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SUMMARY

Chapter 2 sets the definitions of our objects of studies: coalgebras and their comodules,
both in the ordinary sense and in the co-categorical sense. Our main result here is Proposition
2.2.6 which shows that coalgebras in presentably symmetric monoidal co-categories are also
presentable. As a consequence, we show in Theorem 2.3.16 that higher algebras are enriched
over higher coalgebras in presentably symmetric monoidal oo-categories. Although this result
is not needed for the rest of the thesis, it can serve as a motivation on why to study coalgebras
in the first place: they are part of the structure of algebras.

In Chapter 3, our main result is Theorem 3.3.2 which shows that weak monoidal Quillen
equivalences of monoidal model categories lift to strong monoidal equivalences of symmetric
monoidal co-categories. We apply the theorem to the Dold-Kan equivalence.

Chapter 4 presents the statement of the problem in full details: comparing homotopy co-
herent coassociative and cocommutative coalgebras with their strict analogue. We provide an
example where the rigidification does not hold in Example 4.1.2, and we show that rigidification
does hold in the Cartesian case.

We explore the case of spectra in Chapter 5 and we show in Corollary 5.2.3 that rigidification
of coassociative and cocommutative coalgebras does not hold in the current symmetric monoidal
model categories of spectra.

We study the rigidification for differentially graded comodules in Chapter 6. Our main

result is Theorem 6.3.3 which shows that rigidification holds for simply connected coalgebras in
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SUMMARY (Continued)

non-negative chain complexes over a finite product of fields. We also observe in Theorem 6.4.7
that when a coalgebra C' is equivalent to its dual algebra C*, then rigidification of comodules
also holds as comodules over C' are equivalent to modules over C*.

Chapter 7 shows that we can derive the cotensor product of comodules in the simply con-
nected case in Theorem 7.5.2.

The Appendices are crucial in the arguments of Chapters 5 and 6. We essentially show
that we can provide an inductive fibrant replacement of comodules in a very similar way as a

Postnikov tower for a space does as seen in Corollary B.3.15.

viii



CHAPTER 1

INTRODUCTION

Any A,.-ring spectrum is homotopic to a strictly unital and associative ring spectrum, in
some monoidal model category representing spectra, say symmetric spectra, as in (Hovey et al.,
2000). Similarly, any E..-ring spectrum is homotopic to a strictly unital, associative and com-
mutative ring spectrum. We are interested in this thesis in the dual question: can A,.-coalgebras
and E.-coalgebras be homotopic to strictly counital, coassociative and cocommutative coalge-
bras over the sphere spectrum? In other words, can we rigidify the comultiplication in spectra?
We show in Corollary 5.2.3 and Corollary 5.2.4 that it is not the case. This follows from a
previous result in (Péroux and Shipley, 2019).

We instead focus our attention to module spectra over a discrete commutative ring R,
shift our rigidification question towards coalgebras and comodules in the derived category of
R, and work instead with the model category of unbounded chain complexes of R-modules.
Unfortunately, Example 4.1.2 hints that rigidification of coassociative coalgebras does not hold
in the differential graded context. The main result of our paper, in Theorem 6.3.3, shows that
we can always rigidify the coaction of comodules over any simply connected differentially graded
coalgebra over a finite product of fields, in the non-negative context.

Rigidification of algebras and modules usually holds in a good combinatorial monoidal model
category, as seen in (Lurie, 2017, 4.1.8.4). Thus one could expect a good situation if we were

working with coalgebras and comodules in a “cocombinatorial” model categories. However, we
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still want to work with presentable categories and not “copresentable” categories. Instead, we
investigate why the case of algebra works for a combinatorial model category. The key idea
is that one can argue inductively cell by cell just as one can when studying CW-complexes
of spaces. In model categories this is encoded in the small object argument. A dual theory
would be instead of generalizing CW-complexes which present any space as a filtered colimit,
we should now generalize Postnikov towers of spaces that present any space as a tower of
spaces whose layers are easy computable. As we are not working with a copresentable model
category, we do not have a ”cosmall object argument” (see statement in Proposition A.1.7).
Nevertheless we can provide an explicit ad-hoc Postnikov tower for certain type of comodules in
chain complexes, see Corollary B.3.15. We introduce the notions of fibrantly generated model
categories and Postnikov presentations of a model category following the work of (Hess, 2009)
and (Bayeh et al., 2015) in Appendix A. This allows us to compute very explicitly homotopy
limits of comodules in chain complexes.

Another formal consequence of our ad-hoc Postnikov towers is that we can now define a

derived cotensor product of homotopy coherent comodules in the differential graded context.



CHAPTER 2

COALGEBRAS AND COMODULES IN HIGHER CATEGORY

We present here the formal definitions of coalgebras and comodules. Our main result in
this chapter is that coalgebras of a presentably symmetric monoidal co-category form also
a presentable oo-category, see Proposition 2.2.6. We also observe that algebras are enriched
over coalgebras in Theorem 2.3.16 in any presentably symmetric monoidal co-category, which

generalizes the result in ordinary categories.

2.1 Classical Definitions and Results in Ordinary Category

Throughout this section, we let (C,®,I) be a symmetric monoidal category.

Definition 2.1.1. A comonoid (C,A,¢) in C consists of an object C' in C together with a

coassociative comultiplication A : C' — C ® C|, such that the following diagram commutes:

c—4% c0eC

Al lﬂc®A

coc 2%, cgcwC,

and admits a counit morphism € : C' — I such that we have the following commutative diagram:

CoC M ocgizcxige &9 cg o

N b S



The comonoid is cocommutative if the following diagram commutes:

CeC T CeC

A

C,

where 7 is the twist isomorphism from the symmetric monoidal structure of C. A morphism of
comonoids f : (C,A,e) = (C',A’,¢’) is a morphism f : C' — C’ in C such that the following

diagrams commute:

c—1 L c-1, o

ok NI

CeC —— C'xC,
We denote CoMon(C) the category of comonoids in C. We denote CoCMon(C) the category of

cocommutative comonoids in C.

Remark 2.1.2. Notice that we could have defined the category of comonoids with the help of

the category of monoids by taking opposites: CoMon(C) = (Mon(C°P))°P.

Proposition 2.1.3 ((Porst, 2008, 2.6)). Suppose the symmetric monoidal category (C,®,1)
is cocomplete. Then the category CoMon(C) is cocomplete and its associated forgetful functor
U : CoMon(C) — C is cocontinuous. Similarly, the category CoCMon(C) is cocomplete and its

associated forgetful functor U : CoCMon(C) — C is cocontinuous.

We say that a category is presentable in the sense of locally presentable as in (Addmek and

Rosicky, 1994)



Proposition 2.1.4 ((Porst, 2008, 2.7)). Let (C,®,1) be a symmetric monoidal category. Sup-
pose C is presentable and the tensor product ® preserves filtered colimits in each variable. Then

the categories CoMon(C) and CoCMon(C) are presentable.
Combining the above results, we get the following.

Proposition 2.1.5. Let (C,®,I) be a symmetric monoidal category. Suppose C is presentable
and the tensor product C ® C — C preserves colimits in both variables. Then there exists a

functor TV : C — CoMon(C) which forms the adjoint pair of functors:

U:CoMon(C) _ LT " C:TY.

Similarly, there exists a functor SV : C — CoCMon(C) which forms the adjoint pair of functors:

U:CoCMon(C) , 1 " C:SY.

Definition 2.1.6. From Proposition 2.1.5, for any object X in C, we say that TV(X) is the
cofree comonoid generated by X, and SY(X) is the cofree cocommutative comonoid generated

by X.

Remark 2.1.7. Very little is known about these cofree functors in general. For explicit formulas
in particular cases, we refer the interested reader to (Michaelis, 2003), (Getlzer and Goerss,

1999), and (Anel and Joyal, 2013).



Definition 2.1.8. Let (C,A,¢) be a comonoid in C. A right comodule (X, p) over C, or a
right C'-comodule, is an object X in C together with a coassociative and counital right coaction

morphism p: X — X ® C in C, i.e., the following diagram commutes:

X 7 ‘XxeC X -3 xXwC
Pl lp@idc lidx@f
X®CmX®C’®C, X®I

%g

The category of right C-comodules in C is denoted CoModc(C). Similarly, we can define
the category of left C'-comodules where objects are endowed with a left coassociative counital

coaction X — C'® X and we denote the category by «CoMod(C).

Remark 2.1.9. If C' is a cocommutative comonoid in C the categories of left and right co-
modules over C' are naturally isomorphic: ¢CoMod(C) = CoMod¢(C). In this case, we omit to

mention if the coaction is left or right.

Remark 2.1.10. Since a comonoid in C is a monoid in C°P, then we can define the category
of right comodules as modules in the opposite category: CoModo(C) = (Mod¢(C°P))°P) and

similarly for the left case.

Proposition 2.1.11. Let (C,®,1) be symmetric monoidal category. Suppose that C is pre-

sentable and the tensor product @ preserves filtered colimits in each variable. Then for any



choice of comonoid in C in C, the category of right C-comodules (or left C-comodules) in C is

presentable, and we have an adjunction:

Proof. Notice that CoMod¢(C) is the category of coalgebras over the comonad —® C': C — C.

