, [0]) ∼= (S1, ∗).

Hence, we finally deduce that:

π1(X, x0)
(1.8)∼= [(I/{0, 1}, [0]), (X, x0)]

1.1.9∼= [(S1, ∗), (X,x0)].

3. The n-th homotopy group πn
In order to generalize the concept of fundamental group π1, we want to introduce the notion of n-th homotopy
group πn for any non-negative integer n in Top∗. We will also see later a generalization in Toprel: the n-th relative
homotopy group (see page 34).

Definition 1.2.16. Let n ≥ 0. The n-th homotopy group πn of a pointed topological space (X, x0) in Top∗ is:

πn(X, x0) := [(Sn, ∗), (X, x0)]∗.

where S0 := {x ∈ R | x2 = 1} = {−1, 1}.

Remark 1.2.17. With the proposition 1.2.15, we can see that this definition gives a generalization of the
fundamental group.

Remark 1.2.18. With the proposition 1.2.12, we can notice that πn is a homotopy invariant functor.

Remark 1.2.19. The computation of πn(Sm) for integers n, m ≥ 0 is quite complicate, but it fascinates algebraic
topologists since it enables to understand better the basic objects that are the spheres: indeed the πn(Sm) describe
how spheres of various dimensions can wrap around each other. For instance, we have π1(S1) ∼= Z, and πn(S1) ∼= 0
for n ≥ 2, but also π2(S2) ∼= Z and π3(S2) ∼= Z. Find more details in the reference [Tod63].

Theorem 1.2.20. Let be n ≥ 1 a positive integer, and (X, x0) a pointed topological space. The
n-th homotopy group πn(X, x0) is a group.

Proof. Find the complete proof in appendix. We just give here the main steps.

(i) The quotient set [(In, ∂In), (X, x0)] is a group, where ∂In is the boundary of the n-dimentional unit cube
In.
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(ii) The spaces (In/∂In, [0]) and (Sn, ∗) are in bijection: (In/∂In, [0]) ∼= (Sn, ∗).

(iii) The n-th homotopy group πn(X, x0) is a group.

Proposition 1.2.21. Up to bijection, the 0-th homotopy group π0(X, x0) of a pointed space (X, x0)
in Top∗ is the set of all path components of X.

Proof. We recall from the definition 1.2.16 that π0(X, x0) := [({−1, 1}, 1), (X, x0)]. Let [γ] ∈ π0(X, x0) and
γ1, γ2 ∈ [γ]. We know that γ1(1) = x0 = γ2(1), but γ1(−1) and γ2(−1) can take any value in X. As γ1 and γ2 are
in the same homotopy class, they are homotopic, and we denote H the corresponding relative homotopy. One can
notice that Γ(−) := H(−1, −) defines a continuous path in X from γ1(−1) to γ2(−1). Thus we can associate the
path component [Γ] of the constructed path Γ to the class [γ] with the map we denote θ : [γ]→ [Γ]. Reciprocally,
let us take any path component [Γ]. We observe that the maps γ1 : −1 7→ Γ(0), 1 7→ x0 and γ2 : −1 7→ Γ(1), 1 7→ x0
are relative homotopic with the relative homotopy defined by H(−1, −) := Γ(−) and H(1, −) := x0. Thus, we
can also associate the class [γ1] = [γ2] to [Γ], which shows there is an inverse map for θ. That is why θ defines a
bijection between π0(X, x0) and the set of all path components of X.

Definitions 1.2.22. We say that a pointed topological space (X, x0) in Top∗ is contractible if it is homotopic to
a point, i.e. (X, x0) ' ({x0}, x0).

Remark 1.2.23. A pointed topological space (X, x0) is contractible if, and only if, we can find morphisms
f : (X, x0) → ({x0}, x0) and g : ({x0}, x0) → (X, x0) in Top∗ such that idX '{x0} g ◦ f = g(x0) and x0 =
id{x0} '{x0} f ◦ g = x0. And, this condition is equivalent to the following one: the identity idX is relative
homotopic to a constant map.

Proposition 1.2.24. If a pointed space (X, x0) in Top∗ is contractible, then πn(X, x0) = 0 for all
n ≥ 0.

Proof. Let n ≥ 0 an integer. Thanks to the remark 1.2.18, we know that πn is a homotopy invariant functor.
So, as (X, x0) is contractible, we can use the proposition 1.2.9 to deduce that πn(X, x0) ∼= πn({x0}, x0), which is
a trivial set. Thus, πn(X, x0) = {[x 7→ x0]} = 0.

4. Weak homotopy equivalences
As we saw in the theorem 1.2.20, for any integer n ≥ 1, the n-th homotopy group πn(X, x0) of a pointed space
(X, x0) in Top∗ is a group. Now, we will see that weak homotopy equivalences can give us group isomorphisms
between those homotopy groups.

Definitions 1.2.25. We say that a continuous map f : X → Y in Top is a weak (homotopy) equivalence if
X 6= ∅ and for any x0 in X the induced morphism:

f∗ :
{
πn(X, x0) → πn(Y, f(x0))

[h] 7→ f∗([h]) := [f ◦ h]

is a bijection for n = 0, and an group isomorphism for n ≥ 1. We then denote X ∼ Y . Moreover, we say that a
continuous map g : (X, A)→ (Y, B) in Toprel is a (relative) weak (homotopy) equivalence if both g : X → Y
and its restriction g|A→B are weak homotopy equivalences. We then write (X, A) ∼ (Y, B).

Remark 1.2.26. We saw in the proposition 1.2.21 that π0(X, x0) is the set of all path components of X. If X and
Y are path-connected (i.e. we can found a path joining any arbitrary two points), then π0(X, x0) and π0(Y, f(x0))
are singleton sets, so f∗ is trivially a bijection for n = 0. Moreover, for n ≥ 1, we would need to verify that f∗ is
an isomorphism only for a single arbitrary point x0 in X because if we change the base point, we get a new based
space homotopic to the previous one, so we just obtain a homotopy group which is isomomorphic to the previous
one since πn is a homotopy invariant functor. More generally, if we do not assume the path-connectedness of X
and Y , it is enough to check that f∗ is an isomorphism only one element x0 of each connected component of X.

Remark 1.2.27. The induced morphism f∗ is always a group homomorphism for n ≥ 1. Indeed, instead of
working in πn(X, x0), let us work in one of its isomorphic group: G := [(In, ∂In), (X, x0)], together with the
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operation · seen in the proof of 1.2.20. For [h] and [k] in G, and for all (s1, . . . , sn) ∈ In, we have:

f ◦ (h+ k)(s1, . . . , sn) = f ◦
{
h(2s1, s2, . . . , sn) for s1 ∈ [0, 1/2],
k(2s1 − 1, s2, . . . , sn) for s1 ∈ [1/2, 1],

=
{
f ◦ h(2s1, s2, . . . , sn) for s1 ∈ [0, 1/2],
f ◦ k(2s1 − 1, s2, . . . , sn) for s1 ∈ [1/2, 1],

= ((f ◦ h) + (f ◦ k))(s1, . . . , sn).

Thus, we have that f∗ is a group homomorphism:

f∗([h] · [k]) = f∗([h+ k]) = [f ◦ (h+ k)] = [(f ◦ h) + (f ◦ k)] = [f ◦ h] · [f ◦ k] = f∗([h]) · f∗([k]).

That is why, when we want to prove that a continuous map f is a weak homotopy equivalence in Top, it is enough
to show that f∗ is a bijection for all n ∈ N and all x0 ∈ X.
As we can see in the following proposition, weak homotopy equivalence is a weaker notion than homotopy equivalence
on Top∗, which could explain its name.

Proposition 1.2.28. A homotopy equivalence of pointed spaces is a relative weak homotopy
equivalence.

Proof. Let us consider a homotopy equivalence f : (X, x)→ (Y, y) and its homotopy inverse g : (Y, y)→ (X, x)
in Top∗ corresponding with the relation (X, x) ' (Y, y). We have g ◦ f '{x} id(X, x) and f ◦ g '{y} id(Y, y). We
want to show that the continuous maps f ′ : X → Y and f ′|{x}→{y} associated to f : (X, x) → (Y, y) are weak
homotopy equivalences. We denote g′ : Y → X the continuous map associated to g : (Y, y) → (X, x). For any x0
in X and n in N, it is enough to use the fact that πn is a homotopy invariant functor (see the remark 1.2.18) to see
that f ′∗ is a bijection:

g′∗ ◦ f ′∗ = πn(g) ◦ πn(f) = πn(g ◦ f) = πn(id(X, x)) = idπn(X, x),

and, in a same way, f ′∗ ◦ g′∗ = idπn(Y, y). So, with the previous remark 1.2.27, the continuous map f ′ is a weak
homotopy equivalence. We can do similarly to show that f ′|{x} is also a weak homotopy equivalence. Thus f is
well a relative weak homotopy equivalence.

III. Exact sequences of abelian groups

1. Generalities
As long as we stay in the category Ab in this subsection, it is not necessary to precise the groups we take are abelian,
nor the the morphisms are group homomorphisms. Moreover, the quotient G/H of the group G by the subgroup
H is well defined because G is abelian (which implies H is normal in G). Find more details in [Rot09, 2.1].

Definitions 1.3.1. A (long) exact sequence of abelian groups is a sequence:

. . .
fn+2

−−−−−→ An+1
fn+1

−−−−−→ An
fn

−−−−−→ An−1
fn−1

−−−−−→ . . . (1.9)

in the category Ab such that Im(fn+1) = ker(fn) for all integer n ∈ Z. A short exact sequence of abelian groups
is the following particular case:

0 −−−−−→ A
f

−−−−−→ B
g

−−−−−→ C −−−−−→ 0. (1.10)

Remark 1.3.2. A short exact sequence seems to be "finite" and thus seems not to be a long exact sequence,
but we can "add" on the right and on the left of the diagram (1.10) as much null abelian group 0 as we want, so
that the definition of short exact sequence really matches with the one of long exact sequence. Moreover, one could
note that it is not necessary to precise what is the homomorphism 0 → A: as far as we want it to map 0 to 0,
this morphism is unique. And it is even easier to see that there is only one homomorphism C → 0, namely the
constant morphism to 0. A last remark is the following: for such a long exact sequence (1.9), for all integer n, since
Im(fn+1) = ker(fn), we necessarily have fn ◦ fn+1 = 0.

Proposition 1.3.3. The following three statements hold:
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(i) A long sequence 0→ A
f→ B → . . . is exact if, and only if, the morphism f is injective.

(ii) A long sequence · · · → B
g→ C → 0 is exact if, and only if, the morphism g is surjective.

(iii) A long sequence 0→ A
h→ C → 0 is exact if, and only if, the morphism h is an isomorphism.

Proof.

(i) The sequence 0→ A
f→ B → . . . is exact if, and only if, we have ker(f) = Im(0) = {0} which is equivalent to

f is injective.

(ii) The sequence · · · → B
g→ C → 0 is exact if, and only if, we have Im(g) = ker(0) = C which is equivalent to g

is surjective.

(iii) The result comes from the pooling of the two previous results.

Remark 1.3.4. The two first points (i) and (ii) of this proposition tell us that in the short sequence (1.10) is
exact if, and only if, the morphisms f and g are respectively injective and surjective, and Im(f) = ker(g). So it is
an equivalent definition. Nonetheless, we do not have the exactness of (1.10) if, and only if, the morphism g ◦ f
is an isomorphism and Im(f) = ker(g). Indeed, if g ◦ f is an isomorphism and Im(f) = ker(g) then the sequence
(1.10) is well exact by (iii), but conversely, if the sequence (1.10) is exact, we have with the end of the remark 1.3.2
that g ◦ f is constant to 0, which means it cannot be an isomorphism if C 6= 0.

Proposition 1.3.5. In Ab, given a long exact sequence:

. . . −−−−−→ An+1
fn+1

−−−−−→ An
fn

−−−−−→ An−1 −−−−−→ . . .

and isomorphisms hn : An
∼=−→ Bn for all integer n, if we have morphisms gn such that the following

diagram commutes:
. . . An+1 An An−1 . . .

. . . Bn+1 Bn Bn−1 . . .

fn+1

hn+1∼=

fn

hn
∼= hn−1∼=

gn+1 gn

(1.11)

then the following long sequence is exact:

. . . −−−−−→ Bn+1
gn+1

−−−−−→ Bn
gn

−−−−−→ Bn−1 −−−−−→ . . .

Proof. Let n be an integer. All we need to show it that we have Im(gn+1) = ker(gn). First of all, we can notice
that, as the diagram (1.11) commutes, and as hn+1 and hn are isomorphisms, we have:

gn+1 = hn ◦ fn+1 ◦ h−1
n+1, and gn = hn−1 ◦ fn ◦ h−1

n .

We consider an y ∈ Bn. We have y ∈ Im(gn+1) if, and only if, we can find an x in Bn+1 such that gn+1(x) = y, if,
and only if, we have:

gn(y) = gn ◦ gn+1(x) = (hn−1 ◦ fn ◦ h−1
n ) ◦ (hn ◦ fn+1 ◦ h−1

n+1)(x)
= hn−1 ◦ ( fn ◦ fn+1︸ ︷︷ ︸

= 0 due to 1.3.2

)(h−1
n+1(x)) = hn−1(0) = 0,

which exactly means that y ∈ ker(gn). Hence the wanted equality.

Remark 1.3.6. This proposition means we can work with exact sequence up to isomorphism.

2. Exemples of exact sequences
Proposition 1.3.7. If H ⊆ G is a subgroup of an abelian group G, then we get the following
short exact sequence:

0 −−−−−→ H
i

↪−−−−−→ G
π

−−−−−→ G/H −−−−−→ 0.
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where π : G→ G/H is the canonical projection.

Proof. As the group G is abelian, we also have that H and G/H are abelian groups. We can see that the
inclusion i : H ↪→ G is a group homomorphism since:

∀h1, h2 ∈ H, i(h1 + h2) = h1 + h2 = i(h1) + i(h2),

and it is obviously injective. Furthermore, the canonical projection π : G→ G/H is also a group homomorphism:

∀g1, g2 ∈ G, π(g1 + g2) = [g1 + g2] = [g1] + [g2] = π(g1) + π(g2),

and it is trivially surjective since each class [g] of G/H contains at least the element g of G. Moreover, we know that
for any [g] ∈ G/H, we have g ∈ H if, and only if, we have: π(g) = [g] = 0, or in other words: g ∈ Im(i)⇔ g ∈ ker(π),
which means that Im(i) = ker(π). Hence, with the remark 1.3.4, we obtain that the considered short sequence is
exact.

Example. For example, the following short sequence is in particular exact:

0 −−−−−→ 3Z
i

↪−−−−−→ Z
π

−−−−−→ Z/3Z −−−−−→ 0.

Proposition 1.3.8. The two following statements hold:

(i) If the short sequence 0→ A
f→ B

g→ C → 0 (1.12) is exact in Ab, then we have the isomorphisms:

A ∼= Im(f) and B/ Im(f) ∼= C.

(ii) Given a subgroup series T ⊆ S ⊆M , there is a short exact sequence:

0 −−−−−→ S/T −−−−−→M/S −−−−−→M/T −−−−−→ 0. (1.13)

Remark 1.3.9. This proposition restates the first and third isomorphism theorems in terms of exact sequences.
The first one states that for any group homomorphism f : G→ G′ in Gr, we have an isomorphism between the image
Im(f) of f and the quotient G/ ker(f): Im(f) ∼= G/ ker(f). The third one insures that for any normal subgroup
series T / S /M , we have the isomorphism (M/S)/(S/T ) ∼= M/T .

Proof.

(i) As the sequence (1.12) is exact, we have with the remark 1.3.4 that f and g are respectively injective and
surjective and Im(f) = ker(g). On the one hand, as f : A→ B is injective, we just need to change the target
of f to obtain an isomorphism A→ Im(f). On the other hand, as g : B → C is surjective, we have Im(g) = C,
so applying the first isomorphism theorem we get:

B/ Im(f) = B/ ker(g) ∼= Im(g) = C.

(ii) With the third isomorphism theorem, we know that (M/S)/(S/T ) is isomorphic to M/T , and then we obtain
the exact sequence (1.13) with the proposition 1.3.7 applied with H := S/T and G := M/S.

Proposition 1.3.10. Given two groups A and C in Ab, the natural inclusion i : A ↪→ A⊕C, a 7→ (a, 0)
and projection π : A⊕ C → C, (a, c) 7→ c define a short exact sequence:

0 −−−−−→ A
i

↪−−−−−→ A⊕ C
π

−−−−−→ C −−−−−→ 0.

Remark 1.3.11. Even if i is not exactly an inclusion, we will use its symbol ↪→ and we will call it inclusion
because it is an inclusion up to isomorphism. In addition, we have A⊕ C = A× C (see 1.1.21), and it an abelian
group with the usual operation + defined by:

∀(a, c), (a′, c′) ∈ A⊕ C, (a, c) + (a′, c′) := (a+A a
′, c+C c

′),

where +A and +C are the operation over A and C respectively.
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Proof. We can see that the inclusion i is a group homomorphism because:

∀a, a′ ∈ H, i(a+ a′) = (a+ a′, 0) = (a, 0) + (a′, 0) = i(a) + i(a′),

and it is clearly injective. Moreover, the projection π is also a group homomorphism:

∀(a, c), (a′, c′) ∈ A⊕ C, π((a, c) + (a′, c′)) = π(a+A a
′, c+C c

′) = c+ c′ = π(a, c) + π(a′, c′),

and it is surjective since π(0, c) = c for any c ∈ C. Finally, we have:

x ∈ Im(i) ⇔ ∃a ∈ A, x = i(a) = (0, a) ⇔ π(x) = 0 ⇔ x ∈ ker(π),

which means that Im(i) = ker(π). Thus, we conclude using the remark 1.3.4 that the considered short sequence is
exact.

