
Lecture 1.3 - Complex bordism theory
Maximilien Péroux and Jānis Lazovskis
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Goal. The Lazard ring L and its universal formal group law can be described completely homotopically
by the complex bordism spectrum MU. In fact, the Hopf algebroid (L,W ) can be understood as the pair
(MU∗,MU∗MU). We introduce the notion of complex-orientable cohomology theory which will provide a
homotopical origin for some formal group laws.

Notation. We shall prefer to write π∗(E) instead of E∗ for the coefficient ring of a ring spectrum E.

1 Complex-orientable cohomology theories

Complex-orientable cohomology theories are a particular kind of cohomology theory. They generalize the
main concepts from ordinary cohomology theory associated to complex vector bundles, such as Chern classes,
Thom class, and the Thom isomorphism. For our purposes, each complex orientation of these cohomology
theories has an associated formal group law and thus provides a homotopical description of formal group
laws.

1.1 Complex orientation

Recall that CP∞ ' BU(1) ' K(Z, 2) classifies complex line bundles. The homotopy class of the natural
inclusion map

i : S2 ∼= CP 1 ↪→ CP∞

generates the group π2(CP∞) = Z. Stably, this defines a map of spectra

i : Σ∞S2 −→ Σ∞CP∞,

i.e., a map i : S −→ Σ∞−2CP∞, where S is the sphere spectrum.

We say that a cohomology theory E is multiplicative if its representing spectrum is endowed with a
multiplication E ∧ E → E that is associative and unital up to homotopy, i.e. a ring spectrum.

Recall that given a spectrum E, the reduced cohomology of E is defined by

Ẽk(X) = colimn[ΣnX,Ek+n]

for X a pointed space.
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Definition 1. A multiplicative cohomology theory E is complex-orientable if the induced map

i∗ : Ẽ2(CP∞) −→ Ẽ2(S2) ∼= Ẽ0(S0) ∼= π0(E)

is surjective. This means that the image of i∗ contains 1 ∈ π0(E), the canonical generator representing the

unital map η : S→ E. A complex orientation is a choice of an element xE ∈ Ẽ2(CP∞) such that i∗(xE) = 1.

Since Ẽk(X) = colimn[ΣnX,En+k], one should think of a complex orientation xE ∈ Ẽ2(CP∞) as represent-
ing a map of spectra Σ∞−2CP∞ → E such that by precomposing with the map i we get the unital map
η : S→ E of the ring spectrum E. That is, the following diagram commutes up to homtopy:

S Σ∞−2CP∞ E.
i xE

η

Example 1. Let E = HZ be the ordinary cohomology theory. It is complex-orientable. Indeed, let xHZ in

H2(CP∞;Z) ∼= H2(S2;Z) ∼= Z

be the usual generator; it is the first universal Chern class. The same is true for any Eilenberg–MacLane
spectrum HR, where R is a commutative ring.

Example 2. Let E = KU be complex K-theory. A complex orientation xKU is given by

[ξ1]− 1C ∈ K̃U
0
(CP∞) ∼= K̃U

2
(CP∞),

where ξ1 is the universal complex line bundle.

Example 3. If E = KO, real K-theory, then E is not complex orientable. Hint: because

Z ∼= K̃O
2
(CP∞) −→ K̃O

2
(S2) ∼= Z

corresponds to the multiplication by 2.

The complex orientation xE will sometimes be simply denoted x if there is no confusion. It can be
regarded as the generalization of the universal first Chern class for the spectrum E.

1.2 Formal group laws

The condition that E is complex-orientable determines the structure of E∗(CP∞) as a power series ring.

Proposition 1. Let E be a complex-orientable cohomology theory with complex orientation x. Then:

(a) E∗(CPn) ∼= π∗(E)[i∗n(x)]/
(
i∗n(x)n+1

)
, where in : CPn → CP∞ is the inclusion map;

(b) E∗(CP∞) ∼= π∗(E)[[x]];

(c) E∗(CP∞×CP∞) ∼= π∗(E)[[x1, x2]], where xi = p∗i (x) for pi : CP∞×CP∞ → CP∞ the i-th projection,
i = 1, 2.

Proof. (a) There is an Atiyah–Hirzebruch spectral sequence for E∗(CPn), given by

Ep,q2 = Hp(CPn;πq(E)) ∼= Hp(CPn;Z)⊗ πq(E) =⇒ Ep+q(CPn).