Apply (Addmek and Rosicky, 1994, 2.78, 2.j). O

Definition 2.1.12. Following Proposition 2.1.11, for any object X in C, we say that X ® C'is
the cofree right C-comodule generated by X. Similarly, we can define the cofree left C'-comodule

generated by X as C ® X.

Recall that given a commutative monoid R in C, the category of (right) modules over R in
C, denoted Modg(C) is a symmetric monoidal category, where the unit is R and the monoidal

product is denoted ®p and is defined as the coequalizer:

idy®(anor)
M®@R®N ——<¢ M®N,

a]\/j®id]\}'

where ayy - M @ R — M and ay : N ® R — N are the (right) R-actions on M and N

respectively. This leads to the following definition.

Definition 2.1.13. Let R be a commutative monoid in C. A coalgebra (C,A,e) over R

in C, or an R-coalgebra in C, is a comonoid (C,A,¢) in the symmetric monoidal category



(Modgr(C),®pg, R). We denote the category of R-coalgebras by CoAlgr(C). We denote the

category of cocommutative R-coalgebras by CoCAlgp(C).

Remark 2.1.14. Notice that CoAlgr(C) is simply the category CoMon(Modg(C)).

2.2  Definitions and Preliminary Results in Higher Categories

The following definitions and results are generalizations of Section 3.1 of (Lurie, 2018a),
which was focused on the case of Eo-coalgebras. We define and extend the results for coalgebras
over any oc-operad. Let Fin, denote the category of all finite pointed sets, as in (Lurie, 2017,
2.0.0.2, 2.0.0.3). Recall the definition of a coCartesian fibration of simplicial sets in (Lurie,

2009, 2.4.2.1).

Definition 2.2.1 ((Lurie, 2017, 2.0.0.7)). A symmetric monoidal co-category C® is a coCarte-

sian fibration of simplicial sets: p : C® — _#(Fin,), such that, for each n > 0, the maps
n

in p* : (n) — (1) induce a equivalences (pi);_; : G% = HG%. We denote its underlying

=1

oo-category by C which is equivalent to the fiber G%, as in (Lurie, 2017, 2.1.2.20).

The above definition can be generalized, where instead of working with the commutative
operad .4 (Fin,), one can replace it by an cc-operad ©% as in (Lurie, 2017, 2.1.1.10). Then we

define C to be an ©-monoidal co-category as in (Lurie, 2017, 2.1.2.15).

Definition 2.2.2. Let C be an ©O-monoidal co-category. An ©O-coalgebra object in C is an ©O-
algebra object in C°P. The oco-category of ©-coalgebra objects in C is defined as the co-category
CoAlgy(C) := (Algy(COP))°P. More generally, given any map ©'® — OF of oc-operads , we

define the oo-category of ©'-coalgebra in C as CoAl g /o(C) = (ALggr)o(CP))P.



If we pick the associative operad © = A, or the commutative operad © = E,, we have
generalized the definition of coassociative and cocommutative coalgebras in ordinary categories.

See more details in Chapter 3.

Proposition 2.2.3 ((Lurie, 2017, 3.2.4.4)). If C is a symmetric monoidal oco-category and
O is any co-operad, then the co-category ALgq(C) inherits a symmetric monoidal structure,
given by pointwise tensor product. Dually, the co-category CoALgy(C) inherits a symmetric

monotidal structure, given by pointwise tensor product.

Remark 2.2.4. If C is an ©O-monoidal co-category, then C°P can be given an ©-monoidal
structure uniquely up to contractible choice, as in (Lurie, 2017, 2.4.2.7). One can use the work of
(Barwick et al., 2018) to give an explicit choice of the coCartesian fibration for C°P. For instance,
let p: C® — OF be the coCartesian fibration associated to the symmetric monoidal structure
of C. Then straightening of the coCartesian fibration gives a functor F': O — C/)a\too, where
C/)a\too is the oo-category of co-categories, as in (Lurie, 2017, 3.0.0.5). Then, by (Barwick et al.,
2018, 1.5) the functor F also classifies a Cartesian fibration p¥ : (C%®)¥Y — (O®)°P. An explicit
construction is given in (Barwick et al., 2018, 1.7). The opposite map (p¥)°P : ((C%)V)°P — OF
is a coCartesian fibration that is classified by: ©O% AN G/\atoo LN @w. One can check
that the fiber of (p¥)°P over X in © is equivalent to (Cx)°P, and thus gives C°P a ©-monoidal
structure. We see that O-coalgebras are sections of the Cartesian fibration p¥ : C®¥ — (©%)°P

that sends inert morphisms in (O%®)°P to pV-Cartesian morphisms in C%.

Proposition 2.2.5. Let C be a ©O-monoidal co-category and let K be a simplicial set. If,

for each X in O, the fiber Cx admits K-indexed colimits, then the oo-category CoAlgqy(C)
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admits K -indexed colimits, and the forgetful functor U : CoAlgy(C) — C preserves K -indexed

colimits.

Proof. Apply (Lurie, 2017, 3.2.2.5) to the coCartesian (p¥)°P : ((C®)V)°P — ©OF defined in

Remark 2.2.4. O
The following dualizes the result on algebras in (Lurie, 2017, 3.2.3.5).

Proposition 2.2.6. Let O% be an essentially small co-operad. Let C be an O-monoidal oo-
category defined via a coCartesian fibration p : C® — O®. Assume that, for each X in O,
the fiber Cx is presentable. Assume further that p is compatible with small colimits. Then

CoAlgy(C) is a presentable co-category.

Proof. We apply (Lurie, 2009, 5.4.7.11) to the Cartesian fibration p¥ : (C®)Y — ©°P described
in Remark 2.2.4. For any object X in O%, the fiber of p" over X is equivalent to the fiber Cx
of p over X. By (Lurie, 2017, 3.2.3.4), these fibers are accessible and Cx — Cx- are accessible

maps. Thus the induced maps CY;, — CY; are also accessible by (Barwick et al., 2018, 1.3). [

Remark 2.2.7. In general, if C is compactly generated, there is no guarantee that Co Al gy (C)
is compactly generated. However, the fundamental theorem of coalgebras (see (Sweedler, 1969,
I1.2.2.1) or (Getlzer and Goerss, 1999, 1.6)) states that if C is (the nerve of) vector spaces,
or chain complexes over a field, then CoAlg, (C) is compactly generated and the forgetful
functor U : CoAlg, (C) — C preserves and reflects compact objects. From (Addmek and
Porst, 2004, 4.2), if x is an uncountable regular cardinal, we conjecture that the fundamental

theorem of coalgebra can be expended in the following sense. If C is k-compactly generated
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then CoAlgy(C) is k-compactly generated and the forgetful functor preserves and reflects

k-compact objects.

In some cases, the co-category CoAlgo(C) is not mysterious. We recall the following result
from Lurie. Let C be a symmetric monoidal co-category, and denote the oo-category Cgq as
its full subcategory spanned by the dualizable objects, see (Lurie, 2017, 4.6.1). It inherits a
symmetric monoidal structure. For each dualizable object X, we denote XV its dual and this

defines a contravariant endofunctor on Cgy

Proposition 2.2.8 ((Lurie, 2018a, 3.2.4)). Let C be a symmetric monoidal co-category. Then
taking dual objects assigns an equivalence of symmetric monoidal co-categories (Cgg)°P =5 Cyy.
In particular, for any co-operad O, we obtain an equivalence CoALgq(Csq)°® =~ ALgo(Crd) of

symmetric monoidal oco-categories.

One particular choice of co-operad can be the operad of left modules L7711 and right modules
RM, as in (Lurie, 2017, 4.2.1.13, 4.2.1.36). In particular, given C an monoidal oo category, and
A an A -algebra, we denote 41110d(C) the oo-category of left A-modules, instead of L7110od 4(C)

as Lurie does. We similarly denote 110od 4(C) the oo-category of right A-modules.

Definition 2.2.9. Let C be a monoidal co-category. Let C be an A,.-coalgebra in C. Then

define the category of right C-comodules in C as:

CoMod(C) := (Modc(CP))°P.

We define the oco-category of left C-comodules «Colllod(C) similarly.
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2.3 Higher Algebras Enrichment in Higher Coalgebras

Classically, in any presentable symmetric monoidal closed ordinary category, the category of
monoids is enriched, tensored and cotensored in the symmetric monoidal category of comonoids.
This was proven in (Hyland et al., 2017, 5.2) and (Vasilakopoulou, 2019, 2.18). See also the
example of the differential graded case in (Anel and Joyal, 2013). We show here in Theorem
2.3.16 an equivalent statement in oo-categories.

An oo-category shall be defined to be enriched over a symmetric monoidal co-category in
the sense of (Hinich, 2018, 3.1.2), or in the sense of (Gepner and Haugseng, 2015). By (Hinich,
2018, 3.4.4) they are equivalent. An oo-category is tensored or cotensored over a monoidal co-
category in the classical sense of (Lurie, 2017, 4.2.1.19) or (Lurie, 2017, 4.2.1.28) respectively.
Our desired enrichment in Theorem 2.3.16 will also be enriched in the sense of (Lurie, 2017,
4.2.1.28), see Remark 2.3.17 below. It is conjectured in (Gepner and Haugseng, 2015) that the
definitions of enrichment of Lurie and Gepner-Haugseng are equivalent.