3. Split exact sequence
Proposition 1.3.12. Splitting Lemma. Given a short exact sequence in Ab:

0 −−−−−→ A
f

−−−−−→ B
g

−−−−−→ C −−−−−→ 0, (1.14)

the following three statements are equivalents:

(i) Left split: there exists a homomorphism r : B → A, that we call retraction of f , such that:

r ◦ f = idA,

(ii) Right split: there exists a homomorphism s : C → B, that we call section of g, such that:

g ◦ s = idC ,

(iii) Direct sum: there is an isomorphism h : B → A⊕C such that the following diagram commutes:

0 A B C 0

0 A A⊕ C C 0

f g

h∼=

i π

(1.15)

keeping the same notations as before for the natural inclusion i and projection π.

Definition 1.3.13. We call split exact sequence a short exact sequence (1.14) such that one of the 3 previous
conditions is verified.

Proof. We will show the equivalences (i) ⇔ (iii) and (ii) ⇔ (iii).

(iii) ⇒ (i) Assume (iii), we have h ◦ f = i. So, if we consider the natural projection π′ : A ⊕ C → A, we notice
that the group homomorphism r := π′ ◦ h : B → A is a retraction of f , because:

∀a ∈ A, r ◦ f(a) = π′ ◦ h ◦ f(a) = π′ ◦ i(a) = π′(a, 0) = a = idA(a).

(iii) ⇒ (ii) Reasoning as in the previous point, we have the section s := h−1 ◦ i′ of g, where i′ : C ↪→ A⊕ C.

(i) ⇒ (iii) We assume there is a retraction r : B → A of f . We consider the following morphism:

h :
{
B → A⊕ C
b 7→ (r(b), g(b))

which is a group homomorphism since r and g are so. Observe h is injective, because, for any b ∈ B,

h(b) = (0, 0) ⇔
{
r(b) = 0
g(b) = 0 ⇔

{
r(b) = 0
b ∈ ker(g) = Im(f) ⇔

{
r(b) = 0
∃a ∈ A, b = f(a)

⇔
{
r(f(a)) = 0 = a
∃a ∈ A, b = f(a) = f(0) = 0 ⇔ b = 0.
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Now, let us show that the morphism h is also surjectif. Let (a, c) ∈ A⊕C. Thanks to the exactness of
the short sequence (1.14), the morphism g is surjective, which means we can find an b ∈ B such that
g(b) = c. And even much more: notice that for any x ∈ A, we have g(b + f(x)) = g(b) + g(f(x)) = c
because g ◦ f = 0 (see the end of the remark 1.3.4). We would like to find a particular x0 ∈ A, such
that we have in addition r(b+ f(x0)) = a. In other words, we want:

a = r(b+ f(x0)) = r(b) + r(f(x0)) = r(b) + x0 ⇔ x0 = a− r(b).

That is why we take such an x = x0, and we obtain:

h(b+ f(x)) = (r(b+ f(x)), g(b+ f(x))) = (a, c),

which means h is well surjective. Furthermore, the diagram (1.15) commutes because:

∀a ∈ A, h ◦ f(a) = (r(f(a)), g(f(a))) = (a, 0) = i(a),

and:
∀b ∈ B, π ◦ h(b) = π(r(b), g(b)) = g(b),

Therefore, we showed (i) ⇒ (iii).

(ii) ⇒ (iii) Suppose there is a section s : C → B of g. Let us consider the following morphism:

h′ :
{
A⊕ C → B
(a, c) 7→ f(a) + s(c)

which is a group homomorphism as f and s are so. We want to show h′ is an isomorphism. Let us
take (a, c) ∈ A⊕ C such that 0 = h′(a, c) := f(a) + s(c). We apply g to this equation, and we get:

0 = g(0) = g(f(a)) + g(s(c)) = 0 + c = c.

In particular, we then have f(a) = f(a) + s(c) = 0. Due to the exactness of the short sequence (1.14),
the morphism f is injective, so a = 0. To sum up, we have (a, c) = (0, 0) and we showed h′ is injective.
Now, let us show that h′ is surjective. Let b ∈ B. We notice that b can be decompose into the sum of
b− s(g(b)) and s(g(b)), where the first element is in the kernel ker(g) of g:

g(b− s(g(b))) = g(b)− (g ◦ s)(g(b)) = g(b)− g(b) = 0.

So, as ker(g) = Im(f), we can find an a ∈ A which verifies f(a) = b − s(g(b)). Thus, if we denote
c := g(b), we get h′(a, c) = b, which means h′ is well surjective. Hence, h′ is an isomorphism, and we
obtain the wanted isomorphism h : B → A⊕C being the inverse isomorphism of h′, knowing moreover
that the diagram (1.15) commutes:

∀a ∈ A, h′(i(a)) = h′(a, 0) = f(a) ⇔ h−1 ◦ i = h′ ◦ i = f ⇔ i = h ◦ f,

and:

∀(a, c) ∈ A⊕ C, g ◦ h′(a, c) = g ◦ f(a) + g ◦ s(c) = c = π(a, c) ⇔ g ◦ h−1 = g ◦ h′ = π,

⇔ g = π ◦ h.

IV. Eilenberg-Steenrod axioms of homology theory
The central key of homology theory is its axioms, also known as Eilenberg-Steenrod axioms. They were
introduced in [ES45] by Samuel Eilenberg and Norman E. Steenrod in 1945, but the language used was different
from the one of categories we use here.
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1. Axioms
We saw previously that in the category Toprel there is a way to "pass" from a function to another one: the relative
homotopy. Now, we would like to define a similar notion that would allow us to "pass" from a functor to another
one: the natural transformation.

Definition 1.4.1. Consider two functors F, G : C → D between categories C and D. A natural transformation
λ : F ⇒ G from F to G is a class (λX : F (X)→ G(X))X∈Ob(C) of morphisms of D indexed by the objects of C such
that, for any morphism f : X → Y in C, we have λY ◦F (f) = G(f) ◦λX , or, in other terms, the following diagram
commutes:

F (X) F (Y )

G(X) G(Y ).

F (f)

λX λY

G(f)

Definition 1.4.2. An excisive triad (X; A, B) is a triad where A and B are subspaces of a topological space
X, endowed with the respective induced topologies, such that Å ∪ B̊ = X.

Remark 1.4.3. Contrary to the triple (X, A, B) of topological spaces B ⊆ A ⊆ X that we will use in the next
subsection, an excisive triad does not require B ⊆ A.

Definition 1.4.4. Let U : Toprel → Toprel be a functor which sends any pair (X, A) to the pair (A, ∅) in Toprel,
and any continuous map f : (X, A) → (Y, B) to its restriction (A, ∅) → (B, ∅). A (generalized) homology
theory E∗ is a family {En : Toprel → Ab}n∈Z of homotopy invariant functors En, together with a family {∂n :
En ⇒ En−1 ◦ U}n∈Z of natural transformations ∂n, such that the following four axioms are satisfied:

(h1) Exactness: for any pair (X, A) in Toprel, let i : (A, ∅) ↪→ (X, ∅) and j : (X, ∅) ↪→ (X, A) be inclusions. The
following long sequence is exact in the category Ab of the abelian groups:

. . . −−−−−→ En(A, ∅)
En(i)
−−−−−→ En(X, ∅)

En(j)
−−−−−→ En(X, A)

∂n(X, A)

−−−−−→ En−1(A, ∅) −−−−−→ . . .

(h2) Excision: for any excisive triad (X; A, B), the inclusion i : (A, A ∩B) ↪→ (X, B) induces isomorphisms in
Ab for all integer n:

En(i) : En(A, A ∩B)
∼=−→ En(X, B).

(h3) Additivity: for any collection {(Xj , Aj)}j∈J of pairs in Toprel, the inclusions ij0 : (Xj0 , Aj0) ↪→
∐
j∈J(Xj , Aj)

for j0 ∈ J induce isomorphisms in Ab for all integer n:

∑
j∈J

En(ij) :


⊕
j∈J

En(Xj , Aj)
∼=−→ En

∐
j∈J

(Xj , Aj)

 ,∑
j∈J

xj 7−→
∑
j∈J

En(ij)(xj).

(h4) Invariance with weak equivalences: If f : (X, A) → (Y, B) is a relative weak homotopy equivalence in
Toprel, then we have the following isomorphisms in Ab for any integer n:

En(f) : En(X, A)
∼=−→ En(Y, B).

We also say that the homology theory E∗ is ordinary if moreover the following axiom is verified:

(h5) Dimension: there exists an abelian group A such that:

En({∗}, ∅) =
{
A if n = 0,
0 otherwise,

where ∗ designates a point.

Remarks 1.4.5. The natural transformations ∂n (for n ∈ Z) are well defined because, as we saw in the remark
1.1.6, the composition of functors is also a functor, so En−1 ◦U is a functor. Moreover, the axioms (h2) and (h3) are
also well defined because respectively (A, A∩B) and

∐
j∈J(Xj , Aj) =

(∐
j∈J Xj ,

∐
j∈J Aj

)
are relative topologies
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in Toprel. Let us introduce a couple of notations. When the integer n considered is understood, we will only write
E∗(−) instead of En(−) and for any continuous map f in the category Toprel, we will often prefer replacing En(f)
simply by f∗. Moreover, if the relative topology (X, A) is also clear, we will prefer ∂n or even ∂ instead of ∂n(X,A).
We also write En(X) for En(X, ∅) where X is a topological space in Top. Furthermore, if an homology theory E∗
is ordinary for a certain abelian group A, then we use to denote H∗(−; A) := E∗(−), or even H∗(−) when we want
to lighten notations.

Remark 1.4.6. Even though these axioms do not guarantee a priori that we can find an ordinary homology
theory H∗(−; A) for any abelian group A, we will see at the end of the project that the Dold-Thom theorem assures
the existence of ordinary homology theory H∗(−; Z) in the particular case of Z. More precisely, we use in the
Dold-Thom theorem a reduced ordinary homology theory H̃∗, but we will see in the theorem 3.1.8 that there is a
one to one relation between a reduced and a non-reduced ordinary homology theories H̃∗ and H∗.

Remark 1.4.7. As explained in [ES52, page 13], we can assume w.l.o.g. that H̃n(−) = 0 for n < 0. Moreover,
one can notice thanks to the additivity axiom (h3) that E∗(∅) ∼= 0 because:

E∗(∅)⊕ E∗(∅)
(h3)∼= E∗

(
(∅, ∅)

∐
(∅, ∅)

)
= E∗(∅) ∼= E∗(∅)⊕ {0}.

2. Exact sequences of homology, suspension and reduced cone
We would like to introduce a new tool that will help us to compute E∗(X) in terms of E∗(A), E∗(B) and E∗(A∩B)
for any excisive triad (X; A, B): the Mayes-Vietoris sequence. But before, let us get another interesting exact
sequence. Find it in [May99, page 112].

Proposition 1.4.8. Let E∗ be any homology theory with the same notations as in the defini-
tion 1.4.4, and let (X, A, B) be a triple of topological spaces B ⊆ A ⊆ X, where A and B are
respectively endowed with the topologies induced by X on A and B (so both (X, A), (X,B) and
(A, B) are relative topologies). Consider the inclusions i : (A, B) ↪→ (X, B), j : (X, B) ↪→ (X, A) and
k : (A, ∅) ↪→ (A, B); and for all integer n, define the group homomorphism λn as the composite:

λn : En(X, A)
∂n

−−−−−→ En−1(A)
En−1(k)
−−−−−→ En−1(A, B),

Then, the following sequence is exact in Ab:

. . . −−−−−→ En(A, B)
i∗

−−−−−→ En(X, B)
j∗

−−−−−→ En(X, A)
λn

−−−−−→ En−1(A, B) −−−−−→ . . .

Find the following theorem in [May99, page 113].

Theorem 1.4.9. Let E∗ be any homology theory with the same notations as in the definition
1.4.4. We consider an excisive triad (X; A, B) and the intersection C := A ∩ B. We denote the
following inclusions: i : (C, ∅) ↪→ (A, ∅), j : (C, ∅) ↪→ (B, ∅), k : (A, ∅) ↪→ (X, ∅), l : (B, ∅) ↪→ (X, ∅) and
m : (X, ∅) ↪→ (X, B). Let us also consider for any integer n the homomorphisms:

ψn :
{
En(C) → En(A)⊕ En(B),
c 7→ (i∗(c), j∗(c)),

φn :
{
En(A)⊕ En(B) → En(X),

(a, b) 7→ k∗(a)− l∗(b),

and ∆n : En(X)→ En−1(C) the composite:

En(X)
m∗

−−−−−→ En(X, B)
(h3)∼= En(A,C)

∂n

−−−−−→ En−1(C)

Then, the following sequence is exact and is called Mayes-Vietoris sequence associated to the
excisive tirad (X; A, B) in Ab:

. . . −−−−−→ En(C)
ψn

−−−−−→ En(A)⊕ En(B)
φn

−−−−−→ En(X)
∆n

−−−−−→ En−1(C) −−−−−→ . . .
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To reveal the strength of the Mayer-Vietoris sequence for an ordinary homology theory H∗(−; A), we will use it
to compute Hn(Sm; A) for any integers n, m ≥ 0. But, just before, let us define two fundamental constructions:
suspension and reduced cone. Recall, we denote I := [0, 1] the unit interval endowed with the induced subspace
topology by the usual one on R. We fix 0 to be its based point.

Definition 1.4.10. In Top∗ the (reduced) suspension ΣX of a based space (X, x0) is the following pushout:

(X × {0, 1}) ∪ ({x0} × I) {∗}

X × I ΣX

∃!f

i

[−]

[−]
p

(1.16)

and we denote x ∧ t := h(x, t) ∈ ΣX for any (x, t) ∈ X × I.

Remark 1.4.11. Up to isomorphism, as the pushout is unique (see 1.1.26), we have a unique suspension ΣX
associated to a pointed space (X, x0). Note that, as long as basepoints are clear, we will not precise them to lighten
the notations. For exemple, in the X × I the basepoint is (x0, 0), i.e. the couple of the basepoints of X and of I.

Remark 1.4.12. We denote A := (X × {0, 1}) ∪ ({x0} × I). In the pushout (1.16) just above, we have
ΣX = (X × I) ∨A {∗} in Top∗ due to the proposition 1.1.27. It means we "glue" together the images of i and f , or
in other words, we associate in X × I all point of A to one point ∗. So, the suspension ΣX is no more than:

ΣX = (X × I)/A = (X × I)/(X×{0, 1})∪({x0}×I).

Moreover, as h is pointed, the basepoint of ΣX is h(x0, 0) =: x0 ∧ 0 because (x0, 0) is the basepoint of X × I. But
as (x0, 0) ∈ A and as we quotient X × I by A to get ΣX, the basepoint of ΣX could be in fact written as any x∧ t
such that (x, t) ∈ A.

Definition 1.4.13. In Top∗ the reduced cone CX of a based space (X, x0) is the following pushout:

(X × {1}) ∪ ({x0} × I) {∗}

X × I CX

∃!

[−]

[−]
p

(1.17)

Remark 1.4.14. Similarly as in the remark 1.4.12, if we denote B := (X × {1}) ∪ ({x0} × I) we have with the
reduced cone:

CX = (X × I)/B = (X × I)/(X×{1})∪({x0}×I), (1.18)

and its basepoint is [(x0, 0)], but also any [(x, t)] such that (x, t) ∈ B.

Remark 1.4.15. When X is the circle S1, one can see that the reduced cone CX is an hemisphere, which
is homeomorphic to a cone. That is why we gave to CX such a name. Another explanation would be that the
(non-reduced) cone (which is defined as X × I/X × {1}) is exactly a cone.

Remark 1.4.16. In a sense, one can say we have the inclusion X ↪→ CX because the continuous map:

α

{
X ∼= X × {0} → CX,
x 7→ (x, 0) 7→ [(x, 0)],

is an embedding, i.e. an homeomorphism into its image. Indeed α is clearly injective since, with the quotient (1.18),
the only point of X × {0} affected by the identification in CX is (x0, 0), the other point are not affected by the
identification.

Remark 1.4.17. Note that we can express the suspension ΣX using reduced cones CX as follows:
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X CX

CX ΣX,p

and

X {∗}

CX ΣX,p

where the inclusion X ↪→ CX comes from the remark 1.4.16. The first pushout can be obtained just seeing pushout
as a "glue" tool, and the second one results from the proposition 1.1.27 applied to the isomorphism:

ΣX ∼= X × I/(X×{0, 1})∪({x0}×I)
∼=

(
X × I/(X×{1})∪({x0}×I)

)
/X×{0}

∼= CX/X
∼= (CX ∨ {∗})/X
∼= CX ∨X {∗}.

Note moreover that this second pushout implies we have the relation:

ΣX ∼= CX/X.

Proposition 1.4.18. For any pointed space (X, x0) in Top∗, the reduced cone CX is contractible,
and the suspension ΣX is path-connected.

Proof. To show that CX is contractible, we need to find a relative homotopy H : CX × I → CX from idCX to
a constant map (see the remark 1.2.23). We define the following map:

h :
{

(X × I)× I → CX
((x, t), s) 7→ [(x, (1− s)t+ s)]

which is continuous by composition of continuous maps. We will apply the Universal Property of Quotient Space
in order to have the following commutative diagram:

(X × I)× I CX

CX × I

h

[−]× id

∃!H,

where H :
{

CX × I → CX,
([(x, t)], s) 7→ h((x, t), s).