Since Hp(CPn) = Z[X]/(Xn+1) for some X of degree 2, the E2-page is given by π∗(E)[X]/(Xn+1).
The differentials d2 : Ep,q2 → Ep+2,q−1

2 are π∗(E)-linear and multiplicative, so we get

d(a,Xk) = ad(Xk) = akXk−1d(X)
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for any a ∈ Z and k ≥ 1. The element X belongs to E2,0
2 . The spectral sequence collapses at the

E2-page means that X ∈ H2(CPn, π0(E)) survives to an element in E2(CPn). This happens when X
restricts to a generator of H2(CP 1, π0(E)) = π0(E). Since E is complex orientable, the commutativity
of the diagram

CP 1 CP∞

CPn

i

in

implies that i∗n(x) is sent to the generator 1 ∈ π0(E), as in the induced diagram

Ẽ2(CP∞) Ẽ2(CP 1)

Ẽ2(CPn)

i∗

i∗n

the homomorphism i∗ is surjective. Thus d2(X) = 0 and X is an infinite cycle which represents
i∗n(x) ∈ E2(CPn). Thus we get the desired result.

(b) Since CP∞ = colimnCPn, the Milnor sequence gives

E∗(CP∞) ∼= limnE
∗(CPn) ∼= limnπ∗(E)[i∗n(x)]/

(
i∗n(x)n+1

) ∼= π∗(E)[[x]],

since the induced map E∗(CPm) → E∗(CPn) is surjective and hence satisfies the Mittag–Leffler
condition, for n ≤ m.

(c) The proof of (a) and (b) can be carried on to prove (c). Notice that

H∗(CPn × CPm) ∼= H∗(CPn)⊗H∗(CPm),

so the cohomology E∗(CPn × CPm) can be computed again with the Atiyah–Hirzebruch spectral
sequence, followed by an application of the Milnor sequence.

Remark 1. The converse is actually true, if the Atiyah-Hirzebruch spectral sequence

Ep,q2 = Hp(CP∞;πq(E)) =⇒ Ep+q(CP∞)

collapses at the E2-page, then the ring spectrum E is complex-orientable.

Given two vector bundles p : V1 → B and q : V2 → B over the same base space B, their tensor product
pq : V1 ⊗ V2 → B is the vector bundle over B whose fiber over any point is the tensor product of modules of
the respective fibers of V1 and V2. This tensor operation can be classified by a map

m : CP∞ × CP∞ −→ CP∞,

which is the multiplication map for the H-structure of CP∞. Consider the induced map on cohomology

m∗ : π∗(E)[[x]] ∼= E∗(CP∞) −→ E∗(CP∞ × CP∞) ∼= π∗(E)[[x1, x2]].

It determines a formal group law, denoted µE(x1, x2) = m∗(x), as the image of x = xE under m∗ in
π∗(E)[[x1, x2]].

Proposition 2. The construction µE(x1, x2) defined above is indeed a formal group law.
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Proof. This follows from the fact that CP∞ is an H-group. In other words, the tensor product of complex
line bundles is commutative and associative up to isomorphism. For instance, define, for i = 1, 2, the maps
ji : CP∞ → CP∞ × CP∞ by j1(y) = (y, ∗) and j2(y) = (∗, y). Then we get

µE(x1, 0) = (j∗1 ◦m∗)(x), µE(0, x2) = (j∗2 ◦m∗)(x).

The maps m◦ ji are homotopic to the identity, so we get µE(x1, 0) = x1 and µE(0, x2) = x2. Commutativity
and associativity follows similarly, by noticing that

m ◦ (m× 1) ' m ◦ (1×m).

Example 4. Let E = HZ. Then we get µHZ(x1, x2) = x1 + x2, the usual additive formal product.

Example 5. Let E = KU . Then the pullback of a vector bundle p along m : CP∞ × CP∞ → CP∞ is
given by the tensor product p1p2, where p1 and p2 are obtained by the pullback of p along the projections
CP∞ × CP∞ −→ CP∞. Recall xKU = [ξ1]− 1C, so

m∗(xKU + 1) = (xKU1 + 1)(xKU2 + 1),

i.e., m∗(xKU ) = xKU1 + xKU2 + xKU1 xKU2 , using that m∗ is a homomorphism of rings. hence we get that
µKU (x1, x2) = x1 + x2 + x1x2 is the usual multiplicative formal product.

We have just described some formal group laws homotopically. We ask ourselves, can all the formal group
laws be realized homotopically?

2 The complex bordism spectrum MU

The complex bordism spectrum MU is a universal complex-orientable cohomology theory: complex orienta-
tions of a spectrum E are in one-to-one correspondence with multiplicative maps MU → E. The spectrum
MU is called a Thom spectrum.