Throughout this section, let C be a presentably symmetric monoidal oco-category. It is in
particular closed, and thus the strong symmetric monoidal functor ® : € x ¢ — C induces a
lax symmetric monoidal functor [—, —] : C°? x C — C characterized by the universal mapping
property C(X ® Y, Z) ~ C(X,[Y, Z]), for all X, Y, and Z in C. In other words, the functor
—®Y :C — Cis a left adjoint to [Y,—]: C — C.

Let O be an essentially small oo-operad. From the lax symmetric monoidal structure of

[—,—]: C°P x C — C, we obtain a functor [—, —] : Algo(C°P) X Algy(C) — Algy(C). By
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definition of O-coalgebras, we identify A(gq(C°P) simply as CoAlgo(C)°P, and thus obtain

the following definition.

Definition 2.3.1. Let C and © be as above. We call the induced functor:

[= =] : CoAlgo(C)P X Algo(C) — Algo(C),

the Sweedler cotensor. In the literature, it is sometimes called the convolution algebra or the

convolution product, see (Sweedler, 1969, 4.0) and (Anel and Joyal, 2013).

Remark 2.3.2. The term convolution product stems from the algebra structure that gener-
alizes the usual convolution product in representation theory. See (Hazewinkel et al., 2010,
2.12.3). It also generalizes the classical convolutions of real functions of compact support, see

(Hazewinkel et al., 2010, 2.14.4).

Example 2.3.3. The Sweedler cotensor in the case where © = E,, and C is the oo-category
of R-modules in a symmetric monoidal co-category, where R is an E..-algebra, was presented

in (Lurie, 2018b, Section 1.3.1).

Example 2.3.4. Let I be the unit of the symmetric monoidal structure of C. Let C be any
O-coalgebra, then the Sweedler cotensor [C,1] is simply the linear dual C*, which is always
an O-algebra. Thus the linear dual functor (—)* : C°° — C lifts to the particular Sweedler
cotensor (—)* = [—,1] : CoAlgy(C)°P — Algy(C). Here we recover the classical result that

the dual of a coalgebra is always an algebra, see (Sweedler, 1969, 1.1.1).
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Remark 2.3.5. In a presentably symmetric monoidal co-category C, an object X is dual-
izable precisely if X is equivalent to its linear dual X*. Thus, the above defined functor
(=)* 1 CoAlgy(C)°P — Algy(C) coincides with the equivalence of Proposition 2.2.8 (—)V :

CoALgo(Ceq)® — Algo(Csq), when we restrict (—)* to the subcategory Co AL g (Csq)%P.

Since [—, —] : C°? x C — C is a continuous functor, and limits in Algy(C) are computed
in C, we get that the Sweedler cotensor is a continuous functor. Fix C an ©-coalgebra in C.
Then the continuous functor [C, —] : Algo(C) — Algo(C) is accessible (as filtered colimits
in Algo(C) are computed in C) and is between presentable oco-categories. Therefore, by the
adjoint functor theorem (Lurie, 2009, 5.5.2.9), the functor [C, —] admits a left adjoint denoted

Cr—:Algy(C) = Algy(C).

Definition 2.3.6. Let C and © be as above. We call the induced functor:

—>—:CoAlLYgy(C) X Algoy(C) = Algy(C),

the Sweedler tensor. Previously, it was called the Sweedler product in (Anel and Joyal, 2013)
and later in (Vasilakopoulou, 2019). For C a fixed O-coalgebra, the functor C'>— is left adjoint

to [C, —] and we have in particular the equivalence of spaces:

ﬂ[g@(CD AvB) = ﬂ[g@(A> [07 B])a

for any ©-algebras A and B.
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Example 2.3.7. In (Anel and Joyal, 2013, 3.4.1), an explicit formula of the Sweedler tensor

was given in the discrete differential graded case.

Fix now A an O-algebra in C. The continuous functor [—, A] : (CoALgy(C))® — AlLgy(C)
induces a cocontinuous functor on its opposites [—, A|]°P : CoALgy(C) — (AlLgy(C))°P. The
cocontinuous functor is from a presentable oco-category to an essentially locally small oco-
category: as the opposite of an essentially locally small co-category is also essentially locally
small, and presentable oco-category are always essentially locally small. Thus, by the adjoint
functor theorem (Lurie, 2009, 5.5.2.9, 5.5.2.10), the functor [—, A]°P admits a right adjoint

{—, A} : Algu(C)°P — CoAlgy(C).

Definition 2.3.8. Let C and © be as above. We call the induced functor:

{—= =} Algo(C)® x Algo(C) — CoAlgy(C)

the Sweedler hom. For A and B any O-algebra in C, the O-coalgebra {A, B} is called the
universal measuring coalgebra in C of A and B. See (Sweedler, 1969, 7.0) for the discrete case
in vector spaces. In particular, if we fix A, we obtain that {—, A} is the right adjoint of [—, A]°P

and we have the equivalence of spaces:

CoAlgo(C)(C,{A, B}) ~ Alge(C)(B,[C, A]),

for any O-coalgebra C.
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Example 2.3.9. Let I be the unit of the symmetric monoidal structure of €. Then, for
any ©-algebra A in C, define A° to be the measuring coalgebra {A,I}. It is called the
Sweedler dual or finite dual of the ©O-algebra A in C. In particular, we obtain a functor
(=) ={—-,I}°P: Algoy(C) = CoAlgy(C)°P, which is the left adjoint of the linear dual func-
tor (—)* : CoAlgy(C)P — Algey(C) defined in Example 2.3.4. In particular, we have the
equivalence of spaces: ALgq(C)(A,C*) =~ CoAlgy(C)(C, A°), for any O-coalgebra C' and any
O-algebra A. This was proven in the discrete classical case of vector spaces in (Sweedler, 1969,
6.0.5). By Remark 2.3.5, when the ©-algebra A is dualizable in C, then A° ~ A* as an object

in C.

Example 2.3.10. The origin of the term measure could be due to the following example. Let
X be a compact Hausdorff space. Then the Sweedler dual of the algebra of continuous real
functions Map(X,R) is equivalent to finitely supported measures on X, see (Hazewinkel et al.,

2010, 2.12.10).

We shall explain where the term universal measuring is coming from. Recall that the internal
hom property of C implies that, for any X, Y and Z objects in C, there is an equivalence of
spaces: C(X ®Y,Z) ~ C(Y,[X, Z]). The Sweedler cotensor guarantees conditions for an O-
algebra structure on [X, Z]. The following is a generalization of (Sweedler, 1969, 7.0.1) and

(Anel and Joyal, 2013, 3.3.1).

Definition 2.3.11. Let C and O be as above. Let C' be an O-coalgebra in C, and A and B be
O-algebras in C. Let 1) : C ® A — B be a map in C. We say that (C, 1) measures A to B (or

(C, %) is a measuring of A to B) if the adjoint map A — [C, B] is a map of O-algebras in C.
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We give examples generalized from (Anel and Joyal, 2013).

Example 2.3.12 ((Anel and Joyal, 2013, 3.3.3)). If I is the unit of the symmetric monoidal
structure of C, then a map I® A — B in C is a measuring of A to B if and only if it is a map

in Algo(C).

Example 2.3.13 ((Anel and Joyal, 2013, 3.3.4)). The adjoint of the identity map on [C, A] is
amap C ® [C, A] — A and is always a measuring. In particular, the evaluation C ® C* — [ is

always a measuring of C* to I. Similarly A° ® A — I is a measuring of A to I.

By definition of the Sweedler hom, as we have Co Al g, (C)(C,{A, B}) ~ Alg,(C)(B,[C, 4)]),
we see that the ©-coalgebra { A, B}, together with the natural map {A, B} ® A — B (adjoint of
the identity over { A, B}), is indeed the universal measuring algebra of A to B, in the following
sense. Given any other measuring (C,1) of A to B, there exists a unique (up to contractible

choice) map C' — {A, B} of O-coalgebras in C such that the following diagram commutes in C:

C®A
i ¥

~

{A,B}® A —— B.

Remark 2.3.14. Following (Anel and Joyal, 2013, 3.3.6), we see that, given maps A’ — A
and B — B’ in Algy(C), a map C' — C in CoAlgy(C), together with a map A — [C, B] in
Algo(C), we obtain the following map in Algy(C): A" —— A —— [C,B] —— [C', B'].

This shows that the space of measurings provides a functor:

CoAlLgo(C)® X Algy(C)P x Algy(C) — 8,
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that is representable in each variable with respect to the Sweedler hom, tensor and cotensor.

Let @® be a monoidal co-category. Its reverse, denoted (D®)™ or simply D", is defined
in (Hinich, 2018, 2.13.1). Essentially, @ and D" have the same underlying oo-category but the
tensor X ® Y in D" corresponds precisely to Y ® X in @. Left modules over @ corresponds to
right modules over D"V, If @ is symmetric, then D™ = @ by (Hinich, 2018, 2.13.4). We shall
be interested with the reverse opposite, denoted D"P = (1D°P)"V  of a monoidal co-category D.

The following is a generalization of the discrete ordinary case (Hyland et al., 2017, 5.1).