The map [−]× id is the natural projection from (X × I)× I to CX × I := ((X × I)× I)/ ≈, where the equivalence
relation ≈ identifies the elements of (X × {1}) ∪ ({x0} × I) on the composant X × I, and it is the equality on
the composant I. Let us verify f is ≈-invariant. We consider two different points ((x, t), s) ≈ ((x′, t′), s′) in
(X × I)× I. We have s = s′, and (x, t) and (x′, t′) belong to (X × {1}) ∪ ({x0} × I). This induces:

h((x, t), s) =
{

[(x, 1)] if (x, t) ∈ X × {1}
[(x0, (1− s)t+ s)] if (x, t) ∈ {x0} × I

= [(x0, 0)]

=
{

[(x′, 1)] if (x′, t′) ∈ X × {1}
[(x0, (1− s′)t′ + s′)] if (x′, t′) ∈ {x0} × I

= h((x′, t′), s′)

Thus h is ≈-invariant and we can apply the Universal Property of Quotient Space: in particular, the map H :
CX×I → CX is in Top∗. Hence, this continuous map H is the wanted relative homotopy since for all [(x, t)] ∈ CX,

H(−, 0)([(x, t)]) = h((x, t), 0) = [(x, t)] = idCX([(x, t)]),
H(−, 1)([(x, t)]) = h((x, t), 1) = [(x, 1)] = [(x0, 1)],
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To this end, the reduced cone CX is contractible.
Next, to show that ΣX is path-connected, let us show that we can join its basepoint x0 ∧ 0 to any of its points
x ∧ t ∈ ΣX. The path we consider is the following one:

γx∧t :
{
I → ΣX,
s 7→ x ∧ ((1− s)t+ s),

which is in Top∗ by composition of pointed continuous maps. We recognize it is the wanted path because in s = 0
we get x ∧ t and in s = 1 we get x0 ∧ 0. Consequently, the suspension ΣX is path-connected.
The following result is very important to compute Hm(Sn) for any integers m, n ≥ 0. Note that, with the following
proposition, we could define inductively all the multidimentional spheres from S0 thanks to the suspension Σ.

Proposition 1.4.19. For any integer n ≥ 0,

ΣSn ∼= Sn+1.

Proof. Let n ∈ N. We regard Sn and Sn+1 as sitting in Rn+2 together with the usual norm ||.||:

Sn+1 := {x ∈ Rn+2 | ||x|| = 1} and Sn := {x ∈ Rn+2 | ||x|| = 1 and xn+2 = 0},

where Sn is the equator of the unit sphere Sn+1. We also consider the disk Dn+1 in the equatorial plane, and the
upper and lower hemisphere Hn+1

+ and Hn+1
− as follows:

Dn+1 := {x ∈ Rn+2 | ||x|| ≤ 1 and xn+2 = 0},
Hn+1

+ := {x ∈ Rn+2 | ||x|| = 1 and xn+2 ≥ 0},
Hn+1
− := {x ∈ Rn+2 | ||x|| = 1 and xn+2 ≤ 0}.

For all the set defined just above, the basepoint is s0 := (1, 0, . . . , 0) ∈ Rn+2 and the topology is the subspace one.
One can say there are homeomorphisms in Top∗ defined as follows:

p+ :
{

Dn+1 → Hn+1
+

(x1, . . . , xn+1, 0) 7→
(
x1, . . . , xn+1,

√
1− v

)
p− :

{
Dn+1 → Hn+1

+
(x1, . . . , xn+1, 0) 7→

(
x1, . . . , xn+1, −

√
1− v

)
where v :=

∑n+1
i=1 xi, on account of they are continuous and bijective between compact Hausdorff objects. Now, as

the disk Dn+1 is convex, for any x ∈ Sn ⊂ Dn+1 and t ∈ I, we have that tx+ (1− t)s0 is in Dn+1. So the following
map:

h :

 Sn × I → Sn+1

(x, t) 7→
{
p−(2tx+ (1− 2t)s0) if 0 ≤ t ≤ 1/2
p+(2(1− t)x+ (2t− 1)s0) if 1/2 ≤ t ≤ 1

is well defined (also when t = 1/2 because we would have p−(x) = p+(x) for x ∈ Sn), and continuous by composition
of continuous maps. It is also invariant over (Sn × {0, 1}) ∪ ({s0} × I) because, for any (x, t) ∈ Sn × I:

h(x, 0) = p−(s0) = s0,
h(x, 1) = p+(s0) = s0,

h(s0, t) =
{
p−(s0) if 0 ≤ t ≤ 1/2
p+(s0) if 1/2 ≤ t ≤ 1 = s0.

Thus, we can apply the Universal Property of Quotient Space to get an induced continuous map h̄ : ΣSn → Sn+1:

Sn × I Sn+1

ΣSn

h

[−]

h̄

that moreover preserves the basepoints. Let us show that h̄ is bijective. As h is surjective, we have Im(h̄) = Im(h).
Moreover, as (x, t) 7→ 2tx+ (1− 2t)s0 and (x, t) 7→ 2(1− t)x+ (2t− 1)s0 are surjective from Sn × I to Dn+1, we
have Im(h) = Im(p+) ∪ Im(p−), and since p± is an homeomorphism, we have Im(p±) = Hn+1

± . That is why h̄ is
surjective:

Im(h̄) = Im(h) = Im(p+) ∪ Im(p−) = Hn+1
+ ∪Hn+1

− = Sn+1.
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Now, we consider two different points x∧ t 6= x′ ∧ t′ in ΣX. We necessarily have (x, t) 6= (x′, t′). On the one hand,
we suppose neither x∧ t nor x′ ∧ t′ is the basepoint s0 ∧ 0. If h̄(x∧ t) and h̄(x′ ∧ t′) are not in the same hemisphere,
they are naturally different. Otherwise, if they are in the same one, let us say w.l.o.g. the upper one, then, as p+
is injective and xt + (1 − t)s0 6= x′t′ + (1 − t′)s0, we have h(x, t) 6= h(x′, t′), that is to say h̄(x ∧ t) 6= h̄(x′ ∧ t′).
On the other hand, we assume that one of the two points is the basepoint s0 ∧ 0, let us say w.l.o.g. x ∧ t = s0 ∧ 0.
Then h̄(x ∧ t) = s0, and as x′ ∧ t′ 6= x ∧ t = s0 ∧ 0, we have (x′, t′) /∈ (Sn × {0, 1}) ∪ ({s0} × I) = h−1(s0). So,

h̄(x′ ∧ t′) = h(x′, t′) 6= s0 = h̄(x ∧ t).

That means h̄ is injective, and thus bijective. Finally, we can see that the suspension ΣSn is compact for it is the
image of the compact Sn × I by the projection [−] which is continuous. We also notice that Sn+1 is Hausdorff.
Hence, we have a continuous bijection h̄ : ΣSn → Sn+1 from a compact to a Hausdorff space, which implies h̄ is a
homeomorphism and: ΣSn ∼= Sn+1.

Proposition 1.4.20. The reduced cone and suspension define respectively the functors C : Top∗ →
Top∗ and Σ : Top∗ → Top∗.

Proof. Recall from (1.18) that CX is homeomorphic to X × I/(X × {1}) ∪ ({x0} × I). We have:

C :
{
Ob(Top∗) → Ob(Top∗),
(X, x0) 7→ (CX, [(x0, 0)]).

For any continuous map f : (X, x0) 7→ (Y, y0) in Top∗, we want to define C(f) : CX → CY . First of all, we notice
the following diagram commutes:

(X × {1}) ∪ ({x0} × I) {∗}

X × I CY

x 7→∗

i′ ∗ 7→ [(y0, 0)]

[−] ◦ (f × id)

because [−] ◦ (f × id) ◦ i((X × {1})∪ ({x0} × I)) = [(Y × {1})∪ ({x0} × I)] = {[(y0, 0)]}. Then, with the universal
property of the pushout CX, we get the wanted map C(f) : CX → CY :

(X × {1}) ∪ ({x0} × I) {∗}

X × I CX

CY

g′

[−]
p

[−] ◦ (f × id)

C(f)

which is more precisely:
C(f) : [(x, t)] 7→ [(f(x), t)].

Now, if we have another continuous map g : (Y, y0)→ (Z, z0)) in Top∗, we have C(g ◦ f) = C(g) ◦ C(f):

∀[(x, t)] ∈ CX, C(g ◦ f)([(x, t)]) = [(g ◦ f(x), t)] = C(g)([(f(x), t)]) = C(g) ◦ C(f)([(x, t)]).

Moreover, we also have C(id) = id:

∀[(x, t)] ∈ CX, C(id)([(x, t)]) = [(id(x), t)] = [(x, t)] = id([(x, t)]).

Thus C is a functor, and we can do a similar reasonings to show that Σ is equally a functor.

Remark 1.4.21. We have constructed the natural transformations idTop∗ ⇒ C, idTop∗ ⇒ Σ and C ⇒ Σ. Indeed,
the "faces" of the following "cube" give the wanted natural transformations:

X CX

Y CY

CX ΣX

CY ΣY.

p

p
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Proposition 1.4.22. The functor Σ : Top∗ → Top∗ is homotopically well-behaved, in the sense that:

f '∗ g ∈Mor(Top∗) ⇒ Σf '∗ Σg.

In other words, if two pointed spaces X and Y are homotopy equivalent, then the suspensions
ΣX and ΣY are also homotopy equivalent.

Proof. Consider two continuous maps f '∗ g : X → Y in Top∗ and denote H : X × I → Y the corresponding
homotopy. We recall from the proof of 1.4.20 that Σf : x ∧ t→ f(x) ∧ t. Then, the map x ∧ t→ H(x, t) ∧ t gives
the wanted relation Σf '∗ Σg.

3. Computation of Hn(Sm)
Let H∗(−; A) be an ordinary homology theory with an abelian group A. Consider a pointed space (X, x0) in Top∗.
Let us compute H∗(ΣX; A) := H∗((ΣX, ∅), A) in terms of H∗(X; A) := H∗((X, ∅), A).

Lemma 1.4.23. Denote the natural projection π : X× I → ΣX, and the subspaces U := π(X× [0, 1))
V := π(X × (0, 1]) of ΣX. Then (ΣX; U, V ) is an excisive triad, where moreover U and V are open
and contractible, and their intersection verifies U ∩ V ' X.

Proof. In I := [0, 1], the interval [0, 1) is open, so X× [0, 1) is open in X× I together with the product topology.
Then, as the suspension ΣX is endowed with the quotient topology, i.e. the finest topology that allows the natural
projection π : X × I → ΣX to be continuous, the set U := π(X × [0, 1)) is open in ΣX. Similarly, we can define
the set V := π(X × (0, 1]) that is open in ΣX. We notice that Ů ∪ V̊ = U ∪ V = ΣX, which implies (ΣX; U, V )
is an excisive triad. To show that U (resp. V ) is contractible, we can do exactly as in the proof 1.4.18 that shows
CX is contractible: we just need to replace I by [0, 1) (resp. by (0, 1]) and CX by U (resp. by V ). One can
also demonstrate it seeing that U and V are both homotopic to CX, which is homotopic to a unit set since it is
contractible. Now, let us verify U ∩ V ' X. First of all, one can notice that U ∩ V ⊂ ΣX is homeomorphic to
X × (0, 1)/{x0}×(0, 1). We then define the following continuous maps:

f :
{
X → U ∩ V,
x 7→ x ∧ (1/2), and g :

{
U ∩ V → X,
x ∧ t 7→ x.

Now, we have g ◦ f ' idX for we even have the equality, and the relation f ◦ g ' idU∩V is given by the homotopy
H : (U ∩ V ) × I → U ∩ V that maps (x ∧ t, s) to x ∧ ((t − 1/2)s + 1/2). Thus, we deduce U ∩ V and X are
homotopic.

Proposition 1.4.24. For any integer n ≥ 1,

Hn(X; A) ∼= Hn+1(ΣX; A).

Proof. The Mayer-Vietoris sequence (see the theorem 1.4.9) applied to the excisive triad (ΣX; U, V ) given by
the lemma 1.4.23 is:

. . . −−−−→ Hn+1(U)⊕Hn+1(V ) −−−−→ Hn+1(ΣX) −−−−→ Hn(U ∩ V ) −−−−→ Hn(U)⊕Hn(V ) −−−−→ . . . (1.19)

Let n ≥ 1 be an integer. Knowing that U is contractible andHn is homotopy invariant, we haveHn(U) ∼= Hn({∗}) =
0 using the dimension axiom (h5); and similarly Hn(V ) = 0. Moreover, as U∩V ' X, we have Hn(U∩V ) ∼= Hn(X)
and it yields with proposition 1.3.5 the exact sequence (1.19) becomes:

0 −−−−−→ Hn+1(ΣX) −−−−−→ Hn(X) −−−−−→ 0

which implies Hn+1(ΣX) ∼= Hn(X) with the proposition 1.3.3.

Remark 1.4.25. In particular, it implies that Hn(ΣX;A) does not depend on the choice of the basepoint x0 in
(X, x0) for n ≥ 2.

Lemma 1.4.26. We have the following exact sequence:

0 −−−−−→ H1(ΣX; A) −−−−−→ H0(X; A) −−−−−→ A⊕A −−−−−→ H0(ΣX; A) −−−−−→ 0.
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Proof. The Mayer-Vietoris sequence (see the theorem 1.4.9) applied to the excisive triad (ΣX; U, V ) given by
the lemma 1.4.23 gives the wanted exact sequence:

H1(U)⊕H1(V ) −−−−−→ H1(ΣX) −−−−−→ H0(U∩V ) −−−−−→ H0(U)⊕H0(V ) −−−−−→ H0(ΣX) −−−−−→ H−1(U∩V ),

because we have again H1(U)⊕H1(V ) = 0 and H0(U ∩ V ) ∼= H0(X), moreover both H0(U) and H0(V ) are equal
to H0({∗}; A) = A, and also we have H−1(U ∩ V ) ∼= H−1(X) = 0.

Proposition 1.4.27. For any integers n ≥ 0 and m ≥ 0 we have:

Hn(Sm; A) ∼=

 A⊕A if m = n = 0,
A if m = n > 0 or m > n = 0,
0 otherwise.

(1.20)

Proof. We split the proof into a few steps.

(i) Let us compute Hn(S0; A) for all integer n. By definition, the set S0 contains only two points, so it is
isomorphic to the coproduct of two unit sets: S0 ∼= {∗}

∐
{∗}. Then for any integer n:

Hn(S0; A) ∼= Hn

(
{∗}

∐
{∗}; A

) (h3)∼= Hn({∗}; A)⊕Hn({∗}; A) (h5)=
{
A⊕A if n = 0,

0 otherwise.

(ii) Take open sets U and V exactly as in the lemma 1.4.23, in the particular case of X = S0. So, as we saw in
1.4.19 that ΣS0 ∼= S1, we have the excisive triad (ΣS0; U, V ) ∼= (S1; U, V ), where U and V are moreover
contractible and verify U ∩ V ' S0.

(iii) Let compute Hn(S1; A) for any integer n ≥ 0. As S1 ∼= ΣS0, we have the isomorphisms:

Hn(S1; A) ∼= Hn(ΣS0; A)
1.4.24∼= Hn−1(S0; A) = 0,

for any integer n ≥ 2. Next, we want to compute H1(S1; A) and H0(S1; A). We apply the lemma 1.4.26 to
X := S0 and we get the following exact sequence:

0 −−−−−→ H1(S1; A) −−−−−→ H0(S0; A) −−−−−→ A⊕A −−−−−→ H0(S1; A) −−−−−→ 0.

As we just saw, we have H0(S0; A) ∼= A⊕A, and we can give more precision about the morphisms using the
notations of the Mayer-Vietoris sequence:

0
φ1

−−−−−→ H1(S1; A)
∆1

−−−−−→ A⊕A
ψ0

−−−−−→ A⊕A
φ0

−−−−−→ H0(S1; A)
∆0

−−−−−→ 0. (1.21)

We can see ∆1 is injective, so the group H1(S1; A) is isomorphic to its image ∆1(H1(S1; A)) ⊆ A ⊕ A.
Moreover, as the above sequence (1.21) is exact, we have ∆1(H1(S1; A)) ∼= ker(ψ0). So we want to compute the
kernel of ψ0 : (a, b) 7→ (i∗(a, b), j∗(a, b)), where i : S0 ↪→ U and j : S0 ↪→ V . We claim that i∗ : (a, b) 7→ a+b.
To show it, let us first denote W and E the two points of S0, and w : {W} → S0 and e : {E} → S0 the
associated inclusions. We have the pushout:

0 H0({W})

H0({E}) H0({E})⊕H0({W})

H0(S0).

b 7→ (0, b) w∗

a 7→ (a, 0)
p

e∗

∼=
(h3)

Consequently, up to isomorphism, we have e∗(a) = (a, 0) and w∗(b) = (0, b) for any a ∈ H1({E}; A) and
b ∈ H1({W}; A). Now, we have the retraction r : U → {E} of i ◦ e as follows:

{E} S0 Ue i

r:u7→E
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which is a homotopy equivalence: indeed, we saw that U is contractible, i.e. U is relative homotopic to {E},
so we can find a homotopy equivalence U → {E}, which is exactly r as it is the only map between these spaces.
In particular, we then have (i◦e)◦r ' idU . Therefore, as a homotopy equivalence of pointed spaces is a relative
weak homotopy equivalence (see 1.2.28), with the axiom (h4) we have that r∗ : H1(U ; A) → H1({E}; A) is
an isomorphism, and as H1(−; A) is a homotopy invariant functor:

(i ◦ e)∗ ◦ r∗ = (i ◦ e ◦ r)∗ = id∗.

Thus, up to isomorphism, the map (i ◦ e)∗ is precisely the identity. Similarly, we can show the same result for
(i ◦ w)∗. It finally yields: ∀a ∈ H1({E}; A), ∀b ∈ H1({W} : A),

i∗(a, b) = i∗((a, 0) + (0, b)) = i∗(a, 0) + i∗(0, b) = (i ◦ e)∗(a) + (i ◦ w)∗(b) = a+ b.

In a same way, we have j∗ : (a, b) 7→ a+ b. It follows the kernel of ψ0 : (a, b) 7→ (a+ b, a+ b) is exactly:

ker(ψ0) = {(a, b) ∈ A⊕A | a+ b = 0} = {(a, −a) | a ∈ A} ∼= A,

which shows H1(S1; A) ∼= A. Finally, let us compute H0(S1; A). As the sequence (1.21) is exact, we have:

ker(φ0) = Im(ψ0) = {(a+ b, a+ b) | a, b ∈ A} = {(c, c) | c ∈ A} ∼= A,

which implies with the first isomorphism theorem and the fact φ0 is surjective that we therefore have:

H0(S1, A) = Im(φ0) ∼= (A⊕A)/ ker(φ0) ∼= (A⊕A)/A ∼= A.