2.1 The Thom spectrum of a real vector bundle

We remind here the construction of a Thom space and some results. Recall that, given a space B, we have

ΣrB+ =
B ×Dr

B × Sr−1
,

for r ≥ 1. The Thom space generalizes the suspension in the following manner. Let p : E → B be a real
vector bundle of rank r and suppose it is endowed with a metric (e.g. B is paracompact). Then one can
define the unit sphere bundle

S(E) = {v ∈ E | ‖x‖ = 1}

and the unit disk bundle
D(E) = {v ∈ E | ‖v‖ ≤ 1}

over B, so that we obtain subbundles S(E) ⊆ D(E) ⊆ E.

Definition 2. The Thom space of the real vector bundle p is Th(p) := D(E)/S(E).

If p is the trivial bundle E = B × Rr, then

Th(p) =
B ×Dr

B × Sr−1
= ΣrB+.

Therefore, for a general p, its Thom space Th(p) can indeed be regarded as a twisted suspension.
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Remark 2. For motivational matters, we presented the definition of Thom spaces for vector bundles with
metrics. More generally, for any rank-r real vector bundle p : E → B, we may also obtain Th(p) by applying
a fiberwise one-point compactification on E and identifying all the added points to a single basepoint. Note
these two definitions are homeomorphic. This construction has the advantage of being functorial, as

Th : VectR −→ Top∗,

where VectR is the category of real vector bundles and Top∗ is the category of pointed topological spaces.
Since in this talk all the base spaces of vector bundles will be paracompact, we will allow ourselves to switch
between the two constructions.

Proposition 3. Let V
p→ X and W

q→ Y be two real vector bundles. Then there is a homeomorphism

Th(p× q) ∼= Th(p) ∧ Th(q).

Proof. We have the relative homemorphism

(D(p× q), S(p× q)) −→
(
D(p)×D(q), S(p)×D(q) ∪D(p)× S(q)

)
,

(v, w) 7−→ 1

max(‖v‖, ‖w‖)
√
‖v‖2 + ‖w‖2

(v, w),

which induces the desired homeomorphism on the quotient spaces.

Corollary 1. If p : E → B is a real vector bundle and 1rR is the trivial rank-r real vector bundle over B,
then there is an isomorphism Th(p⊕ 1rR) ∼= ΣrTh(p).

Proof. Apply the previous proposition with X = Y = B, and notice that the Whitney sum p ⊕ 1rR is iso-
morphic to the bundle p×Rr, where Rr is the r-dimensional trivial bundle over a point. As Dr/Sr−1 ∼= Sr,
we get

Th(p⊕ 1rR) ∼= Th(p× Rr) ∼= Th(p) ∧ Sr = ΣrTh(p).

2.2 The construction of MU

Every complex vector bundle of rank r can be regarded as a real vector bundle of rank 2r, via Cr ∼= R2r.
Let ξn : E(n)→ BU(n) be the universal complex bundle of rank n.

Let n ≥ 0. Let MU(n) denote the Thom space of ξn (regarded as a real vector bundle of rank 2n). The
inclusion Cn ↪→ Cn+1, by adding a zero at the (n + 1)-th coordinate, induces a map U(n) ↪→ U(n + 1).
Regarding BU(n) as the Grassmannian and passing through colimits gives a map ιn : BU(n)→ BU(n+ 1).
Notice that ξn+1 pulls back to ξn ⊕ 1C along ιn, where 1C is the trivial complex line bundle:

E(n)⊕ C E(n+ 1)

BU(n) BU(n+ 1).

ξn⊕1C=ι
∗
n(ξ

n+1) ξn+1

ιn

Functoriality of Thom spaces gives the map :

Σ2MU(n) = Th(ξn ⊕ 1C) −→ Th(ξn+1) = MU(n+ 1).

Definition 3. The complex bordism spectrum, denoted MU, is the Thom spectrum whose 2n-th term is
MU(n) and its (2n+ 1)-th term is ΣMU(n). The non-trivial structure maps are given by :

Σ2MU(n) −→ MU(n+ 1),

defined above.
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Remark 3. MU also has a geometrical interpretation, in the context of almost complex manifolds (2n-
dimensional real manifolds with a tangent bundle endomorphism that squares to −id). For M,N almost
complex n-manifolds and any space X, two maps f : M → X and g : N → X are bordant if there exists
an almost complex (n+ 1)-manifold W with ∂W = M tN and for which f t g extends to a map W → X.
Write ΩUn (X) for the bordism classes of n-manifolds into X, which can be made into a graded ring ΩU∗ (X),
called the complex bordism ring. Addition is disjoint union and multiplication is cartesian product. Then
ΩU∗ (∗) = π∗(MU), a result known as the Thom-Pontryagin theorem.