Lemma 2.3.15. Let C and O be as above. Then the Sweedler cotensor endows the co-category
AlLgo(C) the structure of a right module over the reverse opposite of the (symmetric) monoidal

oo-category CoALgq(C).

Proof. Notice first that C is a right module over its reverse opposite C™P via its internal hom
[—,—] : C°P x C — C, as it is lax symmetric monoidal. Therefore, by Proposition 2.2.3, the
oo-category Algo(C) is a right module over Algy(C™P) via the Sweedler cotensor. Since

ALgo(C™) = ALgo(C), then ALge(C™P) ~ CoAlge(C)©P. 0

Since CoAl gy (C) is a presentably symmetric monoidal co-category, it is enriched over itself
by (Gepner and Haugseng, 2015, 7.4.10). We denote CoALgoy(C)(D, E) the O-coalgebra in C

which classifies coalgebra maps from D to F, characterized by the universal mapping property:

CoAlge(C) (C ® D, E) ~ CoAlge(C) (C, CoAlge(C)(D, E)) .
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Theorem 2.3.16. Let C be a presentably symmetric monoidal co-category. Let © be an essen-
tially small co-operad. The co-category of ©O-algebras AL g (C) is enriched over the symmetric
monoidal co-category CoAl gy (C), via the Sweedler hom. Moreover it is tensored and coten-
sored respectively using the Sweedler tensor and Sweedler cotensor. In particular, we have an

equivalence of O-coalgebras:
Colge(C) (C,{A,B}) ~ {A7 c, B]} ~ {CDA,B},

for any O-coalgebra C' in C and any O-algebras A and B in C.

Proof. By Lemma 2.3.15, the oo-category Algo(C)°P is a left module over the symmetric
monoidal co-category CoAlgqy(C), via [—, —]°P the opposite of the Sweedler cotensor, such
that [—, A]°P : CoAlgo(C) — Algy(C)°P admits a right adjoint {—, A} for all A in AlLgy(C).
By (Hinich, 2018, 6.3.1, 7.2.1) (see also (Gepner and Haugseng, 2015, 7.4.9)) this shows that
AlLgo(C)°P is enriched over CoAlgy(C), with tensor [—, —]°P. Thus, by (Hinich, 2018, 6.2.1),

we get that Algo(C) is enriched over CoAlgy(C), with cotensor [—, —]. O

Remark 2.3.17. We could have applied (Lurie, 2017, 4.2.1.33) in the proof of Theorem 2.3.16
to show that Algy(C) is enriched over CoAlgy(C) in the sense of Lurie, see (Lurie, 2017,
4.2.1.28). It is conjectured that the definitions of enrichment are equivalent in (Gepner and

Haugseng, 2015).
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Remark 2.3.18. The previous theorem shows that we can enrich the equivalence in Example

2.3.9 to an equivalence of ©O-coalgebras in C:

o
)

CoAlge(C) (C, AO) ~ {A, C*} ~ (c > A)

for any ©-coalgebra C' and any ©-algebra A.

A particular consequence of the theorem gives the following adjunction which was shown in

(Anel and Joyal, 2013, 5.3.14) to generalize the algebraic cobar-bar adjunction.

Corollary 2.3.19. Let C be a presentably symmetric monoidal oco-category. Let © be an
essentially small oco-category. Let A be an O-algebra in C. Then there is an adjunction of
enriched co-categories over CoALgq(C):

—>A:CoAlYy(C) L Algo(C) : {A,—}.



CHAPTER 3

THE DWYER-KAN LOCALIZATION OF A MODEL CATEGORY

Let M be a model category and W its morphism class of weak equivalences. Recall that the
homotopy category Ho(M), associated to M, is an ordinary category obtained by inverting all
weak equivalences, and can also be denoted M[W™1], see (Hovey, 1999, 1.2.1, 1.2.10). However,
the higher homotopy information is lost in Ho(M). Dwyer and Kan, in (Dwyer and Kan, 1980),
suggested instead a simplicial category L¥ (M, W) sometimes called the hammock localization of
M, that retains the higher information. We will not define the hammock localization L7 (M, W),
but invite the reader to read the explicit definition in (Dwyer and Kan, 1980, 2.1). The idea
is translated into co-categories by Lurie in (Lurie, 2017) as we see below. Following (Hinich,
2016), we shall prefer the less confusing term of Dwyer-Kan localization instead of underlying

oo-category of a model category, motivated by Remark 3.1.3.

3.1 The General Definition

We first start by some generality.

Definition 3.1.1 ((Lurie, 2017, 1.3.4.1)). Let C be an oco-category and fix a collection ¥/ C
Homgset (AL, C) of morphisms in C. The Dwyer-Kan localization of C with respect to the col-
lection ¥ is an oo-category, denoted C[WW 1], together with a functor f : € — C[W™!] that

respects the following universal property.

21
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(U) For any other co-category @, the functor f induces an equivalence of co-categories:

Fun(ClW™1], D) —— Fun (C, D),

where Fun" (C,D) is the full subcategory of functors C — @ that sends morphisms in

Y to equivalences in @.

The Dywer-Kan localization C[1#~!] always exists, for any choice of € and 1, see (Lurie,
2017, 1.3.4.2), and is unique up to contractible choice. We shall be more interested in the case

when C = .4/ (M) for some model category M.

Definition 3.1.2 ((Lurie, 2017, 1.3.4.15)). Let M be a model category and W its class of weak
equivalences. We call .4 (M)W~!] the Dwyer-Kan localization of M with respect to W as in
Definition 3.1.1, where we abuse notation and let W denote the induced class of morphisms in
N (M).

Notice that the homotopy category of .4 (M)[W™1] is precisely the category Ho(M).

Remark 3.1.3. Since simplicial categories represents co-categories, the hammock localisation
simplicial category L (M, W) is a model for the Dwyer-Kan localization .4 (M)[W~!]. More
presicely, by (Lurie, 2009, 2.2.5.1), there is a Quillen equivalence between the category of
simplicial sets sSet endowed with the Joyal model structure and the category of simplicial

categories sCat endowed with the Bergner model structure:

sSet 1 sCat.
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The functor 91 : sCat — sSet is the homotopy coherent nerve, or the simplicial nerve, as
in (Lurie, 2009, 1.1.5.5). After a fibrant replacement, the functor 9 sends L (M, W) to the

equivalence class of .4 (M)[W~!], as seen in (Hinich, 2016, 1.3.1).

Remark 3.1.4. As noted in (Lurie, 2017, 1.3.4.16), (Hinich, 2016, 1.3.4), and (Dwyer and Kan,
1980, 8.4), if the model category M admits functorial fibrant and cofibrant replacement, in the

sense of (Hovey, 1999, 1.1.1. 1.1.3), then the following co-categories are equivalent:

A (M)W = A (M)W = o (M) W,

where M, C M is the full subcategory of cofibrant objects, and M; C M is the full subcategory

of fibrant objects.

3.2 Symmetric Monoidal Dwyer-Kan Localization

We now construct the symmetric monoidal structure on the Dwyer-Kan localization of a
symmetric monoidal model category M. This is a recollection of Appendix A in (Nikolaus and

Scholze, 2018) and Section 4.1.7 on monoidal model categories in (Lurie, 2017).

Definition 3.2.1 ((Lurie, 2017, 4.1.7.4), (Nikolaus and Scholze, 2018, A.4, A.5)). Let C® be
a symmetric monoidal oo-category. Let #/ C Homgset(Al, C) be a class of edges in C that
is stable under homotopy, composition and contains all equivalences. Suppose further that
® : C x C — C preserves the class ¥ seperately in each variable. The symmetric monoidal

Dywer-Kan localization of C® with respect to i is a symmetric monoidal co-category, denoted
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C[WY%, together with a symmetric monoidal functor i : C® — C[1#~1]® which is characterized

by the following universal property.

(U) For any other symmetric monoidal oo-category D%, the functor i induces an equivalence
of oco-categories:

Fung(C[W1®, 0% = 51(12g(e®, D%,

where Funl (C®, D®) is the full subcategory of symmetric monoidal functors C® — D%

that sends ¥ to equivalences.

As noticed in (Nikolaus and Scholze, 2018, A.5), the underlying co-category of the symmetric
monoidal category C[1~1]® is precisely the Dwyer-Kan localization of C with ¥/ in the sense
of Definition 3.1.1, i.e.:

(G[W*l](@)m ~ C[wY).

Remark 3.2.2. Let C® and 1 be as in Definition 3.2.1. Given the symmetric monoidal
structure C® — 4 (Fin,), products of n edges in ¥’ in C correspond precisely, under the

equivalence:

X1 ~, P&
C™ = Cpy,

to morphisms lying over id(,y in .#"(Fin,). This defines a class of edges #)® C Homgset(A', C%).
Then the Dwyer-Kan localization of C® with respect to 1%, in the sense of Definition 3.1.1,

denoted C® [(W‘g’)_l}, is equivalent to C[(#~1]® defined above.
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We would like to study the case where the underlying oco-category of C® is the Dwyer-
Kan localization .4 (M)[W~1] of a model category M. We first recall the induced symmetric

monoidal structure on the nerve of a symmetric monoidal category.

Definition 3.2.3 ((Lurie, 2017, 2.0.0.1)). Let (C,®,I) be a symmetric monoidal category.