(iv) Due to 1.4.19 we have the relation ΣSn ∼= Sn+1, with enables to generalize the previous two steps (ii) and
(iii) to any dimension.
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— Part 2 —

CW-complexes and Cofibrations

I. CW-complexes
In this section, we want to define and understand a new class of topological spaces, know as CW-complexes. We
will see they are well behaved spaces and that, up to weak homotopy equivalence, every space is a CW-complex:
this is the cellular approximation. Well-known results were obtained due to J.H.C Whitehead, such as his theorem
that we will see at the end of the section. For more details, see the references [AGP02, 5.1] and [Hat01, appendix].

1. Generalities
Definitions 2.1.1. In Top, a topological space X is a CW-complex if there exists a sequence X0 ⊆ X1 ⊆ X2 ⊆ ...
of topological spaces called a CW-decomposition of X, such that:

(i) The first set X0 is nonempty and is endowed with the discrete topology, where every subset is open.

(ii) For any integer n ≥ 0, we can find an index set Jn and a collection {ϕj : Sn C0

−→ Xn}j∈Jn of continuous maps
known as attaching maps, such that we have the pushout:

∐
j∈Jn

Sn Xn

∐
j∈Jn

Dn+1 Xn+1

∑
j
ϕj

p

(2.1)

where Sn and Dn+1 are given together with the induced topology of the usual topology on Rn+1.

(iii) The union
⋃
n∈N Xn together with the weak topology (namely, a set C is closed if, and only if, the intersection

C ∩Xn is closed for any n ∈ N) is homeomorphic to X.

The points of X0 are called vertices (or vertex if we describe only one point of X0), and a subspace Xn is called
n-skeleton (n ∈ N). In the pushout in (ii), the map

∐
j∈Jn

Dn+1 → Xn+1 induces maps φn+1
j : Dn+1

j → Xn+1

where we denote Dn+1
j a copy of Dn+1 for j ∈ Jn. The restriction D̊n+1

j → Xn+1 of this induced map φn+1
j to the

open (n+ 1)-disk D̊n+1
j is called open (n+ 1)-cell.

Remark 2.1.2. This restriction D̊n+1
j → Xn+1 is injective since each element x of D̊n+1

j is sent to its associated
classe [x] in the pushout Xn+1, and when we compute the quotient space, no part of the interior of any disk Dn+1

j

is identified in Xn+1 (there is identification only for the points of the boundary Sn). It shows an open (n+ 1)-cell
is an homeomorphism from a space D̊n+1 to its image. Thus, the image denoted en+1

j ⊆ Xn+1 of D̊n+1 by an open
(n+1)-cell is homeomorphic to D̊n+1 and deserves to be also called open (n+1)-cell. Visually, an open (n+1)-cell
is a space of dimension n+ 1: for instance, a 1-cell looks like a line segment, a 2-cell like an open disk, a 3-cell an
open ball, et caetera... It is also common to generalize the notion of cell to the 0-cells, which would be then any
point of X0, also know as vertex. Using this notation, we would then have:

X0 ∼=
⊔

j∈J−1

e0
j ,
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where J−1 is defined as any set isomorphic to X0. From now, we will simply use cell to describe an open n-cell for
an integer n ≥ 0. Notice that one can also define closed (n + 1)-cell as being exactly ēn+1

j := Im(φn+1
j ) for j in

Jn, but in general it is not homeomorphic to Dn+1.

Remarks 2.1.3. Given a CW-complex X, a CW-decomposition is not unique. For instance, we can construct
two different CW-decompositions of the circle X := S1, one beginning with {∗} and another one with {∗, ∗}:

S0 X0 := {∗}

D1 X1 ∼= S1

∃!

p

S0∐S0 X0 := {∗, ∗}

D1∐D1 X1 ∼= S1

id+id

p

where, in the first case, we "glue" together the two ends of the segment D1, and in the other case, we "glue" the
two segments together (see the remark ...). In both case, we take Xn = S1 for n ≥ 1, and we have constructed two
different CW-decompositions of S1. Besides, we can similarly see that any n-sphere Sn is a CW-complex. Moreover,
if for one n ∈ N we have Xn

∼= X, then we do not need to precise the following spaces of the CW-decomposition:
they are all necessary homeomorphic to X since Xn

∼= X is included in each of them, and their union is included
in a space homeomorphic to X. To get such a CW-decomposition, one can notice that taking Jk = ∅ implies
Xk+1 = Xk

∐
∅ ∅ = Xk for any k ∈ N.

Remark 2.1.4. We defined the notion of CW-complex in Top, but we can also consider it in Top∗: a pointed
CW-complex is a CW-complex X together with a basepoint that is also exactly the basepoint of its 0-skeleton X0
(so, in particular, it is the basepoint of all its skeletons). One can then consider the categories CW and CW∗: the
objects of CW are the CW-complexes, and its morphisms are the continuous maps from a CW-complex to another
one; and similar for CW∗, but with pointed CW-complexes and pointed map. Note that in CW∗, we will rather use
the wedge product ∨ that the coproduct

∐
in order to attach the basepoints together.

Proposition 2.1.5. Prove that a CW-complex X is the disjoint union of all its cells:

X ∼=
⊔
n∈N

⊔
j∈Jn−1

enj .

Proof. Let x ∈ X. We want to show that x can found in one and only one cell. We know that the 0-cells have
an empty intersection since they are unit sets; and for any n ≥ 1 it is the same with the n-cells because the open
disks D̊n

j are disjoint in
∐
j D

n
j , and the identification in the pushout which builds Xn concerns only the boundaries

of the disks Dn
j . Moreover, for any n ∈ N, an n-cell is necessary disjoint with an (n + 1)-cell due to the fact that,

in the coproduct of Xn and
∐
j D

n+1
j , the n-cells and the D̊n+1

j are disjoint for any j ∈ Jn−1, and it stays disjoint
when we quotient to get Xn+1, because, again, we identify only the boundaries of the disks Dn+1

j to points of Xn.
This implies more generally that any two different cells are necessary disjoint. Now, if x is in X0, then it belongs
naturally to the cell {x}. Else, there is an integer n ≥ 1 such that:

x ∈ Xn := Xn−1
∐(∐

j
Sn−1

) ∐
j∈Jn−1

Dn
j .

We can assume w.l.o.g. by induction that x is not in Xn−1. So x is in
∐
j D

n
j , and in particular one can find a

j ∈ Jn−1 such that x ∈ Dn
j . Knowing that the boundary of Dn

j is identified to some point in Xn−1, we then have
that x is not in this boundary, i.e. it is in the interior D̊n

j , which is an n-cell.

Proposition 2.1.6. Prove that another possible decomposition of the n-sphere Sn as a CW-
complex has one 0-cell and one n-cell. In fact, this particular decomposition is unique up to
homeomorphism.

Proof. Let n ≥ 0 be an integer. We can take X0 = · · · = Xn−1 = {∗} (see the end of the previous remark), and
then Xn as follows:

Sn−1 Xn−1 = {∗}

Dn Xn
∼= Sn.

id+id

p

The CW-complexes have some remarkable properties. Let us see some of them.
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Proposition 2.1.7. Let X be a CW-complex. Then the following holds:

(i) X is locally path-connected.

(ii) If X is connected, then it is path-connected.

(iii) X is a T1-space, that is every singleton {x} of X is a closed space.

(iv) X is a normal space, thus Hausdorff.

Proof.

(i) To say that X is locally path-connected means that, given a point x ∈ X and a neighborhood U of x in X,
we can find a neighborhood V ⊂ U of x that is path-connected. We have that X0 is locally path-connected
because it is discret: any singleton {x} is open in X0, so it is a neighborhood of x in X, it is naturally
included in any neighborhood U of x, and it is abviously path-connected. Moreover, for any integer n ≥ 0,
the disk Dn+1 is path-connected, then the coproduct

∐
j∈Jn

Dn+1 is locally path-connected, and so is Xn+1
inductively, since attaching spaces preserves the property of being locally path-connected. Now, as union of
locally path-connected spaces, we deduce that X is also locally path-connected.

(ii) It comes from a general result: any locally path-connected space X that is connected is in particular path-
connected. Then, we conclude using the first point (i). We suggest showing this general result. We consider
a point x ∈ X, and the set U := {y ∈ X connected to x} that is nonempty since x trivially belongs to it.
Moreover, it is open: indeed, for any point y ∈ U , as X is locally path-connected, we can find a neighborhood
V ⊆ X of y that is path-connected; and this neighborhood V is included in U for any of its points can be
connected to x "passing through" y. Now, let us consider U ′ := X − U that is similarly open. Reductio ad
absurdum, if we had U ′ 6= ∅, then we would have the contradiction that the connected space X is the union
of two disjoint nonempty open sets. We deduct U ′ is empty, that is to say U = X, and X is path-connected.

(iii) We know that X0 is a T1-space since it is discret. For any n ∈ N, the (n + 1)-disk and then coproduct of
(n + 1)-disks are T1-spaces. So, as attaching spaces preserves the property of being a T1 space, we have by
induction that Xn+1 is also a T1-space. Thus, as union of T1-spaces, we conclude X is also locally a T1-space.

(iv) As a recall, a space X is said normal if, given any disjoint closed sets A and B, there are neighborhoods U of
A and V of B that are also disjoint. Using the Urysohn’s Lemma, there is an equivalent definition: for any
disjoint nonempty closed subsets A and B of X, we can find a continuous fonction f : X → I := [0, 1] such
that:

∀x ∈ X, f(x) =
{

0 if x ∈ A,
1 if x ∈ B.

(see the reference "Urysohn’s Lemma", J. Simon, 2007). Again using properties of attaching spaces and
induction, we have that Xn is normal for all n ∈ N. Let A, B ⊆ X be disjoint closed sets. Then, there is
continuous map f0 : X0 → I such that f0(x) = 0 for all x ∈ A∩X0, and f0(x) = 1 for all x ∈ B∩X0. Assume
by induction we have already constructed a continuous map fn−1 : Xn−1 → I for an integer n ≥ 1 with
fn−1(x) = 0 for all x ∈ A∩Xn−1 and fn−1(x) = 1 for all x ∈ B∩Xn−1, such that moreover fn−1|Xn−2 = fn−2
if n ≥ 2. Consider F := (A ∩Xn) ∪Xn−1 ∪ (B ∩Xn) and define gn : F → I as follows:

∀x ∈ F, gn(x) :=

 0 if x ∈ A ∩Xn,
fn−1(x) if x ∈ Xn−1,

1 if x ∈ B ∩Xn.

Since Xn is normal and F is closed in Xn, we can extend gn to a map fn : Xn → I that satisfies the properties
of gn given just above. Now, one can define f : X → I such that f |Xn

= fn for any n ∈ N, and it is continuous
because X has the topology of the union. Hence, the CW-complex X is normal, and being also T1 as seen in
the previous point (iii), it is in particular a Hausdorff space.

Remark 2.1.8. With the second point (ii), one can find some topological spaces that are not CW-complexes.
For instance, in R2 together with the usual topology, the graph of the fonction x 7→ sin( 1

x ) is connected, but not
path-connected:
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x

y

So it cannot be a CW-complex.

2. Subcomplex and n-equivalence
Definitions 2.1.9. If X is a CW-complex and A ⊆ X is a subspace, then we say that A is subcomplex of X if
for every cell enj we have the implication A ∩ enj 6= ∅ ⇒ ēnj ⊆ A. We then call CW-pair the pair (X, A) of spaces.

Example. Every k-skeleton Xk of a CW-complex X is subcomplex. To show it, we consider a cell enj such that
Xk ∩ enj 6= ∅. We cannot have n > k because a point in Xk ⊆ Xn−1 would be identified either to nothing else, or
to a point of the boundary Sn−1 of Dn, but not to any point of D̊n. So we have n ≤ k, and by definition of closed
cell we have ēnj ⊆ Xn ⊆ Xk. This implies (X, Xk) is a CW-pair for any k ∈ N.

Proposition 2.1.10. Suppose that X is a CW-complex and K ⊆ X is compact. Then we have K ⊆ Xn

for some n ∈ N. More specifically, we have K ⊆ Y for a subcomplex Y ⊆ X, where Y has only a
finite number of cells.

Proof. The compact K is well-defined because we saw in 2.1.7 that a CW-complex is Hausdorff. Due to the
proposition 2.1.5, the disjoint union: ⋃

n∈N

⋃
j∈Jn−1

enj ,

is an open cover of the compact K. We can then extract a finite subcover made up of cells. Since each cell
is contained in a skeleton, it implies K is contained in a finite union of skeletons. Knowing that the sequence
{Xn}n∈N of the skeletons increases, it yields K is included in a skeleton. For the second part, it is sufficient to see
that the previous finite subcover of K made up of cells can be the wanted subcomplex Y since the open cells are
disjoint.
Let us introduce the concepts of n-connectedness and n-equivalence, and see how close they are.

Definitions 2.1.11. Let n ≥ 0 be an integer.

(i) If n ≥ 1, an n-equivalence is a continuous map f : X → Y in the category Top such that for any x0 ∈ X
the induced morphism:

f∗ :
{
πq(X, x0) → πq(Y, f(x0))

[h] 7→ f∗([h]) := [f ◦ h]

in the category Set is a bijection for 0 ≤ q ≤ n− 1 and a surjection for q = n.

(ii) We say that a pair (X, A) of spaces in Toprel is n-connected if for all path component Xν fo X we have
A ∩Xν 6= ∅, and if πq(X, A) = 0 for 1 ≤ q ≤ n.

Remark 2.1.12. A pair (X, A) is 0-connected if, and only if, we have A ∩Xν 6= ∅ for all path component Xν of
X.
We state the two following statements for the beauty of the given results. Find them in [AGP02, 5.1].

Proposition 2.1.13. A pair (X, A) of spaces in Toprel is n-connected if, and only if, the inclusion map
i : A ↪→ X is an n-equivalence.

Proposition 2.1.14. Let X be a CW-complex and Xn be its n-skeleton, with n ∈ N. Then the pair
(X,Xn) is n-connected, and consequently the inclusion map i : Xn ↪→ X is an n-equivalence.
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3. Theorems
Now, let us take a look at two very useful tools that provide some interesting properties about CW-complexes: the
Whitehead theorem and the cellular approximation. Find them in [AGP02, 5.1.36, 5.1.38].

Theorem 2.1.15. J.H.C Whitehead. A weak homotopy equivalence between pairs of CW-
complexes is a homotopy equivalence.

Theorem 2.1.16. Cellular approximation. CW-complexes are functorial, i.e. for any continuous
map f : X → Y in Top, there exists a continuous map f̃ : X̃ → Ỹ in CW such that we have the
following commutatives diagram with weak equivalences:

We say that X̃ and f̃ are CW-approximations of respectively X and f . Moreover, if f is
rather in Top∗ than in Top, we then have the same result but with f̃ in CW∗ and the spaces are
pointed.

X̃ X

Ỹ Y.

∼

f̃ f

∼

Remark 2.1.17. Combining the two previous theorem, we get that a CW-approximation is unique up to
homotopy. Furthermore, one can show that, if X̃ ∼−→ X is a CW-approximation of a pointed space X, then
ΣX̃ ∼−→ ΣX is also a CW-approximation. In other words, we have: Σ̃X ' ΣX̃.

II. Cofiber sequence

1. Construction of the cofiber sequence
In order to be brief, we will mainly use geometric arguments in this section, based on the fact that a puhsout is a
tool to "glue" objects together. We want to present the cofiber sequence and one of its applications: the long exact
sequence of homotopy groups. First of all, let us introduce a new notion: mapping cones. Let f : X → Y be a
continuous map in Top∗. See [AGP02, 3.3-5] for more details.

Definition 2.2.1. The mapping cone Cf of f : X → Y is defined (up to isomorphism) as being the following
pushout in Top∗:

X Y

f(X)

CX Cf .

f

p

(2.2)

If we denote g the map Y → Cf in the previous diagram (which is more precisely the canonical projection from Y
to Cf , see the proposition 1.1.27), we get the sequence:

X
f

−−−−−→ Y
g

−−−−−→ Cf . (2.3)
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Let us compute what would then be the mapping cone Cg of g : Y → Cf :

Y Cf

CY Cg ' ΣX

g

p

(2.4)

So, up to homotopy, the mapping cone Cg of g is the suspension ΣX of X. Indeed, as we saw before, the reduced
cone CY of Y is contractible, i.e. homotopic to a point; this means that, in order to compute the pushout Cg, we
identify the whole image of g in Cf to one point. Now, denoting h : Cf → ΣX the induced continuous map in the
previous diagram, we can complete the sequence (2.3) and we have:

X
f

−−−−−→ Y
g

−−−−−→ Cf
h

−−−−−→ ΣX.

Similarly, we can compute the mapping cone Ch of h, and we get the suspension ΣY of Y . Consequently, and
more generally, we can build with mapping cones as before the following sequence in Top∗, that we call cofiber
sequence of f : X → Y , or also Barratt-Puppe sequence of f : X → Y :

X
f

−−−−−→ Y
g

−−−−−→ Cf
h

−−−−−→ ΣX
Σf

−−−−−→ ΣY
Σg

−−−−−→ ΣCf
Σh

−−−−−→ Σ2X
Σ2f

−−−−−→ ... (2.5)

Remark 2.2.2. For some reasons, we can sometimes see in the literature (−1)nΣnf instead of simply Σnf . It is
indeed due to the fact that, in a sense, this map takes the suspensions ΣnX and returns it to give ΣnY . However,
up to isomorphism, we cannot see the difference between (−1)nΣnf and Σnf (find some details on Hatcher, pages
297-299).

Proposition 2.2.3. The mapping cone is homotopically well-behaved, in that sense that, in Top∗,
given any two continuous fonctions f : X → Y and g : X → Z such that Y ' Z, we have the
equivalence Cf ' Cg.