The spectrum MU is a ring spectrum. The direct sum of complex vector bundles is classified by a
multiplication

BU(n)×BU(m) −→ BU(n+m),

which is induced by block-addition of matrices. Using functoriality of Thom spaces, we get maps

MU(n) ∧MU(m) −→ MU(n+m),

which induce MU ∧MU −→ MU. By convention, we can assume BU(0) ' ∗, and as the Thom space over a
point is a sphere, we get MU(0) = S0. This induces a map of spectra η : S→ MU, called the unital map.

Let us describe the Thom space MU(n) when n ≥ 1. The unit sphere bundle associated to the universal
complex bundle ξn of rank n can be understood as follows. The U(n)-principal bundle EU(n) → BU(n)
shows that BU(n) = EU(n)/U(n). The group U(n−1) acts also on EU(n) via the inclusion U(n−1) ↪→ U(n),
so that we get a fibration

BU(n− 1) ' EU(n)/U(n− 1) −→ EU(n)/U(n) ' BU(n)

with fiber U(n)/U(n− 1) ' S2n−1. This corresponds to the unit sphere bundle of ξn. Since the total space
equals E(n) = EU(n)×U(n) Cn, the space of the unit disk bundle of ξn is given by BU(n). Thus we get

MU(n) ' BU(n)/BU(n− 1).

In particular, when n = 1, we get a map

CP∞ ' BU(1)
'−→ BU(1)/BU(0) ' MU(1),

which defines an element xMU ∈ M̃U
2
(CP∞). We have seen that MU(0) = S0 and MU(1) ' CP∞. The

map Σ2MU(0) → MU(1) corresponds to the map i : S2 → CP∞ that we have defined in the beginning of
the previous section. Therefore we see that i∗(xMU) = 1, where 1 is the class of η : S→ MU. Thus MU is a
complex-orientable cohomology theory.

Proposition 4. The complex bordism spectrum MU is the universal complex-orientable cohomology theory,
in the following sense. Let E be a complex-orientable cohomology theory. Given a complex orientation xE,
there exists a unique, up to homotopy, map of ring spectra f : MU→ E such that

f∗(x
MU) = xE and f∗(µ

MU) = µE .

For instance, given a ring map MU→ E, we get a complex orientation xE by

Σ∞−2CP∞ −→ MU −→ E,

where the left map is the complex orientation of MU.
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3 Quillen’s theorem

Recall the Lazard ring L = Z[t1, t2, . . . ], where |ti| = 2i and the universal formal group law µL ∈ L[[x, y]].
Since L is universal (and by the claim of Proposition 4), there is a unique ring homomorphism h : L →
π∗(MU) taking µL to µMU. By using logarithms of formal group laws, Quillen was able to prove the following:

Theorem 1. (Theorem 2 in [Qui69]) The ring homomorphism h : L −→ π∗(MU) is a ring isomorphism.

Let X be a topological space and OX its structure sheaf (where the stalks are local rings). Recall that
(X,OX) is an affine scheme if X ∼= Spec(R) as topological spaces and OX ∼= OSpec(R) as sheaves, for some
ring R. Also recall a groupoid is a category whose morphisms are all isomorphisms, and combining these
ideas, a groupoid object in affine schemes is a pair of affine schemes (S, T ) (only the space is indicated, the
rest of the data being clear for each scheme) for which there exist maps

p, q : S → T

(which may be thought of as the left and right unit maps in a coalgebra structure) making the appropriate
diagrams commute.

Definition 4. A pair of commutative rings (A,Γ) such that (Spec(A),Spec(Γ)) is a groupoid object in affine
schemes is called a Hopf algebroid.

Let E be homotopy commutative ring spectrum such that E∗(E) = π∗(E ∧ E) is flat as a left π∗(E)-
module. The multiplication map E ∧ E → E induces a map

E ∧ E ∧ E ∧ E −→ E ∧ E ∧ E,

so that we get an isomorphism

π∗(E ∧ E)⊗π∗(E) π∗(E ∧ E)
∼=−→ π∗(E ∧ E ∧ E).

Applying π∗ to the composite
E ∧ E ' E ∧ S ∧ E −→ E ∧ E ∧ E,

induced by the unital map S→ E, we get the comultiplication

∆ : π∗(E ∧ E) −→ π∗(E ∧ E)⊗π∗(E) π∗(E ∧ E).