Define a new category C® as follows.
e Objects are sequences (C4,...,C,) where each C; is an object in C, for all 1 <i < n, for
some n > 1. We allow the case n = 0 and thus the empty set () as a sequence.

e A morphism (Cy,...,Cy) — (C},...,Cr,) in C® is a pair (o, {f;}), where a is a map of

finite sets a : (n) — (m) and {f;} is a collection of m-morphisms in C:
fir @ Ci—
ica—1(j)
for all 1 < j <m. If a~'(j) =0, then f; is a morphism I — Cj.
e The composition of morphisms in C® is defined using the compositions in Fin, and C
together with the associativity of the symmetric monoidal structure of C.
e The identity morphism on an object (Cy,...,C,) is given by the identites in Fin, and C:

(|d<n>> {'dC] })

We obtain a functor:

C® — Fin,,
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that sends (Cq,...C,) to (n). The induced functor A4 (C®) — A (Fin,) in oco-categories is

coCartesian and defines a symmetric monoidal structure.

Proposition 3.2.4 ((Lurie, 2017, 2.1.2.21)). Given any symmetric monoidal category (C, ®,1),
let C® be as Definition 3.2.3. Then the nerve A (C®) is a symmetric monoidal co-category

whose underlying co-category is A (C).

Remark 3.2.5. In particular, given (Cy,...,Cy) in C®, and a : (n) — (m) a map in Fin,, the

associated coCartesian lift is induced by defining C]’- as follows:

ci= Q Ci

i€a~1(j)

for each 1 < j < m. Define €} = I if j is such that a~!(j) = 0. This defines a morphism

(Cy,...,Cp) = (C],...,CL) in C® as desired.

If the symmetric monoidal category (C, ®, 1) happens to be endowed with a model structure,
the bifunctor ® : C x C — C need not preserve weak equivalences in either variable. We need

to restrict to the following type of model category.

Definition 3.2.6 ((Hovey, 1999, 4.2.6)). A (symmetric) monoidal model category M is a cat-
egory endowed with both a model structure and a (symmetric) monoidal structure (M, ®,I),
such that the tensor product ® : M x M — M is a Quillen bifunctor (see (Hovey, 1999, 4.2.1)),
and for any cofibrant replacement ¢l — I of the unit, the induced morphism cl® X — I®X =2 X
is a weak equivalence, for any cofibrant object X of M. The latter requirement is automatic if

I is already cofibrant.
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Therefore, in any monoidal model category (M, ®,1I), the tensor ® : M x M — M preserves
weak equivalences in each variable, if we restrict to cofibrant objects M. C M. Moreover. the
tensor product of cofibrant objects is again cofibrant. In model categories, this allows us to
define a derived tensor product for the homotopy category Ho(M) = M[W™1], see (Hovey, 1999,
4.3.2). In higher category, the transition between the tensor product and the derived tensor
product is exactly through the Dwyer-Kan localization of a symmetric monoidal co-category as
in Definition 3.2.1. If we suppose in addition that I is cofibrant, then, as in Definition 3.2.3, we
can define M® C M® from the full subcategory of cofibrant objects M. C M, since (M., ®,1) is

symmetric monoidal.

Proposition 3.2.7 ((Lurie, 2017, 4.1.7.6), (Nikolaus and Scholze, 2018, A.7)). Let (M, ®,1)
be a symmetric monoidal model category. Suppose that 1 is cofibrant. Then the Dwyer-Kan
localization A (M)W~ of M can be given the structure of symmetric monoidal co-category
via the symmetric monoidal Dwyer-Kan localization of A (M%) in the sense of Definition 3.2.1,

N (MZ) —— A (M)W,

[

where W is the class of weak equivalences restricted to cofibrant objects in M.

Remark 3.2.8. The inclusion of cofibrant objects M. C M induces a laz symmetric monoidal
functor A (MZ) — A (M®). From Remark 3.1.4, Proposition 3.2.7 implies we can also
construct a symmetric monoidal co-category A (M)[W~1® whose fiber over (1) is precisely

A (M)W~1]. However, cofibrant replacement induces a functor A4 (M®) — 4 (M)[W~1® that
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is only lax symmetric monoidal and does not share the same properties of universality as in
Definition 3.2.1. We invite the interested reader to look at (Nikolaus and Scholze, 2018, A.7)

for more details.

If Cis a left proper cellular simplicial symmetric monoidal model category, then its category
of symmetric spectra SpZ(C) is also a symmetric monoidal model category, when endowed with
its projective stable model structure, see (Hovey, 2001, 7.3). If C?® is a symmetric monoidal
oo-category, then so is its stabilization Sp(C®). These are compatible with each other with

respect to the symmetric monoidal Dwyer-Kan localization.

Proposition 3.2.9 ((Ando et al., 2018, B.3)). Let C be a left proper cellular simplicial symmet-

ric monoidal model category. Then there is an equivalence of symmetric monoidal co-categories:
_11® _11®
A (p%(C)e) [Wx]® = §p (4 (Co) [W7)

where W denotes the class of weak equivalences in C and Wy are the induced stable weak

equivalences in Sp™(C).

3.3 Weak Monoidal Quillen Equivalence

Given C and D model categories, denote W and Wp their respective class of weak equiva-
lences. Let:

L:C, 1 "D:R,
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be a Quillen adjunction. Then as the left adjoint functor L preserves weak equivalences between
cofibrant objects and the right adjoint functor R preserves weak equivalences between fibrant
objects, we get, by (Hinich, 2016, 1.5.1), a pair of adjoint functors in co-categories between the

Dwyer-Kan localizations of C and D:

where L and R represent the derived functors of L and R. If C and D are symmetric monoidal
model categories, we investigate when the derived functors are symmetric monoidal functors of

oo-categories.

Definition 3.3.1 ((Schwede and Shipley, 2003, 3.6)). Let (C,®,I) and (D, A,J) be symmetric

monoidal model categories. A weak monoidal Quillen pair consists of a Quillen adjunction:

L:(C,®,I) TL” (D.AJ):R,

where L is lax comonoidal such that the following two conditions hold.

(i) For all cofibrant objects X and Y in C, the comonoidal map:

LIX®Y) —— L(X)ANL(YY),

is a weak equivalence in D.
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(ii) For some (hence any) cofibrant replacement \ : ¢l — T in C, the composite map:

is a weak equivalence in D, where the unlabeled map is the natural comonoidal structure

of L.

A weak monoidal Quillen pair is a weak monoidal Quillen equivalence if the underlying Quillen

pair is a Quillen equivalence.

Theorem 3.3.2. Let (C,®,1) and (D, A,J) be symmetric monoidal model categories with cofi-

brant units. Let W and Wp be the classes of weak equivalence in C and D respectively. Let:

L:(C,®.I) L (D,AJ):R,

be a weak monoidal Quillen pair. Then the derived functor of L : C — D induces a symmetric

monoidal functor between the Dwyer-Kan localizations:

where C. C C and D, C D are the full subcategories of cofibrant objects. If L and R form a weak

monoidal Quillen equivalence, then L is a symmetric monoidal equivalence of co-categories.
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Proof. Let C2 and D? be as Definition 3.2.3. Denote the symmetric monoidal Dwyer-Kan

localizations (Definition 3.2.1) by:
ict N(CE) —— N (Co)WC®, ip : N (DE) —— A (Dc)[Wp'1®,
and denote their coCartesian fibrations by:

p: N (C)W'® —— A (Fin,), q: N (D) Wp® —— A (Finy).

The functor L : C — D, as a left Quillen functor, defines .4(C.) — .4#"(D.), and hence a functor

L% 4 (C%) — A4 (D?) that is compatible with the coCartesian structures:

N (C®) L2 y(DP) —2s (Do) W5']®
A (Finy)
We show that the composite:
N (CE) —— N (DZ) —== A (De)Wp']®

is a symmetric monoidal functor that sends W¢ to equivalences, i.e., belongs to the oo-category

gungc (A (CE), # (D) [W5'®), as in Definition 3.2.1. The latter is clear as L is a left Quillen

Cc

functor. We are left to show that the composite sends p-coCartesian lifts to g-coCartesian lifts.

Let (Cy,...,Cy) be an object of C®, and let « : (n) — (m) be a morphism of finite sets. A
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p-lift of (o, (C1,...,Cp)) is given in Remark 3.2.5 by a certain sequence (C},...,C} ) in C%,
i.e., the induced map (Ci,...,Cy) — (C1,...,C},) is sent to « via the coCartesian functor p.