Proof. Applying the universal property of the pushout Cj and the definition of the pushout Cf , we get a
continuous map ϕ : Cj → Cf with the following commutative diagram:

X Z

X × I Cg Y

Cf .

g
'

[−]

p

[−]

[−]

∃!ϕ [−]

As this diagram commutes, one can learn some details about ϕ: in particular, it is a homotopy equivalence.

2. Some exact sequences in Set∗
We saw in the remark 1.2.14 that [−, W ] is a homotopy invariant contravariant functor for any relative space W .
Now, to apply this contravariant functor to the Barratt-Puppe sequence (2.5) is interesting in the sense that we
get a kind of "exact sequence" (in the category Set∗, not as previously in Ab). The objects of the category Set∗ are
defined as sets containing a designated basepoint, and its morphisms are pointed maps of set.

Proposition 2.2.4. In Top∗, let W be any pointed space and f : X → Y a continuous map. We
consider the kernel of f∗ as being the following set:

ker(f∗) := {[ϕ] ∈ [Y, W ]∗ | f∗([ϕ]) := [ϕ ◦ f ] = [e0]},
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where e0 : Y →W is contant at the value given by the basepoint of W . The kernels of the other
fonctions in the following diagram are similarly defined. Then the following sequence is exact
in Set∗:

...
(Σh)∗

−−−−−→ [ΣCf , W ]∗
(Σg)∗

−−−−−→ [ΣY, W ]∗
(Σf)∗

−−−−−→ [ΣX, W ]∗
h∗

−−−−−→ [Cf , W ]∗
g∗

−−−−−→ [Y, W ]∗
f∗

−−−−−→ [X, W ]∗.

Remark 2.2.5. One can show that [ΣX, W ]∗, and all the pointed sets before in this sequence, are more precisely
groups.

Proof. We will only show w.l.o.g. the exactness of the following part of the diagram:

[Cf , W ]∗
g∗

−−−−−→ [Y, W ]∗
f∗

−−−−−→ [X, W ]∗

since it would be very similar for any other part. We want to prove the equality: Im(g∗) = ker(f∗). On the one
hand, let us consider [ϕ] in Im(g∗). We can find [φ] in [Cf , W ]∗ such that g?([φ]) = [ϕ]. As Cf is the following
pushout:

X Y

CX Cf ,

f

i g

j

p

we have by commutativity that g ◦ f = j ◦ i. Moreover, as the reduced cone CX is contractible (see ...), one can see
that j ◦ i ' cst where cst : X → Cf is the constant map at the value given by the basepoint of Cf . So, as [−, W ]∗
is homotopy invariant, we have (j ◦ i)∗ = cst∗ and then:

f∗([ϕ]) = f∗(g∗([φ])) = (g ◦ f)∗([φ]) = (j ◦ i)∗([φ]) = cst∗([φ]) = [φ ◦ cst] = [e0],

which induces Im(g∗) ⊆ ker(f∗). On the other hand, let [ϕ] be in ker(f∗). It means f∗([ϕ]) = [ϕ ◦ f ] = [e0];
in other words ϕ ◦ f and e0 are homotopic. If we denote (X0, x0) := X and (W0, w0) := W , one may consider
H : (X0 × I, {x0} × I) → (W0, w0) a relative homotopy such that H(−, 0) = ϕ ◦ f and H(−, 1) = e0. We notice
that H(x0, t) = w0 and H(x, 1) = w0 for any (x, t) ∈ X × I, which implies H(X × {1} ∪ {x0} × I) = {w0}. Thus,
the Universal Property of Quotient Space yields there is a unique continuous map ψ : CX → W such that the
following diagram commutes:

X × I W

CX

H

[−]

∃!ψ.

(2.6)

Then, we define the continuous map:

ψ′ :

 Y ∨ CX → W

x 7→
{
ϕ(x) if x ∈ Y,
ψ(x) if x ∈ CX.

and we have for all x ∈ X:

ψ′(f(x)︸︷︷︸
∈Y

) = ϕ(f(x)) = H(x, 0) (2.6)= ψ([(x, 0)]) = ψ(i(x)) = ψ′(i(x)︸︷︷︸
∈CX

).

It allows us to apply the Universal Property of Quotient Space that gives us the following commutative diagram:

Y ∨ CX W

Cf = Y ∨X CX

ψ′

[−]

∃! Ψ

(2.7)

where [Ψ] ∈ [Cf , W ]∗. Now, one can observe that the image of [Ψ] by g∗ is exactly [ϕ] since:

∀y ∈ Y, Ψ ◦ g(y) = Ψ([y]) (2.7)= ψ′(y) = ϕ(y).

33



Hence, we have to reverse inclusion ker(f∗) ⊆ Im(g∗), and we finally obtain the wanted equality.

There exists also a relative version of the Barratt-Puppe sequence (2.5) of a continuous map f : (X, A)→ (Y, B):

(X, A)
f

−−−−−→ (Y, B) −−−−−→ (Cf , Cf |A→B
) −−−−−→ (ΣX,ΣA)

Σf
−−−−−→ (ΣY,ΣB) −−−−−→ ...

This sequence induces a very similar exact sequence to the one in the previous proposition.

Proposition 2.2.6. In Toprel, let (W, C) be any relative space and f : (X, A) → (Y, B) a continuous
map. We consider the kernel of f∗ as being the following set:

ker(f∗) := {[ϕ] ∈ [(Y, B), (W, C)]∗ | f∗([ϕ]) := [ϕ ◦ f ]) = [e0]},

where e0 : (Y, B) → (W, C) is contant. The kernels of the other fonctions in the diagram are
similarly defined. Then the following sequence is exact in Set∗:

...
(Σf)∗

−−−→ [(ΣX, ΣA), (W, C)] −−−→ [(Cf , Cf |A→B
), (W, C)] −−−→ [(Y, B), (W, C)]

f∗

−−−→ [(X, A), (W, C)].

3. The long exact sequence of homotopy groups
We saw at the page 11 a definition of n-th homotopy group πn : Top∗ → Set. Now, let us extend this definition to
n-th reduced homotopy group πn : Toprel → Set:

Definition 2.2.7. For any integer n ≥ 1, the n-th reduced homotopy group of a relative space (X, A) in
Toprel is the set:

πn(X, A) := [(Dn, Sn−1), (X, A)].

Remark 2.2.8. This is well an extension of the previous definition 1.2.16 since it coincides on Top∗ for any
integer n:

πn(X, {x0}) := [(Dn, Sn−1), (X, {x0})] = [(Dn/Sn−1, {∗}), (X, {x0})] = [(Sn, ∗), (X, x0)]∗ = πn(X, x0).

Now, taking f as being the inclusion i : (∂I, {0}) ↪→ (∂I, ∂I), we get the following interesting exact sequence:

Theorem 2.2.9. For any relative space (W, C), the following sequence is exact in Set∗:

... −−−−→ π2(W, C) −−−−→ π1(C, ∗)
(Σi)∗

−−−−→ π1(W, ∗) −−−−→ π1(W, C) −−−−→ π0(C, ∗)
i∗

−−−−→ π0(W, ∗).

where i : (∂I, {0}) ↪→ (∂I, ∂I). This sequence is often called the long exact sequence of homotopy
groups.

Proof. We denote (X, A) := (∂I, {0}) and (Y, B) := (∂I, ∂I). First, compute the mapping cones Ci and Ci|A→B
,

and the suspensions ΣX and ΣA, with the following pushouts:

X × {1} ∪ {0} × I {∗}

X × I CX ∼= I

∃!

p

X Y

CX Ci ∼= I

i

p

A× {1} ∪ {0} × I {∗}

A× I CA ∼= {∗}

∃!

p

A B

CA Ci|A→B
∼= ∂I

i|A→B

p
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X × {0, 1} ∪ {0} × I {∗}

X × I ΣX ∼= S1

∃!

p

A× {0, 1} ∪ {0} × I {∗}

A× I ΣA ∼= {∗}

∃!

p

Now, one can clarify the elements of the exact sequence given by 2.2.6:

...
(Σi)∗

−−−−→ [(ΣX, ΣA), (W, C)] −−−−→ [(Ci, Ci|A→B
), (W, C)]−−−−→ [(Y, B), (W, C)]

i∗

−−−−→ [(X, A), (W, C)],

i.e. ...
(Σi)∗

−−−−→ [(S1, {∗}), (W, C)] −−−−→ [(I, ∂I), (W, C)] −−−−→ [(∂I, ∂I), (W, C)]
i∗

−−−−→ [(∂I, {0}), (W, C)],

i.e. ...
(Σi)∗

−−−−→ [(S1, {∗}), (W, {∗})]−−−−→ [(D1, S0), (W, C)] −−−−→ [(S0, {∗}), (C, {∗})]
i∗

−−−−→ [(S0, {∗}), (W, {∗})],

i.e. ...
(Σi)∗

−−−−→ π1(W, ∗) −−−−→ π1(W, C) −−−−→ π0(C, ∗)
i∗

−−−−→ π0(W, ∗),

which is the wanted exact sequence.

III. Cofibrations

1. Generalities
Find details in [AGP02, 4.1-2].

Definition 2.3.1. We say a relative space (X, A) has or satisfies the HEP (Homotopy Extension Property) if
A ⊆ X is closed, and if for any topological space Y and any continuous map h : X ×{0}∪A× I → Y the following
diagram in Top commutes:

X × {0} ∪A× I Y

X × I

h

∃H.

Definition 2.3.2. A continuous map j : A→ X in Top is a cofibration, and we denote j : A� X, if:

(i) j is an embedding, i.e. j : A
∼=−→ Im(j) ⊆ X is a homeomorphism onto its image,

(ii) The pair (X, Im(j)) verify the HEP.

Remarks 2.3.3. One can find in the literature one more condition in this definition: Im(j) must be closed;
however, it is not necessary to precise it since it yields form (ii). Furthermore, as a cofibration j : A � X is an
embedding, it is actually an inclusion up to isomorphism. This is why the first condition of the equivalence in
the following proposition is realized non only for the cofibrations that are inclusions, but more generally for any
cofibration up to isomorphism. Moreover, we will often write A instead of Im(j) since they are homeomorphic. In
addition, note that one can define very similarly the notion of cofibration in Top∗.

Proposition 2.3.4. Let A ⊆ X be a closed subspace of X ∈ Ob(Top). Then, the inclusion j : A ↪→ X
is a cofibration if, and only if, the set X × {0} ∪A× I is a retract of X × I.

Proof. On the one hand, if j : A � X then (X, A) verifies the HEP, and in particular we have the following
commutative diagram:

X × {0} ∪A× I X × {0} ∪A× I

X × I

i

∃r

where r ◦ i = id, i.e. r is a retract. On the other hand, let us assume that we have the retract r : X × I →
X × {0} ∪ A × I. Since j is an inclusion, it is an embedding, and Im(j) is closed as being homeomorphic to the
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closed space A. Moreover, for any any topological space Y and any continuous map h : X × {0} ∪A× I → Y , the
following diagram commutes:

X × {0} ∪A× I Y

X × I

h

ir

h◦r

because (h ◦ r) ◦ i = h ◦ (r ◦ i) = h. It yields (X, Im(j)) verifies the HEP, and j : A� X.

Examples.
(i) The inclusion Sn ↪→ Dn+1 is cofibration for any n ∈ N. Let us show this result for n = 0, the other cases

being very similar. We work in R and R2 together with the usual topologies. To lighten the expressions, let
us consider D1 ∼= [−1, 1] and I ∼= [0, 2]. We want to find a retraction r as follows:

r : D1 × I → D1 × {0} ∪ S0 × I ∼= [−3, 3]

→ ∼=

We define the point A := (0, 3) ∈ R2. For any (x, y) in the square D1× I, one can define r(x, y) as being the
intersection of [−3, 3]×{0} and the line passing through A and (x, y). In other words, applying the intercept
theorem in the following drawing:

x

y

2

−1−3 1 3

A

r(x, y)x

y

we get the expression r(x, y) := 3x
3−y , which is continuous by composition of continuous maps. Moreover, if

we denote i the inclusion [−3, 3] ↪→ D1 × I up to isomorphism, we well have r ◦ i = id[−3, 3], which means r
is a retract and thus S0 ↪→ D1 is a cofibration.

(ii) For any pointed space X, regarding X and its reduced cone CX as being in Top instead of Top∗, we have
X � CX??. This result could be shown with the same idea as the previous one: using the projection passing
by a wisely selected point. For more details, see the reference [Pic92, 2.3.8].

2. Some cofibrations in CW
Proposition 2.3.5. Cofibrations are preserved under coproduct: given a set K and cofibrations
{jk : Ak � Xk}k∈K in Top, we have the cofibration j : A :=

∐
k∈K Ak � X :=

∐
k∈K Xk. Moreover,

cofibrations are preserved under pushout, in the sens that given a pushout:

A Y

X P := X
∐
A Y.

j j̃

p

(2.8)

implies j̃ : Y � P .

Proof. To show the first part of the proposition, we begin to see that j : A → X is an embedding since the
jk : Ak � Xk are so for k ∈ K. Let us then show that (X, A) verifies the HEP. To do so, after seeing that A (i.e.
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the image of j) is closed in X by coproduct of the closed spaces Ak for k ∈ K, consider a topological space Y and
a continuous map h : X × {0} ∪ A × I → Y . We want to find a continuous map H : X × I → Y such that its
restriction on X × {0} ∪ A × I is precisely h. One can notice that A × I = (

∐
k Ak) × I ∼=

∐
k(Ak × I), and the

restriction h|A×I : A × I → Y induces restrictions h|Ak×I : Ak × I → Y for any k ∈ K. Similarly, for k ∈ K, we
can define h|Xk×{0} : Xk × {0} → Y , and apply the HEP given by the cofibration jk:

Xk × {0} ∪Ak × I Y

Xk × I

hj

∃Hk,

where hj := h|Xk×{0} + h|Ak×I . Finally, we get the wanted continuous map H which for any k ∈ K is defined as
being Hk on Ak.
Now, let us consider the second part of the proposition. As j is a cofibration, it is in particular injective, which
implies we do not identify two any different points in Y when we compute the quotient P := X

∐
A Y . It yields j

is injective and then an embedding. Next, let us show that (P, Y ) verifies the HEP. The topology on the pushout
P is the finest one such that the natural projection [−] is continuous. With the proposition 1.1.27, we know that j̃
is actually exactly the projection [−] : Y → P , so its image Im(j̃) ∼= Y is closed in P . Now, consider a topological
space Z and a continuous map h : P × {0} ∪ Y × I → Z in Top. We want to find a continuous map H : P × I → Z
such that its restriction on P × {0} ∪ A × I is precisely h. We denote f and f ′ the respective maps A → Y and
X → P in the diagram (2.8), and we get the following two continuous maps:

g : A× I
f+id
−−−−→ Y × I

h|Y×I

−−−−→ Z, and g′ : X × {0}
f ′+id
−−−−→ P × {0}

h|P×{0}

−−−−→ Z.

Therefore, applying the HEP induced by the cofibration j : A� X, and then the Universal Property of Quotient
Space, we have:

X × {0} ∪Ak × I Z

X × I

g+g′

∃H̃,

and then

(X × I)
∐

(Y × I)
∼= (X

∐
Y )× I Z

(X
∐
A Y )× I

H̃+h|Y×I

∃H,

where H is the wanted continuous map P × I → Z. Hence the result.

Remark 2.3.6. As seen in the exemples at the page ??, we have X � CX for any topological space X. So, for
any continuous map f : X → Y in Top, we have Y � Cf since there is the pushout:

X Y

CX Cf .

f

p

Proposition 2.3.7. If X is a CW-complex with a CW-decomposition {Xn}n∈N, then we have
Xn� Xn+1 for any integer n ≥ 0.

Proof. Let n ≥ 0 be an integer. We saw in the exemples that Sn � Dn+1, so the first part of the previous
proposition implies we have the cofibration

∐
j∈Jn

Sn �
∐
j∈Jn

Dn+1. Then as cofibrations are preserved under
pushout we well have the wanted cofibration:

∐
j∈Jn

Sn Xn

∐
j∈Jn

Dn+1 Xn+1.
p

Remark 2.3.8. One can even show that Xn� X for any integer n ≥ 0.
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3. A relation between cofiber and cofibration
For some reasons, one can find in the literature the designation cofiber for mapping cones, in particular because
of the proposition 2.3.12 that we propose to show.

Proposition 2.3.9. Let j : A� X such that A ' {a0} ⊆ A. Then X ' X/A.

Proof. We propose to show that the natural projection q : X → X/A is a homotopy equivalence. The fact that
A ' {a0} means we can find a homotopy equivalence f : A → {a0} and its homotopy inverse g : {a0} → A such
that in particular idA ' g ◦ f . It yields there exists a homotopy H : A × I → A such that H(−, 0) = idA and
H(−, 1) = g ◦ f(−) = g(a0). Due to the cofibration j : A� X, the pair (X, A) verifies the HEP, which means the
following diagram commutes:

X × {0} ∪A× I X

X × I

idX+H

∃F

We define the map Ft : X → X as being Ft : x 7→ F (x, t) for any t ∈ I. More precisely we have F1|A = H(−, 1) =
g(a0), so, by the Universal Property of Quotient Space, the map F1 determines a map q′ : X/A → X such that
q′ ◦ q = F1. Therefore, since F0 = F (−, 0) = idX , we notice that F induces q′ ◦ q ' idX . Conversely, since
Ft(A) = H(A, t) ⊆ A for any t ∈ I, one can apply the Universal Property of Quotient Space to get the following
commutative diagram:

X X/A

(X/A)× I

q◦Ft

q+id

∃G

In particular, for any x ∈ X we have G(q(x), 0) = q ◦ F0(x) = q ◦ idX(x) = q(x) and G(q(x), 1) = q ◦ F1(x) =
q ◦ q′(q(x)). Then, as the projection q : X → X/A is injective, it means G determines idX/A ' q ◦ q′, and thus q
and q′ are homotopy inverses.