The multiplication E ∧ E → E induces the augmentation map

π∗(E ∧ E) −→ π∗(E),

and the twist map E ∧ E → E ∧ E induces the antipode

π∗(E ∧ E) −→ π∗(E ∧ E).

The left and right counit maps π∗(E)→ π∗(E ∧ E) are defined via the maps

E ' S ∧ E −→ E ∧ E, E ' E ∧ S −→ E ∧ E.

In general, these maps are not homotopy equivalent. Applying the functor Spec, we can see that the pair(
Spec(π∗(E)),Spec(π∗(E ∧E))

)
is a groupoid object in affine schemes, and so we have proved the following

fact.

Proposition 5. Given E a homotopy commutative ring spectrum such that π∗(E ∧ E) is flat as a left
π∗(E)-module, we get that the pair (π∗(E), π∗(E ∧ E)) is a Hopf algebroid.
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We are interested in the case E = MU. Let us now understand π∗(MU ∧MU).

Proposition 6. Let E be a complex-orientable cohomology theory with complex orientation x. Let {bi} ⊆
E∗(MU(1)) be dual to the topological basis {xi+1} of E∗(MU(1)) ∼= π∗(E)[[x]]. Then the images of the bi in
E∗(MU) determine a ring isomorphism

(π∗(E))[b1, b2, . . .] ∼= E∗(MU) = π∗(MU ∧ E).

Proof. See Proposition 6.2 of [Hop99].

Let E be any complex-orientable cohomology theory. Then MU∧E is another complex-orientable cohomology
theory. It has two canonical complex orientations: one can define two classes, denoted again xE and xMU in

M̃U ∧ E
2
(CP∞), represented by the map of spectra

Σ∞−2CP∞ −→ E ' E ∧ S −→ E ∧MU,

and
Σ∞−2CP∞ −→ MU ' S ∧MU −→ E ∧MU.

In particular we get isomorphisms

(π∗(E))[b1, b2, . . .][[x
E ]] ∼= Ẽ ∧MU

∗
(CP∞) ∼= (π∗(E))[b1, b2, . . .][[x

MU]].

Thus xMU can be written as a power series in (π∗(E))[b1, b2, . . . ][[x
E ]]. It turns out that

xMU = xE + b1(xE)2 + b2(xE)3 + · · ·

(See Lecture 7 of [Lur10] for a proof). Now if we let R be the commutative ring π∗(MU ∧ E), the complex
orientations xE and xMU give formal group laws µE and µMU on R[[x, y]], which are defined as

m∗(xE) = µE(xE1 , x
E
2 ), m∗(xMU) = µMU(xMU

1 , xMU
2 ).

If we set g(t) = t+ b1t
2 + b2t

3 + · · · ∈ R[[t]], we get the formal identity xMU = g(xE) and the formula

µMU(x, y) = g ◦ µE(g−1(x), g−1(y)).

Shifting our perspective, define G = Spec(Z[b1, b2, . . . ]). Let E be a complex-orientable cohomology
theory. Let R = π∗(E). Then π∗(E ∧MU) is the ring of functions on the affine scheme G× Spec(π∗(E)). In
particular, applying Quillen’s theorem we get

Spec(π∗(MU ∧MU)) ∼= G× Spec(L).

The Hopf algebroid structure of (π∗(MU), π∗(MU ∧MU)) induces a pair of maps

G× Spec(L) −→ Spec(L)

Given a formal group law f(x, y) ∈ R[[x, y]] and a power series g(t) = t+ b1t
2 + b2t

3 + · · · , we can naturally
construct two formal group laws over R : the first is given by f itself and the second is given by the formula

gf(g−1(x), g−1(y)).

The group G of coordinate changes acts on Spec(L), which parametrizes formal group laws. In the language
of Algebraic Geometry, we can reformulate our claims as follows.

Theorem 2. Let E be any spectrum. Then MU∗(E) is a module over the commutative ring L ∼= π∗(MU)
and therefore, using the functor-of-points perspective, may be understood as a quasi-coherent sheaf on the
affine scheme Spec(L), which parametrizes formal group laws. This sheaf admits an action of the affine
group scheme G = Spec(Z[b1, b2, . . .]), which assigns to each commutative ring R, the group {g ∈ R[[t]] |
g(t) = t+b1t

2+b2t
3+ · · · } compatible with the action of G on Spec(L) by the construction: to each g ∈ G(R)

and f(x, y) a formal group law on R, we get another formal group law

gf(g−1(x), g−1(y))

on R.
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