Since L is weak monoidal functor, from (i) of Definition 3.3.1, we get that:

/\ L(C;) «—— L ® Ci | = L(C)),
i€a1(j) ica=1(j)
is a weak equivalence in D, for all 1 < j < m. In the case a~!(j) = (), we apply (ii) of Definition

3.3.1 to obtain a weak equivalence:

Applying the localization ip and Remark 3.2.2, we get that (L(CY),...,L(C},)) defines the
desired g-coCartesian lift.
By the universal property (U) of the symmetric monoidal Dwyer-Kan localization in Defi-

nition 3.2.1, the composite functor ip o L® represents a symmetric monoidal co-functor:

Fiberwise over .4 (Fin,), the functor L% is precisely the product of the derived left adjoint
functor L : A (C.)[W¢'] — A(D)[Wp']. In particular, if L is a Quillen equivalence, then
L is an equivalence of oo-category, and hence L% is an equivalence of symmetric monoidal

oo-categories. ]
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Remark 3.3.3. In (Schwede and Shipley, 2003, 3.12), Schwede and Shipley show that given
a weak monoidal Quillen pair L : (C,®,1I) I (D,A,J) : R, with cofibrant units, then the
right adjoint R induces Quillen equivalences between the category of monoids Mon(D) and
Mon(C), and also their categories of modules. Our Theorem 3.3.2 strenghten the results when
we worked with oco-categories. In particular, given any oc-operad O%, we get an equivalence
of oo-categories Algg (JV(CC)[WEI]) ~ Algo (JV(DC)[Wal]) , which has been challenging to
prove in the case of © = E, in the past, see for instance (Richter and Shipley, 2017) and

(Mandell, 2003, 1.3, 1.4) for © = E.,. We also obtain an equivalence on the coalgebras:

CoAlgg (N (C)WL ') = CoAlge (A (De)Wp']) -

Such a result on coalgebras has been showed to be challenging in model categories, see for

instance (Soré, 2017), (Soré, 2019) and Remark 3.4.3 below.

3.4 The Derived Dold-Kan Equivalence

We now apply our Theorem 3.3.2 to the weak monoidal Quillen equivalence appearing in
(Schwede and Shipley, 2003), all missing details can be found there. Let R be a commutative
discrete ring subsequently. Let sModgr denote the category of simplicial R-modules, and let
Ch%0 denote the category of non-negative chain complexes. The Dold-Kan equivalence says

that the normalization functor:

N : sModp —— Chz’, (3.4.1)
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is an equivalence of categories. Its inverse functor is denoted I : Ch%0 — sModg.

We can endow each category with a model structure. For sModp, the weak equivalences
and fibrations are the underlying weak equivalences and fibrations in simplicial sets, i.e., they
are weak homotopy equivalences and Kan fibrations. In other words, the model structure of
sModp, is right-induced from sSet via the forgetful functor, in the sense of (Hess et al., 2017).
For Ch%o, we use the usual projective model structure. The weak equivalences are the quasi-
isomorphisms, and the fibrations are the positive levelwise epimorphisms. The isomorphism of
categories from (Equation 3.4.1) can be regarded now as two Quillen equivalences, depending

on the choice of left and right adjoints:

I
_
Chz’ - sModp, (3.4.2)
and:
N
_—
sModp L Chzl. (3.4.3)

Both categories can be endowed with their usual symmetric monoidal structure induced by
the tensor product of R-modules. However, the Dold-Kan equivalence (Equation 3.4.1) does
not preserve the monoidal structure. Nonetheless, with respect to the above choice of model

structures, the categories sModgr and Chj%O are both symmetric monoidal model categories
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with cofibrant units. If we choose the normalization functor N to be the right adjoint as in

(Equation 3.4.2), then it can be considered as lax symmetric monoidal via the shuffle map:
V:N(A) @ N(B) — N(A® B).

If we choose N to be the left adjoint as in (Equation 3.4.3), then the Alexander-Whitney formula

gives a lax comonoidal structure:
AW : N(A® B) — N(A) @ N(B),

which is not symmetric. Nevertheless, this shows that both Quillen equivalences form a weak
monoidal Quillen equivalence with cofibrant units, which is symmetric in the case where N
is a right adjoint (Equation 3.4.2). We can therefore apply our Theorem 3.3.2 to obtain the

following.

Corollary 3.4.1 (The Derived Dold-Kan Equivalence). Let R be a commutative discrete ring.
Then the Dwyer-Kan localizations of sModgr and Ch]%b0 are equivalent as symmetric monoidal
0o-categories:

A (aMod) (W3] = (chz?) [wig .

via the right Quillen derived functor of N : sModrp — Chj,z%0 from the Quillen equivalence of

(Equation 3.4.2), where Wa is the class of weak homotopy equivalences between simplicial R-
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modules, and Wyg is the class of quasi-isomorphisms between non-negative chain complexes over

R.
In particular, applying our Remark 3.3.3, we get the following result.

Corollary 3.4.2. For any oo-operad O%, there is an equivalence of co-categories:

Colllge (A (sModp) [W3']) = Cottg (4 (chz’) [Wgl]).

Remark 3.4.3. The above result bypasses a difficulty on the level of model categories and strict
coalgebras. If we choose the second adjunction (Equation 3.4.3) as a weak Quillen monoidal pair,
then the normalization functor, being lax comonoidal, lifts to coalgebras N : CoAlgp (sModr) —
CoAIgR(Chﬁo), but its inverse I', being only lax monoidal, does not lift to coalgebras. Never-
theless, a right adjoint exists on the level of R-coalgebras, either by presentability, or using
dual methods as in section 3.3 of (Schwede and Shipley, 2003). We shall denote it by I'coalg-
Then, using left-induced methods, we can endow model structures such that we get a Quillen

adjunction:

N
CoAlgy, (sModg) 7 L CoAlgp, (Chgo) .

Tconlg
The weak equivalences are the underlying weak equivalences and every object is cofibrant, in
both model categories. However, it was shown in (Soré, 2019, 4.16) that the above Quillen pair
is not a Quillen equivalence, at least when R is a field. It was shown that for a particular choice

of fibrant object C' in CoAIgR(ChEO), the counit N (I'coalg (C)) — C' is not a weak equivalence
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(i.e. not a quasi-isomorphism). This will have a very important consequence for rigidification

results, see Example 4.1.2.

Our approach also gives a new proof of the stable Dold-Kan equivalence. This well-known
result was formalized with oo-categories in (Lurie, 2017, 7.1.2.13) as follows. Let R be a
commutative discrete ring. Then the oo-category of H R-modules Mod R is equivalent to oo-
category of derived R-modules @ (R) as symmetric monoidal oco-categories: Modyr ~ D(R).
However, the equivalence was not described explicitly in Lurie. In (Shipley, 2007, 2.10), Shipley
provided an explicit zig-zag of (weak monoidal) Quillen equivalences between the standard
model category Mod g i of H R-modules in symmetric spectra and the projective model category

of chain complexes over R:

Modgr | L Sp™ (sModg)

H

sp” (Ch7’) L Cha.

Notice that the Dwyer-Kan localizations of Modyr and Chg are precisely the oco-categories
Mod g r and D (R) respectively. If we derive and combine the Quillen functors above, we obtain
an explicit functor of co-categories © : Modyr — D(R). Recall that both sModg and Ch]%O
are left proper cellular symmetric monoidal model categories. Combining Corollary 3.4.1 with

Proposition 3.2.9, and applying Theorem 3.3.2 yields the following.
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Corollary 3.4.4 (The Stable Dold-Kan Equivalence). Let R be a commutative discrete ring.
Then the co-category of HR-modules is equivalent to co-category of derived R-modules as sym-

metric monoidal co-categories via the functor © : Modyr — D(R).



CHAPTER 4

THE RIGIDIFICATION PROBLEM

In this chapter, we want to compare homotopy coherent coalgebras and comodules with their
strict analogue. One one hand, given a nice enough symmetric monoidal model category M,
we can obtain its Dwyer-Kan localization which is a symmetric monoidal co-category. We can
then apply Definitions 2.2.2 and 2.2.9, and define A, or E-coalgebras and their comodules.
Alternatively, we can consider comonoids and comodules in M as in Definitions 2.1.1 and 2.1.8,
and then take their Dwyer-Kan localization as in Definition 3.1.1.

There are classical rigidification results that compare A,.-algebras with their strict asso-
ciative analogue, see (Lurie, 2017, 4.1.8.4). There is also a comparison between the E.,-case
with the commutative case in (Lurie, 2017, 4.5.4.7). However, there is no reason to expect that
these results dualize in general. In particular, if A,.-algebras correspond to strict associative
algebras in a model category M, there is no reason to expect that A,,-coalgebras correspond to

strict coassociative coalgebras in M, see for instance our Example 4.1.2 below.

4.1 Rigidification Properties

Let C be a symmetric monoidal category. Let C® be as in Definition 3.2.3. Let p : C® — A°P
be its associated Grothendieck opfibration (see (Groth, 2015, 4.5)) that determines the monoidal
structure of C, and induces the coCartesian fibration .4 (C®) — 4 (A°P). There is a correspon-

dance between monoids in C and sections of p that sends convex morphisms to p-coCartesian

39
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arrows (see (Groth, 2015, 4.21)). In particular, we obtain the following identification in oco-

categories:

A (Mon(C)) —— Alg, (A(C)).

By using opposite categories, we obtain therefore an identification:
A (CoMon(C)) —— CoAlg,_ (A (C)).