Lemma 2.3.10. In Top∗, let A ⊆ X be a closed pointed space in a pointed space X, and let
f : A → Y be a continuous map that lands in a pointed space Y . To illustrate the situation, one
can draw the pushout:

A X

Y X ∨A Y.

f

p

We then have the homeomorphism: (X ∨A Y )/Y ∼= X/A.

Remark 2.3.11. The inclusion A ↪→ X is injective, so we do not identify together two different points in Y .
That is why one can say Y ⊆ X ∨A Y , and then compute the quotient (X ∨A Y )/Y .

Proof. One the one hand, with the Universal Property of Quotient Space, we have:

X X ∨A Y (X ∨A Y )/Y

X/A

[−]

πprojection

q

∃!α̃

(2.9)

where q is the natural projection from X ∨A Y to (X ∨A Y )/Y . Indeed, we can apply this property because two
different points in X are identified in X/A if, and only if, they are in A, and because q ◦ [−] is constant on A: any a
and b in A are respectively identified to f(a) and f(b) in Y when we compute X ∨A Y , and then taking the quotient
by Y we have that f(a) and f(b) are identified together, i.e. a and b are so. On the other hand, if we define a
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constant map j : Y → {∗} ↪→ X/A, the following diagram commutes:

A X

Y X/A

f π

j

and then:

A X

Y X ∨A Y

X/A.

f
π

p

j

∃!β
(2.10)

As the lower triangle commutes, it follows β is constant on Y ⊆ X ∨A Y , and we can apply the Universal Property
of Quotient Space:

X
∐
A Y X/A

(X
∐
A Y )/Y

β

q

∃!β̃.

(2.11)

Now, let us show that β̃ ◦ α̃ = id and α̃ ◦ β̃ = id. For any x̃ ∈ X/A, as the projection π is surjective, we can find a
x ∈ X such that π(x) = x̃, and we have:

β̃ ◦ α̃(x̃) = β̃ ◦ α̃(π(x)) (2.9)= β̃ ◦ q([x])) (2.11)= β([x]) (2.10)= π(x) = x̃ = id(x̃).

Conversely, for any z̃ ∈ (X ∨A Y )/Y , as the projection q is surjective, we can find a z ∈ X ∨A Y such that q(z) = z̃.
If we can write z as [x] with x ∈ X, then we have:

α̃ ◦ β̃(z̃) = α̃ ◦ β̃(q([x])) (2.11)= α̃ ◦ β([x]) (2.10)= α̃ ◦ π(x) (2.9)= q([x]) = z̃ = id(z̃).

Else, we can found a y ∈ Y such that z = [y]. One can assume w.l.o.g. that A 6= ∅ (because in the other case, the
lemma is obviously true). So there is a ∈ A, and the element f(a) in Y is identified to a in X when we compute
X ∨A Y . Next, in (X ∨A Y )/Y , we identify f(a) ∈ Y to any y ∈ Y . Therefore, all y ∈ Y are identified to the
element a of X when computing the quotient (X ∨A Y )/Y , and we have q([a]) = q([y]) = z̃, i.e. we are again in
the previous case where z could be written as [x] with x ∈ X. Hence the two wanted equalities, and consequently
the wanted homeomorphism.

Proposition 2.3.12. Given a cofibration j : A� X in Top∗, we have Cj ' X/A.

Proof. Due to the lemma and the previous proposition, we have the following commutatives diagram:

A X X/A

CA Cj Cj/CA.

j [−]

p 3.34.
'

3.35. ∼=

which induces the desired result.

Remark 2.3.13. Then, up to homotopy, the cofiber sequence (2.5) of a cofibration j : A� X is:

A X X/A ΣX ΣY Σ(X/A) Σ2X Σ2Y ...
j Σj Σ2j

where the cofibrations come from the remark 3.30. because this is a sequence of mapping cones.

4. Mapping cylinder
The following theorem tells us grosso modo that cofibrations are "everywhere" in Top∗, in the sense that any
continuous map is a cofibration up to homotopy equivalence. But first let us define the mapping cylinder, which is
pushout very similar to the mapping cone:

Definition 2.3.14. In Top∗, we call mapping cylinder of a continuous map f : X → Y , and we denote Mf ,
the following pushout:
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X × {0} ∼= X Y

f(X)

X × I Mf .

f

p

(2.12)

Remark 2.3.15. More precisely, one can notice than we have Mf ' Y × {0} ∪ f(X)× I if f is injective.

Theorem 2.3.16. For any continuous map f : X → Y in Top∗, we can find a cofibration jf : X �
Mf and a homotopy equivalence pf : Mf

'−→ Y such that the following diagram commutes:

X Y

Mf

f

jf
pf

' (2.13)

Proof. As being the pushout (2.12), the mapping cylinder verifies: Mf
∼= (X×I)∨X Y . We define the continuous

maps jf and pf as follows:

jf :
{
X → Mf

x 7→ [(x, 1)], and pf :

 Mf → Y
[y] 7→ y

[(x, s)] 7→ f(x)
defined by

X × {0} ∼= X Y

X × I Mf

X Y.

f

[−]

[−]
p

(x, s) 7→ x

∃!pf

f

(2.14)

First, let us show that jf : X → Mf is a cofibration. It is an embedding because its image is Im(jf ) = [X × {1}],
which is isomorphic to X × {1} ∼= X in Mf since only points of the form (x, 0) ∈ X × I or f(x) ∈ Y are identified
in Mf . Now, up to isomorphism, one can say that jf : X ↪→ Mf is an inclusion, and we want to apply the result
2.3.4: we then need to show that Mf × {0} ∪X × I is a retract of Mf × I. Define the map:

r̃ : ((X × I) ∨ Y )× I →Mf × {0} ∪X × I

as follows:

∀(y, t) ∈ Y × I, r̃(y, t) := ([y], 0)

∀((x, s), t) ∈ (X × I)× I, r̃((x, s), t) :=


(
x, t− (1−s)(1−t)

s

)
if s ≥ 1− t and s 6= 0(

[(x, s+ st
1−t )], 0

)
if s ≤ 1− t and s 6= 0

([(x, 0)], 0) if s = 0

which is continuous by composition of continuous maps. Then, one can observe that for any [(x, 0)] = [y] in Mf

we have:
∀t ∈ I, r̃((x, 0), t) = ([(x, 0)], 0) = ([y], 0) = r̃(y, 0).

It yields we can apply the Universal Property of Quotient Space to get a continuous map r : Mf×I →Mf×{0}∪X×I
that verifies in particular r([z], t) = r̃(z, t) for any z ∈ (X × I) ∨ Y and t ∈ I. Denoting by i the inclusion
Mf × {0} ∪X × I ↪→Mf × I, it follows:

∀[z] ∈Mf , r ◦ i([z], 0) = r([z], 0) = r̃(z, 0) = ([z], 0) = id([z], 0),

that is to say r is the wanted retraction, and thus jf : X �Mf .
Next, let us show that pf is homotopy equivalence. We denote i′ : Y →Mf the projection y 7→ [y]. In the diagram
(2.14) that defines pf , we can see that pf ◦ i′ = idY . Then, in order to define a homotopy H : Mf × I →Mf from
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i′ ◦ pf to idMf
, we consider H([y], t) = [y] for all y ∈ Y and H([(x, s)], t) = [(x, st)] for all (x, s) ∈ X × I, both for

any t ∈ I. This map H thereby constructed is continuous by composition of continuous, and is exactly the wanted
homotopy since for any y ∈ Y and any (x, s) ∈ X × I we have:

H([y], 0) = [y] = i′(y) = i′ ◦ pf (y) H([(x, s), 0) = [(x, 0)] (2.14)= [f(x)] =′ i(f(x)) = i′ ◦ pf ([(x, s)]),
H([y], 1) = [y] = id([y]) H([(x, s), 1) = [(x, s)] = id([(x, s)]).

Hence, since the digram (2.13) is commutative: pf ◦ jf (x) = pf ([(x, 1)]) = f(x) for any x ∈ X, we get the wanted
result.

Remark 2.3.17. Even though r̃ does not seem to be well define on (X × I)× I when s = 1− t and s 6= 0 because
the two expressions does not match, it is indeed secretly well defined : the point is just that we used X instead of
Im(jf ) to lighten the notations, and it induces this difference of notation.

Remark 2.3.18. With the notation of the diagram (2.13), we have the homotopy equivalence Cjf
' Cf due to

the proposition 2.2.3.

41





— Part 3 —

Axiomatic reduced homology theory
and Singular homology

I. Axiomatic reduced homology theory
We saw previously the notion of homology theory. Now, we will define a very close concept: the reduced homology
theory. We will also observe that there is a one to one relation between those two kinds of theories: it means we can
choose the most convenient one depending on the context we work on. Basically, the main difference is that one is
defined on Toprel, and one only on Top∗. Note that the Dold-Thom theorem 3.2.11 will insurance the existence of
such a reduced homology theory. Here, the main reference will be [May99].

Definition 3.1.1. A (generalized) reduced homotopy theory Ẽ∗ is a family {Ẽn : Top∗ → Ab | n ∈ Z} of
homotopy invariant functors that satisfies the following four axioms:

(h̃1) Exactness: for any continuous map f : A→ X in Top∗, the following sequence is exact for any n ∈ Z:

Ẽn(A)
Ẽn(f)
−−−−−→ Ẽn(X)

Ẽn([−])
−−−−−→ Ẽn(Cf ).

(h̃2) Suspension: For any integer n and any pointed space X, there is a natural group isomorphism:

Ẽn(Σ) : Ẽn(X)
∼=−→ Ẽn+1(ΣX).

(h̃3) Additivity: for any collection {Xj}j∈J of pointed spaces, the inclusions ij0 : Xj0 ↪→
∨
j∈J Xj for j0 ∈ J

induce isomorphisms in Ab for all integer n:

∑
j∈J

Ẽn(ij) :


⊕
j∈J

Ẽn(Xj)
∼=−→ Ẽn

∨
j∈J

Xj

∑
j∈J

xj 7−→
∑
j∈J

Ẽn(ij)(xj)

(h̃4) Invariance with weak equivalences: If f : X → Y is a relative weak homotopy equivalence in Top∗, then
the following homomorphism is an isomorphism in Ab for any integer n:

Ẽn(f) : Ẽn(X)
∼=−→ Ẽn(Y ).

We also say that the reduced homology theory Ẽ∗ is ordinary if moreover the following axiom is verified:

(h̃5) Dimension: there exists an abelian group A such that:

Ẽn(S0) =
{
A if n = 0
0 otherwise,

where the basepoint of S0 is any of its two points.
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Remark 3.1.2. One can extend the exact sequence given in (h̃1). Indeed, let f : A→ X be a continuous map in
Top∗, and n be an integer. The projection g : X → Cf given in the pushout (2.2) is continuous in Top∗, and applying
then the exactness axiom (h̃1) to g, we get the exact sequence Ẽn(X) → Ẽn(Cf ) → Ẽn(Cg). Then, we have with
the diagram (2.4) that Cg ' ΣA. So, the previous exact sequence is more precisely Ẽn(X)→ Ẽn(Cf )→ Ẽn(ΣA).
Now, one can observe with the suspension axiom (h̃2) that Ẽn(ΣA) ∼= Ẽn−1(A), and therefore we have the following
exact sequence:

Ẽn(A) −−−−−→ Ẽn(X) −−−−−→ Ẽn(Cf ) −−−−−→ Ẽn−1(A) −−−−−→ ...

which can be extended from Ẽn−1(A) with the exactness axiom (h̃1) so forth and so on. Moreover, in the particular
case of a cofibration f : A � X, we have with the proposition 2.3.12. that Cf ' X/A, so the exact sequence
becomes:

Ẽn(A) −−−−−→ Ẽn(X) −−−−−→ Ẽn(X/A) −−−−−→ Ẽn−1(A) −−−−−→ ...

since it is not a problem to work up to homotopy as the functors Ẽn are homotopy invariant for n ∈ Z.

Remark 3.1.3. One can prove that the exactness axiom (h̃1) is equivalent to (h̃1’) defined as: for any cofibration
j : A� X in Top∗, the following sequence is exact for any n ∈ Z:

Ẽn(A)
Ẽn(j)
−−−−−→ Ẽn(X)

Ẽn([−])
−−−−−→ Ẽn(X/A).

Indeed, we showed (h̃1)⇒(h̃1’) in the previous remark, and conversely we have (h̃1’)⇒(h̃1) thanks to the theorem
2.3.16: cofibrations are "everywhere" in Top∗.
We will adopt for a reduced homotopy theory Ẽ∗ the same abuse of notation as the for a homotopy theory. In
particular, we denote H̃∗(−; A) := Ẽ∗(−) if E∗ is ordinary with the given abelian group A.

Remark 3.1.4. Let (X, x0) be a pointed space in Top∗. We can always assume {x0} ↪→ X to be a cofibration,
up to weak equivalence.
The following proposition explains that, in order to understand a reduced or not homology theory, it is enough to
study it on the CW-complexes.

Proposition 3.1.5. Show that a homology theory E∗ on Toprel determines and is determined by its
restriction to a generalized homology theory E∗ on pairs of CW-complexes, and similarly for a
reduced homology theory Ẽ∗ on Top∗ with its restriction to the based CW-complexes.

Proof. We know due to the cellular approximation that any topological space X is weakly equivalent to a
CW-complex X̃. It yields the wanted result with the invariance by weak equivalence (h4) and (h̃4).

Lemma 3.1.6. Let n ∈ Z. Given any homology theory E∗ and any topological space X, we have:

En(X) = En({∗})⊕ En(X, ∗).

Proof. There is a retraction r : X → {∗} of the inclusion i : {∗} ↪→ X, so using the exactness axiom (h1) we get
the exact sequence:

... En({∗}) En(X) En(X, ∗) ...
En(i)

En(r)

We notice that En(r) is a retraction of En(i) since En(r) ◦En(i) = En(r ◦ i) = En(id) = id, and we can then adapt
the splitting lemma (see page 16) to this context so that we exactly get the wanted isomorphism.

Lemma 3.1.7. Let j : A� X be a cofibration in Top∗. Then, given any homology theory E∗, we
have:

En(X, A) ∼= En(X/A, ∗).

Proof. We exhibit the following excisive triad:
Cj ; X1 := X

∐
A×[0, 2/3]

{x0}×[0, 2/3] , X2 := A×[1/3, 1]
A×{1}∪{x0}×[0, 2/3]

 .
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One can notice that X1 ' X and X2 ' {∗}, and one can compute X1∩X2 ∼= A. Exploiting then the excision axiom
(h2) and the proposition 2.3.12, we get the claimed isomorphism:

En(X, A) ∼= En(X1, X1 ∩X2)
(h2)∼= En(Cj , X2) = En(Cj , ∗)

3.36.= En(X/A, ∗).

Theorem 3.1.8. A homotopy theory E∗ on Toprel determines and is conversely determined by a
reduced homotopy theory Ẽ∗ on Top∗.

Proof. On the one hand, we consider a homotopy theory E∗ on Toprel. Let us show that it induces the
reduced homotopy theory Ẽ∗ on Top∗ with the relations Ẽ∗(X, x0) := E∗(X, x0) and Ẽ∗((X, x0) → (Y, y0)) :=
E∗((X, x0)→ (Y, y0)) for any pointed spaces (X, x0) and (Y, y0). In other words, we want to verity the axioms are
satisfied. To lighten the notations, we will simply write Ẽ∗(X) instead of Ẽ∗(X, x0) for any based space (X, x0)
when the basepoint is clear.

(h̃1) We will rather show (h̃1’). Consider a cofibration j : (A, a0) � (X, x0) in Top∗, and an integer n. Then,
up to homeomorphism, we have A ⊆ X and, one can apply the proposition 1.4.8 to the triad (X, A, {∗}) in
order to get the exact sequence:

En(A, ∗) −−−−−→ En(X, ∗) −−−−−→ En(X, A).

Hence, applying the lemma 3.1.7, it yields we well have the exact sequence of (h̃1’):

Ẽn(A) −−−−−→ Ẽn(X) −−−−−→ Ẽn(X/A).

(h̃2) Let n ∈ Z. As in the previous point, we use the proposition 1.4.8 but with the triad (CX, X, {∗}), and it
gives the exact sequence:

En+1(CX, ∗) −−−−−→ En+1(CX, X) −−−−−→ En(X, ∗) −−−−−→ En(CX, ∗)

We notice that E∗({∗}, ∗) = 0 since the lemma 3.1.6 gives E∗({∗}) = E∗({∗}) ⊕ E∗({∗}, ∗). Moreover, we
saw that on the one hand CX is contractible, and on the other hand the suspension ΣX is homeomorphic to
CX/X. That implies Ẽ∗(CX) := E∗(CX, ∗) = E∗({∗}, ∗) = 0, and En+1(CX, X) 3.1.7= En+1(CX/X, ∗) =
En+1(ΣX, ∗) =: Ẽn+1(ΣX). In other words, we have the exact sequence:

0 −−−−−→ Ẽn+1(ΣX) −−−−−→ Ẽn(X) −−−−−→ 0,

which induces the desired homeomorphism Ẽn+1(ΣX) ∼= Ẽn(X).

(h̃3) Let {(Xi, xi)}i∈I0 be collection of based spaces in Top∗. We notice the cofibrations {xi} � Xi for i ∈ I0
imply we have with the proposition 2.3.5 the cofibration j :

∐
i{xi} �

∐
iXi. Using the lemma 3.1.7, we

have in particular E∗(
∐
Xi,

∐
i{xi}) ∼= E∗((

∐
iXi)/(

∐
i{xi})), and it yields the wanted isomorphism:

Ẽ∗

(∨
i∈I0

Xi

)
= E∗

((∐
i∈I0

Xi

)
/

(∐
i∈I0

{xi}

))
∼= E∗

(∐
i∈I0

Xi,
∐
i∈I0

{xi}

)
(h3)∼=

⊕
i∈I0

E∗(Xi, xi) =:
⊕
i∈I0

Ẽ∗(Xi).

(h̃4) It is a particular case of (h4).

(h̃5) We already computed Hn(S0, A) in 1.4.27. We have with the lemma 3.1.6 and the dimension axiom (h5):

A⊕A ∼= H0(S0, A) = H0({∗}, A)⊕H0(S0, ∗) = A⊕ H̃0(S0),

so H̃0(S0) ∼= A, and similarly for n 6= 0 we get H̃n(S0) ∼= 0.

On the other hand, we consider a reduced homotopy theory Ẽ∗ on Top∗. For any topological space X, we define
its fixe pointed space X+ as being the pointed space (X

∐
{∗}, ∗), and we have the following functor: Top → Top∗

X 7→ X+ := (X
∐
{∗}, ∗)

f : X → Y 7→ f+ : X+ → Y+
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where f+ := f on X, and maps ∗ to ∗. As a fixe pointed space X+ is in Ob(Top∗), one can compute mapping cones
in Top∗:

A+ X+

C(A+) Ci+

i+

p

This is why we suggest to build a homotopy theory defined as E∗(X, A) := Ẽ∗(Ci+) and E∗(f : (X, A)→ (Y, B)) :=
Ẽ∗(θ : Ci+ → Cj+), where i and j are the inclusions A ↪→ X and B ↪→ Y , the pairs (X, A) and (Y, B) are in Toprel,
and the continuous map θ is induced by the pushout as follows:

A+ X+

C(A+) Ci+ Y+

C(B+) Cj+ .

i+
f+

p

C(f+|A+→B+ )

∃!θ

Let us show this definition verifies the axioms.

(h1) Take a pair (X, A) in Toprel. The remark 3.1.2 applied to i+ : A+ ↪→ X+ gives us the following exact sequence:

... −−−−−→ Ẽn(A+) −−−−−→ Ẽn(X+) −−−−−→ Ẽn(Ci+) −−−−−→ Ẽn−1(A+) −−−−−→ ...

We notice that Ẽn(A+) = En(A, ∅) because we have the pushout:

∅+ ∼= {∗} A+

C(∅+) = {∗} A+
p

and similarly Ẽn(X+) = En(X, ∅). It yields we have the wanted exact sequence:

... −−−−−→ En(A, ∅) −−−−−→ En(X, ∅) −−−−−→ En(X, A) −−−−−→ En−1(A, ∅) −−−−−→ ...

Notice that, secretly, the map En(X, A) → En−1(A, ∅) is well exactly ∂n(X, A) , where ∂n is the natural
transformation defined as follows for any relative space (Y, B):

En(Y, B) = Ẽn(Cj+) Ẽn(Σ(B+))

En−1(B, ∅) = Ẽn−1(B+)

Ẽn(p)

∂n(Y, B)

∼= (h2)

where j+ : B+ ↪→ Y+ and where p : Cj+ → Σ(B+) is given by the cofiber sequence of j+.

And the other axioms can be shown in a similar way as the ones of the reduced homology theory.

Remark 3.1.9. Let us precise why the relation between theories given in the proof is well one to one. On the one
hand, given a reduced homology theory Ẽ∗, we define a homology theory E∗ with the relation E∗(X, A) := Ẽ∗(Ci+)
on Toprel, and then we define a new reduced homology theory Ẽ′∗ with Ẽ′∗(X, x0) := E∗(X, x0) on Top∗. We
consider a pointed space (X, x0) and we notice that Ẽ∗(X, x0) = Ẽ∗(Cf+) where f : {x0} ↪→ X because:

{x0}+
X+

C({x0}+) Cf+ ' X,

f+

p

where C({x0}+) = C(∂I) = I has been computed in the proof of 2.2.9. It implies we have:

Ẽ′∗(X, x0) = E∗(X, x0) = Ẽ∗(Cf+) = Ẽ∗(X, x0).
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One can also show we have Ẽ′∗(f) = Ẽ∗(f) for any continuous map f in Top∗, so it well yields Ẽ′∗ = Ẽ∗.
On the other hand, considering a homology theory E∗, we define a reduced homology theory Ẽ∗ on Top∗ as
Ẽ∗(X, x0) = E∗(X, x0), which induces a new homology theory E′∗ such that E′∗(X, A) := E∗(Cf+) on Toprel. For
any topological space X, we have E∗(X+, ∗) = E∗(X

∐
{∗}, ∅

∐
{∗}) ∼= E∗(X, ∅) ⊕ E∗({∗}, ∗) with the additivity

axiom (h3). We saw in the proof of (h̃2) that E∗({∗}, ∗) = 0, so it results E∗(X+, ∗) ∼= E∗(X, ∅). Now we have:

E′∗(X, ∅) = Ẽ∗(X+) = E∗(X+, ∗) ∼= E∗(X, ∅).

Then, for any pair (X, A) in Toprel, applying the proposition 1.4.8 to the triad (X, A, ∅), we get the exact sequence
for any integer n:

En(A) En(X) En(X, A) En−1(A) En−1(X)

E′n(A) E′n(X) E′n(X, A) E′n−1(A) E′n−1(X),

∼= ∼= ∼= ∼=

and we can conclude with the 5-lemma that En(X, A) ∼= E′n(X, A). One can also show we have Ẽ′∗(f) = Ẽ∗(f) for
any continuous map f in Toprel, so it well yields E′∗ = E∗. Hence the one to one relation.

II. Singular homology via Dold-Thom
In this part, we begin to use what Albrecht Dold and René Thom really introduced in mid XXth century. Find
their work concerning the Dold-Thom theorem in the reference [DT58]. We will consider here an ordinary reduced
homology theory H̃∗ with the particular group of the integer Z; we call singular homology such homology. Before
going further, given any pointed space X in Top∗, we admit that the functors [ΣX, −]∗ and [Σ2X, −]∗ from Top∗
land respectively in Gr and Ab. Recall we saw in the proposition 1.2.12 they are homotopy invariant functors. In
particular, note that π1(X) := [S1, X]∗ = [ΣS0, X]∗ is a group, and πn(X) = [Σ2Sn−2, X]∗ is an abelian group
for any integer n ≥ 2.

1. Infinite symmetric product
We need a homotopically well-behaved functor: the infinite symmetric product SP from Top∗ to a new category
A. Note that this notion is deeply developed in [AGP02, 5.2]. First, let us define this new category A: this is
the category of the topological abelian monoids. Its objects are pointed spaces (A, a0) in Top∗ together with a
multiplication µA : (A, a0)× (A, a0)→ (A, a0) in Top∗ which is commutative, associative and unital (i.e. for any
a ∈ A we have µA(a, a0) = a = µA(a0, a)). Moreover, its morphisms are continuous pointed maps f : A → B for
A, B ∈ Ob(A), such that the following diagram commutes in Top∗:

A B

A×A B ×B.

f

µA

f×f

µB (3.1)

In other words, this map f is a kind of group homomorphism. An exemple of topological abelian group is an abelian
group endowed with the discret topology (where every subset is seen as open).
Now, let us define a functor SPn : Top∗ → Top∗. Let (X, x0) be a pointed space, and n ≥ 1 an integer. We denote
Sn the symmetric group (endowed with the discrete topology) which acts on the n-times productX×n := X×· · ·×X
(together with the product topology) of X with:{

Sn ×X×n → X×n

(σ, (x1, ..., xn)) 7→ (xσ(1), ..., xσ(n)).

We denote the orbit SPn(X, x0) := X×n/Sn which is a topological space endowed with the quotient topology, and
based on [(x0, ..., x0)]. In particular, the order of the coordinates in this space does not matter. We will simply
write its elements under the form [x1, ..., xn]. Moreover, for any continuous map f : (X, x0)→ (Y, y0) in Top∗, we
define:

SPn(f) :
{
SPn(X, x0) → SPn(Y, y0)
[x1, ..., xn] 7→ [f(x1), ..., f(xn)],
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which is continuous and based, and one can easily verify that SPn thereby defined is well a functor Top∗ → Top∗.
Observe that, for n = 1, we get SP 1 = idTop∗ the identity functor, and for any n ≥ 1 we have the embedding:{

SPn(X, x0) → SPn+1(X, x0)
[x1, ..., xn] 7→ [x0, x1, ..., xn].

Therefore, we can write SPn(X, x0) ↪→ SPn+1(X, x0), and we have the sequence:

(X, x0) = SP 1(X, x0) SP 2(X, x0) SP 3(X, x0) ... .

Now, let us define SP .

Definition 3.2.1. The infinite symmetric product is the functor SP : Top∗ → A defined for any pointed space
X and continuous map f : X → Y in Top∗ by:

SP (X) :=
⋃
n≥1

SPn(X), and SP (f) :
{ ⋃

n SP
n(X) →

⋃
n SP

n(Y )
[x1, ..., xn] 7→ [f(x1), ..., f(xn)].

where SP (X) is endowed with the union topology (namely, a set C is closed if, and only if, the intersection C ∩
SPn(X) is closed for any integer n ≥ 1). Moreover, if we denote x0 the basepoint of X, then the basepoint of
SP (X) is [x0] = [x0, ..., x0].

Remark 3.2.2. Indeed, it is clear that SP is well a functor, but let us verify that in addition it lands in A. Take
a pointed space X in Top∗ and denote x0 its basepoint. We can endow SP (X) with the following multiplication:

µX :
{

SP (X)× SP (X) → SP (X)
([x1, ..., xn], [x′1, ..., x′m]) 7→ [x1, ..., xn, x

′
1, ..., x

′
m],

which is commutative because, as we saw previously, the order does not matter; also clearly associative, and unital
because [x0, ..., x1] = [x1] for any x1 ∈ X. Furthermore, for any continuous map f : X → Y in Top∗, we have:

∀[x], [x′] ∈ SP 1(X), µY ◦ (f × f)([x], [x′]) = µY ([f(x)], [f(x′)])
= [f(x), f(x′)]
= (f × f)([x, x′])
= (f × f) ◦ µX([x], [x′]),

and similarly in greater dimensions. It means the diagram (3.1) commutes, and therefore SP is well a functor from
Top∗ to A.

Remark 3.2.3. We saw the page 3 some examples of free functors, and we could add SP to this list.

Proposition 3.2.4. The functor SP : Top∗ → A is homotopically well-behaved, in the sense that:

f '∗ g ∈Mor(Top∗) ⇒ SP (f) '∗ SP (g).

Proof. Let f '∗ g : X → Y in Top∗, and H : X × I → Y the associated pointed homotopy. Then the map:{
SP (X)× I → SP (X × I) → SP (Y )

([x1, ..., xn], t) 7→ [(x1, t), ..., (xn, t)] 7→ SP (H)([(x1, t), ..., (xn, t)]),

is a pointed homotopy that gives the wanted relation SP (f) '∗ SP (g).
One can show the following interesting result with the CW-complexes, for instance in [AGP02, 5.2.2].

Proposition 3.2.5. If X is a pointed CW-complex, then SP (X) is so.
The following proposition gives the relation S1 ' SP (S1), but we have to pay attention since it does not stand in
higher dimensions: Sn 6' SP (Sn) for n > 1. There, we consider S1 as subspace of the complex plan C, together
with the usual multiplication · and the basepoint 1 ∈ C.

Proposition 3.2.6. The inclusion i : S1 = SP 1(S1) ↪→ SP (S1) is a homotopy equivalence.

Proof. We define the map:

m :
{

SP (S1) → S1

[x1, ..., xn] 7→ µS1(x1, µS1(x2, ...)) = x1 · ... · xn,
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which is in A because, µS1 being in Top∗, it is also in Top∗, and it satisfies the diagram (3.1). We observe that
m ◦ i = idS1 . Let us show that i ◦m '∗ idSP (S1). Remark that:

∀[x1, ..., xn] ∈ SP (S1), i ◦m([x1, ..., xn]) = i(x1 · ... · xn) = [x1 · ... · xn] = [x1 · ... · xn, 1, ..., 1].

That implies we have the wanted homotopy equivalence thanks to the following pointed homotopy:{
SP (S1)× I → SP (S1),

([x1, ..., xn], t) 7→ [xt1 · ... · xtn, 1, ..., 1].

2. Quasifibration
We defined the n-th relative homotopy group on Toprel in 2.2.7 (which is an extension of the one on Top∗ defined
in 1.2.16). Now, with this notion, Dold and Thom gave the following definition of quasifibration. For any based
space (X, x0) in Top∗, when the basepoint is clear, we will just write πn(X) instead of πn(X, x0) to lighten the
notations.

Definition 3.2.7. Dold-Thom. A continuous map p : Y → Z in Top is a quasifibration if for all z0 ∈ Z the
induced map:

p∗ :
{
πn(Y, p−1({z0})) → πn(Z, z0)

[f ] 7→ [p ◦ f ]
is an isomorphism for all integer n ≥ 0.

Remark 3.2.8. In particular, if we apply the long exact sequence of homotopy groups seen in 2.2.9 to the pair
(Y, p−1({z0})) in Toprel, we have the exact sequence:

... −−−→ πn(p−1({z0})) −−−→ πn(Y ) −−−→ πn(Y, p−1({z0}))
p∗∼= πn(Z, z0) −−−→ πn−1(p−1({z0})) −−−→ ... (3.2)

and we notice this is a sequence of pointed homotopy groups πn : Top∗ → Set∗.

Example. The following map is a quasifibration:

p :
{

R → S1

x 7→ e2iπx,
(3.3)

because π∗(R, p−1({∗})) = π∗(R, Z) = π∗(R/Z) ∼= π∗(S1).
Now, let us state a proposition due to Dold and Thom concerning the quasifibrations. This result is shown in
[AGP02, A.3.1].

Proposition 3.2.9. Dold-Thom. In Top∗, consider a Hausdorff space X and a path-connected
subspace A ⊆ X. If there is a cofibration A � X, then the natural projection [−] : X → X/A
induces a cofibration SP ([−]) : SP (X) → SP (X/A) in Top (secretly, we forget the basepoint with
a forgetful functor; see 3). In particular, we have for any integer n:

πn(SP (X), SP (A)) ∼= πn(SP (X/A)).

Corollary 3.2.10. Let X be a pointed space in Top∗. Assuming X Hausdorff and path-connected,
we have:

πn(SP (X)) ∼= πn+1(SP (ΣX)).

Proof. As X and I are Hausdorff, the union (X × {1}) ∪ ({x0} × I) and the product X × I are also Hausdorff,
and it follows the quotient CX := X × I/((X × {1}) ∪ ({x0} × I)) is so. Then, applying the previous proposition
to the cofibration X � CX, we have for all n ∈ N:

πn(SP (CX), SP (X)) 3.2.9= πn(SP (CX/X))
??∼= πn(SP (ΣX)).

We know that CX is contractible (see ??), so, as SP is homotopically well-defined (cf. 3.2.4), we have SP (CX) '
SP ({∗}). Now, for any integer n ≥ 1, the set SPn({∗}) := {∗}×n/Sn contains only one element, namely [∗, ..., ∗],
which means SP ({∗}) contains also only one element, that is its basepoint [∗], and it yields for any integer n:

πn(SP (CX)) = πn(SP ({∗}) = πn({∗}) = 0,
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because there is only one map Sn → {∗}. Therefore, the exact sequence (3.2) gives for any integer n:

0 = πn+1(SP (CX)) −−−→ πn+1(SP (ΣX)) −−−→ πn(SP (X)) −−−→ πn(SP (CX)) = 0,

and we thus have the wanted isomorphism πn+1(SP (ΣX)) ∼= πn(SP (X)) with the proposition 1.3.3.

3. The Dold-Thom theorem
Now, let us take a look at the long-awaited Dold-Thom theorem.

Theorem 3.2.11. Dold-Thom. The functors H̃n(−; Z) : Top∗ → Ab defined for all n ∈ Z by:

∀X ∈ Ob(Top∗), H̃n(X; Z) :=
{
πn+1(SP (ΣX̃)) if n ≥ 0,

0 if n < 0,

form a ordinary reduced homology theory with group Z, where X̃ ∼−→ X is a CW-approximation
(see 2.1.16). In particular, if X is a path-connected CW-complex, we have for any integer n ≥ 0:

H̃n(X; Z) = πn(SP (X)).

Proof. Let X bet a pointed space in Top∗. In order to lighten the redaction, we will write H̃n(X) instead of
H̃n(X; Z), or sometimes even H̃∗(X). One can see that H̃∗(−) is a functor by composition of functors (see the
remark 1.1.6), but let us show that it is homotopy invariant. If we take two pointed spaces X '∗ X ′ in Top∗,
then we have the weak equivalences X̃ ∼ X ∼ X ′ ∼ X̃ ′ with the CW-approximation and the proposition 1.2.28,
which implies X̃ '∗ X̃ ′ with the Whitehead theorem 2.1.15. It yields SP (ΣX̃) '∗ SP (ΣX̃ ′) because Σ and SP
are homotopically well-behaved (see 1.4.22 and 3.2.4), and thus π∗(SP (ΣX̃)) = π∗(SP (ΣX̃ ′)) because π∗ is a
homotopy invariant functor (cf. 1.2.18). Moreover, this functor is well-defined since, if we consider two different
CW-approximations X̃ and X̂ of X, we have the weak equivalences X̃ ∼ X ∼ X̂, and it results the homotopy
equivalence X̃ ' X̂ by the Whitehead theorem 2.1.15. Now, let us verify the five axioms of a ordinary reduced
homology theory.

(h̃4) We consider a weak equivalence f : X → Y in Top∗. We have the following CW-approximation:

X̃ X

Ỹ Y.

∼

f̃ ∼f

∼

which implies f̃ is also a weak equivalence, and it is even a homotopy equivalence due to the Whitehead theorem
2.1.15. Therefore, as the functors Σ and SP are homotopically well-behaved (see 1.4.22 and 3.2.4), and as π∗
is a homotopy invariant functor (cf. 1.2.18), we well have the wanted isomorphism H̃n(f) := πn+1(SP (Σf̃))
in Ab for all n ≥ 0, and it is also obviously the case for any negative integer n.