Let M be a symmetric monoidal model category with cofibrant unit. Consider M, C M the
full subcategory of cofibrant objects. Apply the above identification to C = M, to obtain the

following functor in co-categories:
JV(CoMon(MC)> —— CoAlg, (N (M)

Let W be the class of weak equivalences in M. By Proposition 3.2.7, there is a symmetric

monoidal functor A4 (M%) — A4 (M,) [W*1]®, which thus provides a map of oco-categories:
Goﬂngoo(,/V(l\/lc)) —— CoAlyg, (JV(I\/IC) [W_l]) ,
and therefore we obtain a functor of co-categories:

a: ¥ (CoMon(M,)) —— Codlg, (N (M) [W1]).
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Denote Weomon the class of morphisms in CoMon(M,) that are weak equivalences as underling
morphisms in M. Notice that the above functor a sends Wcomon to equivalences. By the
universal property of Dwyer-Kan localizations as in Definition 3.1.1, we obtain the following

natural functor of co-categories:
o s A (CoMon(M.) ) [Weden] —— Colllgy (4 (Mo) W)
Similarly, for the cocommutative case we obtain the natural functor of co-categories:
B4 (CoCMon(Me) ) [Weleyon] —— Colllgr., (4 (Me) W)

Definition 4.1.1. Let M be a symmetric monoidal model category with cofibrant unit. Let «
and § be the functors described above. If « is an equivalence of co-categories, we say that the
model category M (or its Dwyer-Kan localization) satisfies the coassociative rigidification. If
B is an equivalence of co-categories, we say that M (or its Dwyer-Kan localization) satisfies the

cocommutative rigidification.

In general there is no reason to expect that if a model category M respects the associative
rigidification then it also respects the coassociative rigidification, as we see from the following

counter-example.
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Example 4.1.2. We saw in Corollary 3.4.2 that the normalization functor N : sModp — Ch}%0
induces an equivalence between the A,-coalgebras:

Colg,,, (A (sModg) W3']) = Cottg, (A (Ch7’) [Wg|).

But on the level of model categories, we saw that the normalization does not induce a Quillen

equivalence in Remark 3.4.3:

N 4 (CoMon(sModg) ) [W3camen| = 4 (CoMon(Chz") ) [ Wil comon -

Here WA comon © Wa and Wyg comon © Wy denote the subclasses of their respective weak
equivalences between comonoid objects. This shows that either sModg or Ch%0 (or both) does

not satisfy the coassociative rigidification.

Remark 4.1.3. If we inspect the dual case of algebras (Lurie, 2017, 4.1.8.4, 4.5.4.7), we see that
we should have considered the oco-category .4 (CoMon(M)) [WE;Mon] and not the oo-category

A (CoMon(M,)) [Wclon]- There are several issues with that.

e In general, these co-categories are not equivalent unless for instance M admits a functorial
lax comonoidal cofibrant replacement. This means there is a functor ) : M — M, such
that there is a natural map Q(X ®Y) - Q(X)®Q(Y) for any X and Y in M. The main
issue is that in general the functor A4 (M) — A (M®) is only lax symmetric monoidal,

see Remark 3.2.8. Of course, if all objects in M are cofibrant, no such issues appear.
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e There is no good guarantee to have a model structure on CoMon(M) whose weak equiv-
alences are Wcomon, €ven when using the dual methods from Appendix A. Even though
we do not need a model category to define .4 (CoMon(M)) [WgolMon}, this would help
relate if there was some kind of compatibility with M. For instance, if we suppose M is
combinatorial monoidal model category and there exists a model category on comonoids

so that the forgetful-cofree adjunction (Proposition 2.1.5):

U:CoMon(M) L "M:TY,

is a Quillen adjunction, then there exists a functorial cofibrant replacement CoMon(M) —

CoMon(M,) that induces an equivalence of co-categories:

A (CoMon(M.)) [(Wcdon] = 4 (CoMon(M)) [Wclon] -

e In the cases where CoMon(M) does admit a model structure it is in general left-induced
by a model category that is not a monoidal model category. Indeed the lifting often uses

the injective model structures instead of the projective ones.
All the above also applies to the cocommutative case.

For any comonoid C in M that is cofibrant in M, we obtain the natural functor of oo-
categories:

A (CoModc(M.)) [Welyea] —— Colllode (A (M) W),
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just as in the comonoid case. If we further assume that X ® — : M — M preserves all weak

equivalences for any cofibrant object X, we obtain a map of co-categories:

Yo+ A (CoMod(M)) [Wekvieal —— Collode (A (M) [W1])

that factors the above functor, and is defined via the assignement:

X%X%X@Céf@LC,

where X -~ X is a cofibrant replacement of C-comodule X in M.

Definition 4.1.4. Let M be a symmetric monoidal model category as above. Let ¢ be the
functor described above. If v¢ is an equivalence of oco-categories, we say that the model category
M (and its Dwyer-Kan localization) satisfies the rigidification of comodules over C. If y¢ is an
equivalence for all comonoids C' that are cofibrant in M, then we say that M (and its Dwyer-Kan

localization) satisfies the comodular rigidification.

4.2 The Cartesian Case

We provide here a simple case of model categories satisfying the coassociative, cocommu-
tative and comodular rigidification in the sense of Definitions 4.1.1 and 4.1.4. Let (M, X, x) be
a symmetric monoidal model category with respect to its Cartesian monoidal structure. Let
W be the class of weak equivalences in M. Suppose it respects the monoid axiom and that the

terminal object * is cofibrant. Suppose also that M admits a functorial cofibrant replacement.
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Proposition 4.2.1. Let (M, x, ) be as above. Then, M satisfies the coassociative and cocom-

mutative Tigidification, i.e. the following natural maps are equivalences of co-categories:

A (CoMon(M)) [Wetyon] —— CoAlg, (A (M) [WT1]),

A (CoCMon(M)) [Weaemon] —— CoAlgy (A (M) [WTL]),

and all four of the co-categories above are equivalent to the Dwyer-Kan localization A (M) [Wfl] .
Moreover, the model category M also satisfies the comodular rigidification: for any cofibrant ob-

ject X in M, we have the following equivalence of co-categories:

A (CoMod x (M) [Wclyoa] —— Collodx (A (M.) [WTL]),

where both co-categories are equivalent to JV(M/X) [W)_(l]. Here Wx is the class of morphisms

m M over X that are weak equivalences.

Proof. For any Cartesian monoidal co-category C, we have the equivalence:

CoAlg, (C)~CoAlgy (C)~C,

see (Lurie, 2017, 2.4.3.10). Moreover, for any choice of object C' in C, we have:

Gomo&c(e) >~ G/C’:
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see (Beardsley and Péroux, 2019, 3.14). For any Cartesian monoidal (ordinary) category C, we

have the isomorphism of categories:

CoMon(C) = CoCMon(C) = C,

and for any C' in C, we have the isomorphism:

COMde(C) = C/C,

see (Aguiar and Mahajan, 2010, 1.19). Apply Remark 3.1.4 to conclude. O



CHAPTER 5

COALGEBRAS IN SPECTRA

Based on the main result of (Péroux and Shipley, 2019), we prove here (in Corollaries 5.2.3
and 5.2.4) that the monoidal model categories of symmetric spectra (see (Hovey et al., 2000)),
orthogonal spectra (see (Mandell et al., 2001) (Mandell and May, 2002)), I'-spaces (see (Segal,
1974) (Bousfield and Friedlander, 1978)), # -spaces (see (Anderson, 1974)) and S-modules (in
the sense of (Elmendorf et al., 1997)), do not respect the coassociative nor cocommutative rigid-
ification, in the sense of Definition 4.1.1. In other words, the strictly (possibly cocommutative)
coassociative counital coalgebras in these monoidal categories of spectra do not have the correct
homotopy type.

We work with the symmetric monoidal model category of symmetric spectra, denoted Sp™
(see (Hovey et al., 2000)), and claim that similar results can be obtained with the other cate-
gories mentioned above, following (Péroux and Shipley, 2019). Notice that we have the equiv-

alence of oco-categories:

A (SpP) W] = Sp,

where W is the class of stable equivalences of symmetric spectra, and Sp is the co-category of

spectra as in (Lurie, 2017, 1.4.3.1).
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5.1 Model Structures for Coalgebras

Although not necessary to show the non-rigidification, as seen in Remark 4.1.3, we provide
here a model category for coalgebras and cocommutative coalgebra in symmetric spectra. We
shall use the left-induced methods from Appendix A. We follow here the approach of Section
5 of (Hess et al., 2017). In (Hovey et al., 2000, Section 5) there is a simplicial, combinatorial
model structure on Sp” with all objects cofibrant called the (absolute) injective stable model

stucture, see also (Schwede, , Remark I11.4.13). The fibrant objects are the injective Q-spectra.

Proposition 5.1.1 ((Hess et al., 2017, 5.0.1, 5.0.2)). For any S-algebra A in Sp>, there exists
an injective model structure on ModA(SpE) left-induced from the injective stable model structure
on Sp>:
v .
Moda(Sp™) | L ' Sp~,

%
Homg (A,-)

with cofibrations the monomorphisms and weak equivalences the stable equivalences. This model

structure on Mod 4(Sp*) is simplicial and combinatorial.

Let A be a commutative ring spectrum (i.e. a commutative S-algebra). The symmetric
monoidal category (Moda(Sp*), A4, A) is presentable and the smash product A4 preserves
colimits in both variables. Thus we can apply Proposition 2.1.5 and we obtain the (forgetful-
cofree)-adjunction between A-coalgebras and A-modules in Sp>:

CoAlg 4(Sp®) % Mod 4(Sp™).