(h̃1) Let f : A → X be a continuous map in Top∗. By CW-approximation and the theorem 2.3.16, we have the
following commutative diagram:

A X

Ã X̃

Mf̃ .

f

∼

f̃

j

∼

'

With the Barratt-Puppe sequence of the cofibration j : Ã�Mf̃ , we deduce the cofibration Σj : ΣÃ� ΣMf̃

(see the remark 2.3.13). We want to apply the proposition 3.2.9 to this cofibration ΣÃ � ΣMf̃ . Let us
show that ΣMf̃ is Hausdorff. We know thanks to the proposition 2.1.7 that the CW-complexes Ã and X̃ are
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Hausdorff; and I is also Hausdorff as subset of R endowed with the usual topology. Now, in the pushout in
Top∗:

Ã X̃

Ã× I Mf̃ ,

f̃

p

we have that Mf̃ := (Ã × I) ∨Ã X̃ is Hausdorff for the property of being Hausdorff is preserved by product,
coproduct and quotient. Then, for the same reasons, the suspension ΣMf̃ is also Hausdorff. Moreover, the
suspension ΣÃ is path-connected as seen in ??. Thus, we can apply the proposition 3.2.9 and we have for any
integer n ≥ 0:

πn+1

(
SP (ΣMf̃ ), SP (ΣÃ)

) 3.2.9∼= πn+1

(
SP

(
(ΣMf̃ )/(ΣÃ)

)) 2.3.12∼= πn+1 (SP (CΣj))
(2.5)∼= πn+1 (SP (ΣCj))

2.1.16∼= πn+1

(
SP

(
ΣC̃j

))
=: H̃n(Cj)

2.3.18= H̃n(Cf̃ ).

One can see that we have the weak equivalence Cf̃ ∼ Cf , we then have by (h̃4) that H̃n(Cf̃ ) ∼= H̃n(Cf ).
Finally, we have due to (3.2) the wanted exact sequence for any integer n ≥ 0:

H̃n(X) := πn+1(SP (ΣX̃)) −−−→ H̃n(Y )
Mf̃'Ỹ= πn+1(SP (ΣMf̃ )) −−−→ H̃n(Cf ) ∼= πn+1

(
SP (ΣMf̃ ), SP (ΣÃ)

)
,

and we also have the result for n < 0 because the sequence 0→ 0→ 0 is obviously exact.

(h̃2) Let X be a pointed space in Top∗. For all integer n ≥ 0, knowing that ΣX̃ is Hausdorff and path-connected
for the same reasons as in the previous point, the wanted isomorphism yields from the corollary 3.2.10:

H̃n(X) := πn+1(SP (ΣX̃))
3.2.10∼= πn+2(SP (Σ2X̃)) 2.1.17= πn+2

(
SP

(
Σ(Σ̃X)

))
=: H̃n+1(ΣX).

For n = −1, as ΣX̃ is path-connected, we have that SP (ΣX̃) is also path-connected, so as π0 is the set of the
path components (see 1.2.21), it follows:

H̃−1(X) := 0 = π0(SP (ΣX̃))
3.2.10∼= π1(SP (Σ2X̃)) 2.1.17= π1

(
SP

(
Σ(Σ̃X)

))
=: H̃0(ΣX).

And, naturally, the result still stands for n < −1: Hn(X) := 0 =: Hn+1(ΣX).

(h̃3) We will show the result in particular case of 2 elements, but it can be generalized with transfinite induction
arguments. Let X and Y be two pointed spaces in Top∗. We consider the natural projections q : X ∨ Y →
Y = (X ∨ Y )/X and r : X ∨ Y → (X ∨ Y )/Y , and we apply the exactness axiom (h̃1’) to the cofibration
j : X � X ∨ Y to get the exact sequence:

H̃∗(X) H̃∗(X ∨ Y ) H̃∗((X ∨ Y )/X) = H̃∗(Y ).H̃∗(j) H̃∗(q)

H̃∗(r)

where H̃∗(r) is a retraction. One can notice that H̃∗(j) is injective because we have the following commutative
diagram:

H̃∗(X) H̃∗(Y )

H̃∗(X),

H̃∗(j)

H̃∗(id)=id

H̃∗(r)

and similarly H̃∗(q) is surjective; so we can extend the exact sequence:

0 H̃∗(X) H̃∗(X ∨ Y ) H̃∗(Y ) 0.H̃∗(j) H̃∗(q)

H̃∗(r)

Now, applying the splitting lemma 1.3.12, we get the wanted isomorphism:

H̃∗(X ∨ Y ) ∼= H̃∗(X)⊕ H̃∗(Y ).
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(h̃5) We well have H̃n(S0) := 0 for any n < 0. Now, for any integer n ≥ 0, as S0 is a CW-complex, we can consider
the CW-approximation S̃0 = S0, and it induces:

H̃n(S0) := πn+1(SP (ΣS̃0)) = πn+1(SP (ΣS0)) ??= πn+1(SP (S1)) 3.2.6= πn+1(S1) =
{
π1(S1) ∼= Z if n = 0,

0 if n > 0,

Indeed, to be brief, up to homotopy, to each loop in S1 we can associate an integer in Z: the algebraic number
of "tours" around the center of S1; and conversely any number k in Z corresponds to a unique class of loops:
the one that contains a loop doing k "tours" around the center of S1; and this relation is moreover one to one.
Furthermore, we have πn(S1) = 0 for any n > 1 since the exact sequence (3.2) applied to the quasifibration
p : x 7→ eix (cf. the exemple (3.3)) gives the exact sequence:

0 = πn({∗}) = πn(R) −−−−−→ πn(S1)) −−−−−→ πn−1(Z) = 0,

where πn−1(Z) = 0 because any continuous map into Z is necessary constant to the given basepoint.

Note that, due to (h̃2), the functor H̃∗(−; Z) lands in the category Ab of abelian groups just applying the fact
that πn lands in Ab for n ≥ 2 (see page 47) and seeing besides that 0 is clearly an abelian group. Moreover, the
particular case is an application of the corollary 3.2.10, noticing that we can take X̃ = X as CW-approximation of
X when X is a CW-complex, and that CW-complexes are Hausdorff spaces (see 2.1.7).

4. Examples of computation
To conclude this project, it may be interesting to give examples of computation of H̃∗(X) for some X, namely the
k-sphere Sk (k ∈ N) and the torus S1 × S1, where H̃∗ is any ordinary reduced homology theory with an abelian
group A. Let n be any integer.

(i) Actually, we have almost already computed the first case: we know that H̃∗ is associated to one precise
ordinary homology theory H∗ due to the theorem 3.1.8, and it yields:

H̃n(Sk)⊕
{
A if n = 0,
0 otherwise,

(h5)∼= H̃n(Sk)⊕Hn(∗) 3.1.6= Hn(Sk)
1.4.27∼=

 A⊕A if k = n = 0,
A if k = n > 0 or k > n = 0,
0 otherwise.

Therefore, we have the first wanted result:

H̃n(Sk) ∼=
{
A if k = n ≥ 0,
0 otherwise. (3.4)

(ii) Now, let us compute H̃∗(T ) where T := S1 × S1 is the torus. We will use the fact that T is a pointed
CW-complex with one 0-cell, two 1-cells and one 2-cell. Indeed, we denote X0 := ({∗}, ∗) its 0-skeleton, the
next one X1 is given by the pushout in Top∗:

S0 ∨ S0
X0

D1 ∨D1 X1.

∃!

p

On the one hand, one can observe that H̃n(X0) = H̃n({∗}, ∗) = 0 since we have H̃n(S0) = H̃n(S0∨({∗}, ∗)) =
H̃n(S0) ⊕ H̃n({∗}, ∗) due to (h3). On the other hand, we saw in the proof of the theorem 2.2.9 that the
reduced cone of S0 = ∂I is C(S0) = I = D1. One can similarly compute the reduced cone of S0 ∨ S0 and
then get C(S0 ∨ S0) = D1 ∨D1. It implies by unicity of the pushout up to homeomorphism (see 1.1.26) that
the 1-skeleton X1 is no more than the mapping cone Cf if we denote by f the map S0 ∨ S0 → X0:

S0 ∨ S0 X0

D1 ∨D1 = C(S0 ∨ S0) X1 ∼= Cf .

f

p
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Consequently, with the remark 3.1.2 applied to f , we obtain the following exact sequence:

0 = H̃n(X0) H̃n(Cf ) ∼= H̃n(X1) H̃n−1(S0 ∨ S0)
(h̃3)∼= H̃n−1(S0)⊕ H̃n−1(S0) H̃n−1(X0) = 0.

Hence, we deduce the wanted result from the previous computation:

H̃n(X1)
1.3.3∼= H̃n−1(S0)⊕ H̃n−1(S0) (3.4)=

{
A⊕A if n = 1,

0 otherwise. (3.5)

Next, let us compute the 2-skeleton X2 using one 2-cell:

S1
X1

D2 X2.

ϕ

p

Here, the image of the attaching map ϕ "travels" in "making twice the 8": first the left circle, then
the right one, and everything again one more time but crossing the two circles in the reversed rotation. So,
computing the pushout X2, we attach in D2 respectively the two red parts and the two blue parts together
with the red and the blue circles. It follows obtain X2 = T because we recognize the standard identification
that defines the torus. Now, notice that the disk D2 is homeomorphic to the reduced cone C(S1), so that we
have again Cϕ = X2, as it was for X1. Therefore, on the one hand, due to the remark 3.1.2 applied to ϕ, we
obtain the following exact sequence for n 6= 1 and n 6= 2:

0 (3.5)= H̃n(X1) H̃n(Cϕ) ∼= H̃n(X2) H̃n−1(S1) (3.4)= 0,

which implies H̃n(X2) = 0 for any integer n 6= 1 and n 6= 2. On the other hand, we have due to the same
remark the following exact sequence:

H̃2(X1) H̃2(Cϕ) H̃1(S1) H̃1(X1) H̃1(Cϕ) H̃0(S1),

which can be simplified with (3.4) and (3.5) into the exact sequence:

0 H̃2(X2) A A⊕A H̃1(X2) 0.

A similar reasoning as in the third point (iii) of the proof of 1.4.27 leads us to the results H̃2(X2) ∼= A and
H̃1(X2) ∼= A⊕A. Hence, we have just computed the homology of the torus:

H̃n(T ) = H̃n(X2) ∼=

 A⊕A if n = 1,
A if n = 2,
0 otherwise.
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Appendices

A- Categories used in this project
Here is a list of all the categories used in this project:

NOTATION OBJECTS MORPHISMS ISOMORPHISMS
Set Sets Maps of sets Bijections
Set∗ Pointed sets Pointed maps of sets Pointed bijections
Top Topological spaces Continuous maps Homeomorphisms
Top∗ Pointed spaces Continuous pointed maps Pointed homeomorphisms
Toprel Relative spaces Continuous relative maps Relative homeomorphisms
CW CW-complexes Continuous maps between CW-c. Homeo. between CW-c.
CW∗ Pointed CW-complexes Pointed morphisms of CW Pointed isomorphisms of CW
Gr Groups Group homomorphisms Group isomorphisms
Ab Abelian groups Abelian group homomorphisms Abelian group isomorphisms

Table 1 — Categories used in this project

B- Proof that πn is a group
Proposition 1.2.19. Let be n ≥ 1 a positive integer, and (X, x0) a pointed topological space. The
n-th homotopy group πn(X, x0) is a group.

Proof. We will follow the steps given at the page 11.

(i) We want to show that G := [(In, ∂In), (X, x0)] is a group. For any two continuous maps f, g : (In, ∂In)→
(X, x0)) in Toprel, we define the operation + in Toprel((In, ∂In), (X, x0)) as follows:

∀(s1, . . . , sn) ∈ In, (f + g)(s1, s2, . . . , sn) :=
{

f(2s1, s2, . . . , sn) for s1 ∈ [0, 1/2],
g(2s1 − 1, s2, . . . , sn) for s1 ∈ [1/2, 1],

where for s1 = 1/2 we well have f(2s1, s2, . . . , sn) = x0 = g(2s1− 1, s2, . . . , sn). We notice that this operation
+ is well closed: f + g ∈ Toprel((In, ∂In), (X, x0)). Now, by quotient, we want to define a similar operation
· on G as follows:

[f ] · [g] := [f + g],

but we need to verify that such an operation is well defined. First, we can see that this operation is closed:
as f + g ∈ Toprel((In, ∂In), (X, x0)), we well have [f + g] ∈ G. Now, if we take f ′ ∈ [f ] and g′ ∈ [g], we have
f ′ '∂In f and g′ '∂In g, and we note Hf and Hg the corresponding relative homotopies. We notice that the
relative homotopy H defined by:

∀t ∈ I, H(−, t) := Hf (−, t) +Hg(−, t),

(where the operation + is defined above) gives us the relation f ′ + g′ '∂In f + g. This means that the
operation · is well defined:

[f ′] · [g′] = [f ′ + g′] = [f + g] = [f ] · [g].



Next, let us show that the operation · is a group law. Let us consider three continuous maps f, g, h ∈
Toprel((In, ∂In), (X, x0)) and a point (s1, s2, . . . , sn) ∈ In. On the one hand, we have:

((f + g) + h)(s1, s2, . . . , sn) =
{

(f + g)(2s1, s2, . . . , sn) for s1 ∈ [0, 1/2],
h(2s1 − 1, s2, . . . , sn) for s1 ∈ [1/2, 1],

=

 f(4s1, s2, . . . , sn) for s1 ∈ [0, 1/4],
g(4s1 − 1, s2, . . . , sn) for s1 ∈ [1/4, 1/2],
h(2s1 − 1, s2, . . . , sn) for s1 ∈ [1/2, 1],

and on the other hand:

(f + (g + h))(s1, s2, . . . , sn) =
{

f(2s1, s2, . . . , sn) for s1 ∈ [0, 1/2],
(g + h)(2s1 − 1, s2, . . . , sn) for s1 ∈ [1/2, 1],

=

 f(2s1, s2, . . . , sn) for s1 ∈ [0, 1/2],
g(4s1 − 2, s2, . . . , sn) for s1 ∈ [1/2, 3/4],
h(4s1 − 3, s2, . . . , sn) for s1 ∈ [3/4, 1].

So the following relative homotopy defined by: ∀(s1, . . . , sn) ∈ In, ∀t ∈ I,

H((s1, s2, . . . , sn), t) :=


f
(

4
t+1s1, s2, . . . , sn

)
for s1 ∈

[
0, t+1

4
]
,

g(4s1 − 1− t, s2, . . . , sn) for s1 ∈
[
t+1

4 , t+2
4
]
,

h
(

4
−t+2s1 + t+2

t−2 , s2, . . . , sn

)
for s1 ∈

[
t+2

4 , 1
]
.

gives us the relation (f + g) + h '∂In f + (g + h). This implies that we have:

([f ] · [g]) · [h] = [(f + g) + h] = [f + (g + h)] = [f ] · ([g] · [h]),

which means that the operation · is associative. Furthermore, we can see that [e : (s1, . . . , sn) 7→ x0] the
identity element: indeed, we have the relation f + e '∂In f with the relative homotopy defined by:

∀(s1, . . . , sn) ∈ In,∀t ∈ I, H ′((s1, s2, . . . , sn), t) :=
{

f
(

2
t+1 s1, s2, . . . , sn

)
for s1 ∈

[
0, t+1

2
]
,

x0 for s1 ∈
[
t+1

2 , 1
]
,

which means that we have [f ] · [e] = [f + e] = [f ], and in a same way [e] · [f ] = [f ]. Finally, let us show that
[f̃ : (s1, s2, . . . , sn) 7→ f(1− s1, s2, . . . , sn)] is the inverse element of [f ]. We have:

(f̃ + f)(s1, s2, . . . , sn) :=
{
f(−2s1 + 1, s2, . . . , sn) for s1 ∈ [0, 1/2],
f(2s1 − 1, s2, . . . , sn) for s1 ∈ [1/2, 1],

and we can consider the relative homotopy defined as follows: ∀(s1, . . . , sn) ∈ In, ∀t ∈ I,

H ′′((s1, s2, . . . , sn), t) :=

 f(−2s1 + 1, s2, . . . , sn) for s1 ∈
[
0, 1−t

2
]
,

f(2s1 + 2t− 1, s2, . . . , sn) for s1 ∈
[ 1−t

2 , 1− t
]
,

x0 for s1 ∈ [1− t, 1],

which gives us the relation f̃ + f '∂In e. We deduce that [f̃ ] · [f ] = [f̃ + f ] = [e], and in a same way
[f ] · [f̃ ] = [e]. Therefore, [f̃ ] is the inverse element of [f ], and we have shown that · is a group law. Hence
(G, ·) is a group.

(ii) There is an obvious homeomorphism between In − (∂In) and the n-dimentional hyperspace Rn using for
instance the continuous map arctan(−)/π+1/2 on each coordonate. There is also a homeomorphism between
Rn and Sn − {∗} considering for example the stereographic projection. So, by composition we have a home-
omorphism between In − (∂In) and Sn − {∗}; and by continuity, we can extend the homeomorphism to In,
mapping the boundary ∂In to the point ∗. Then, we can deduce the following homeomorphisms in Top:

In/∂In ∼= (In − (∂In)) ∪ (∂In/∂In) = (In − (∂In)) ∪ {[0]} ∼= Sn,

and finally we conclude with the wanted homeomorphism in Toprel:

(In/∂In, [0]) ∼= (Sn, ∗).



(iii) We apply the remark 1.1.9 with the contravariant functor [−, (X, x0)] to the bijection provided by (ii), and
we obtain the bijection in Set:

πn(X, x0) := [(Sn, ∗), (X, x0)] ∼= [(In/∂In, [0]), (X, x0)]. (6)

With a similar reasoning as in the proof of the proposition 1.2.15, we get the bijection:

[(In, ∂In), (X, x0)] ∼= [(In/∂In, [0]), (X, x0)]. (7)

Finally, we gather the informations provided by (6) and (7) and we obtain the bijection:

πn(X, x0) ∼= [(In, ∂In), (X, x0)], (8)

where the second set is the group G as seen in the first point (i). That is why πn(X, x0) is also a group
together with the operation induced by the bijection (8).
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