¢«
Tv
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Proposition 5.1.2. Let A be any commutative S-algebra in symmetric spectra Sp™. There
exists a model structure on A-coalgebras CoAlg 4(Sp™) left-induced by the (forgetful-cofree) ad-
Junction from the injective stable model structure on ModA(SpZ). In particular, the weak equiv-
alences in CoAIgA(SpE) are the underlying stable equivalences, and the cofibrations are the

underlying monomorphisms.

Proof. We mimic the proof of (Hess et al., 2017, Theorem 5.0.3). We apply Proposition A.3.2.
Tensoring with a simplicial set lifts to A-coalgebras. Indeed, let K be a simplicial set and
(C,Ac,ec) be an A-coalgebra. Then the free S-module XK is endowed with a unique (co-
commutative) S-coalgebra structure (XK, Ak, ek), see (Péroux and Shipley, 2019, Lemma
2.4), where the comultiplication Ak is induced by the diagonal K, — K A K and the counit
£k is induced by the non-trivial map K, — S°. Then the tensor K ® C := YK Ns Cis an

A-coalgebra with comultiplication:

AgNAc

Ei_oK Ns C (ETK As ETK) Ns (Cha C)

~ (STK As C) Aa (7K As O),

and counit:

SPK A C ELEG SAg A AL

There is a good cylinder object in sSet given by the factorization:

SIS —— Al =1 —= 5°.
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Since Mod A(SpE) is simplicial, all objects are cofibrant, and that the smash product of an
A-coalgebra with this factorization in sSet lifts to CoAlg4(Sp™), this defines a good cylinder

object in CoAlg 4(Sp™) for any A-coalgebra C:

CHC>—>C®IL>C,

as C ® SY = (, and colimits in CoAlg,(Sp™) are computed in Mod4(Sp®) by Proposition

2.1.3. O

We can also easily extends the results to cocommutative A-coalgebras.

Proposition 5.1.3. Let A be any commutative S-algebra in symmetric spectra Sp>. There ea-
ists a model structure on cocommutative A-coalgebras CoCAIgA(SpE) left-induced by the (forgetful-
cofree) adjunction from the injective stable model structure on I\/IodA(SpE). In particular, the
weak equivalences in CoCAIgA(SpZ) are the underlying stable equivalences, and the cofibrations

are the underlying monomorphisms.

5.2  The Failure of Rigidification

We show here the failure of the rigidification. Let A and B be commutative S-coalgebras.
A map A — B is defined to be a positive flat cofibration of commutative S-algebras if it is a
cofibration in the model category of commutative S-algebras defined in (Shipley, 2004, 3.2) (or
the positive flat stable model structure defined in (Schwede, , I11.6.1)). As noted in (Péroux and
Shipley, 2019, 2.4), every comonoid in (sSet., A, S°) is of the form Y, and the comultiplication

is given by the diagonal Y, — (Y x V), 2 Y, A Y.
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Theorem 5.2.1 ((Péroux and Shipley, 2019, 3.4, 3.6)). Let A be a positive flat cofibrant com-
mutative S-algebra in Sp™. Then, given any counital coassociative A-coalgebra C in Sp™, the

comultiplication is cocommutative and induced by the following epimorphism of A-coalgebras:

ANCy — C,

where A N Cy is given an A-coalgebra structure via the diagonal on the pointed space Cy —

Co N Cy.

Remark 5.2.2. As noted in (Péroux and Shipley, 2019, 3.6), any Es-ring spectrum is equiv-

alent (as an E,.-ring spectrum) to a positive flat cofibrant commutative S-algebra in Sp*.

Let A be any commutative S-algebra. Let CoAlg 4(SpZ) denote the comonoid in the cofibrant
objects of A-modules in Sp™ endowed with the absolute projective stable model structure (as

in (Schwede, , IV.6.1)). There is a natural map of co-categories:

ot N (CoAlg,(SpZ)) W] —— CoAlg, (Moda(Sp)),

where W is the class of stable equivalences between A-coalgebras.

Corollary 5.2.3. Let A be a positive flat cofibrant commutative S-algebra in Sp™. Then the co-

category of A-modules NMod 4(Sp) does not satisfy the coassociative rigidification. In particular,
for A =S we have:

Colg, (Sp) & A (CoAlgs(Sp™)) W]
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Proof. Let (C, A, ¢) be an A-coalgebra in Sp™ that is cofibrant as an A-modules in the (absolute)

projective stable model structure. Suppose the functor:

ot A (CoAlg,(SpZ)) W] —— Coalg, (Moda(Sp)),

is an equivalence of oo-category. By Theorem 5.2.1, we see that o(C) is automatically an Eo-
coalgebra. But there exists A,-coalgebras in &p that are not E-coalgebras. Indeed, take any
compact topological group that is not Abelian (say O(2)), then A A O(2) is an A.-algebra in
Mod A(Sp) that is not commutative and is a compact spectrum. By Spanier-Whitehead duality,

we obtain an A,-coalgebras that is not E, in spectra. O

Similarly, as there are example of E.-coalgebras that are not the diagonal in spectra by

Spaneir-Whitehead duality, we also obtain the following.

Corollary 5.2.4. Let A be a positive flat cofibrant commutative S-algebra in Sp™. Then the
oo-category of A-modules Mod 4(Sp) does not satisfy the cocommutative rigidification. In parti-

cular, for A =S we have:

CoAlgy (Sp) % A (CoCAlgg(Sp™)) [W1].



CHAPTER 6

COMODULES IN CHAIN COMPLEXES

Let Chgr be the category of unbounded chain complexes of R-modules. It is a symmetric
monoidal category (Chg, ®p, R). Subsequently, we may write ®p simply as ®. A differentially
graded coalgebra is a comonoid in Chy. We show, in Theorem 6.3.3, that when R is a finite
product of fields, the projective model structure on non-negative chain complexes Ch]%0 satisfies
the comodular rigidification when it is over a simply connected differentially graded coalgebra.
We also show in Theorem 6.4.7 that Chp satisfies the rigidification for any comodules over a
differentially graded coalgebra that is perfect as a chain complex.

We saw in Example 4.1.2 that the rigidification of coassociative coalgebras in non-negative
chain complexes Ch]%0 over a commutative ring R might not be satisfied (when we endow it
with the projective model structure). Therefore our results in this chapter show that comodules

are less pathological than coalgebras in chain complexes.

6.1 Barr-Beck-Lurie Comonadicity Theorem

We invite the reader to look at the definition in oco-categories of monadic in (Lurie, 2017,
4.7.3.4). A functor C — D of oco-categories will be called comonadic if its opposite C°P — DOP is
monadic. More precisely, a left adjoint functor ¢ — @ in co-categories exhibits C as comonadic

over @ if C is equivalent to coalgebras over the comonad over @ determined by the adjunction.

53
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We recall a necessary and sufficent condition for a left adjoint functor to be comonadic.
This is analogue to the situation in ordinary categories where a left adjoint L is comonadic
if and only it preserves L-split equalizers. The oco-categorical notion of L-split coaugmented

cosimplical objects is entirely dual to the simplicial analogue described in (Lurie, 2017, 4.7.2.2).

Theorem 6.1.1 ((Lurie, 2017, 4.7.3.5) Barr-Beck-Lurie Comonadicity Theorem). A functor
F : C — D in oo-categories exhibits C as comonadic over D if and only if it admits a right

adjoint, is conservative, and preserves all limits of F-split coaugmented cosimplicial objects.

Theorem 6.1.2 ((Lurie, 2017, 4.7.3.16)). A functor V. : C — C’ is an equivalence of oo-
categories if there is a left adjoint functor F' : C' — @ such that F' and F' oV ezhibit both
C and C" as comonadic over @ over the same comonad. More precisely, given the following

diagram of co-categories where V. commutes with the left adjoints:

C

F
<
G
1% D
F/
>
G/

| 57

G/
the functor V : C — C' is an equivalence of oo-categories if:

o the functor F': C — D exhibits C as comonadic over @;
e the functor F' : C' — D exhibits C' as comonadic over D;

e the canonical map (F o G) — (F' o G') is an equivalence of functors.
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Proposition 6.1.3 ((Lurie, 2017, 4.7.2.5)). Let C be a monoidal co-category. Given any
Aso-coalgebra C in C, the forgetful functor exhibits the oo-category of (right) C-comodule
CoMod(C) as comonadic over C.

The following argument appeared in the proof of Theorem 0.3 in (Heuts, 2018). Given a

L:C L

pair of adjoint functors D : R, we define the canonical RL-resolution which is

the following L-split coaugmented cosimplicial object in C, induced by the comonad LR on D:

X —— RL(X) == RLRL(X) &= RLRLRL(X)--- .

We shall denote the L-split coaugmented cosimplicial object by X — RL**1(X).

L

Proposition 6.1.4. Given a pair of adjoint functors L : C

D : R inoo-categories, such
that L is conservative. Then L is comonadic if and only if the map X — (imK (RL*T1 (X)) is

an equivalence for all objects X in C.

Proof. We show the sufficient condition. Let X! — X*® be an L-split cosimplicial object of C.

We have the following square:

X1 fimg(X')

| !

Cim} (RL*TY(X 1)) —— timS o (RL*TH(X®)).

The vertical maps are equivalences by assumption. The bottom horizontal map is an equiv-
alence as X~' — X*® is L-split. Indeed, we have L(X~!) ~ (imXL(X*), and since R pre-

serves limits, we get RL(X~') ~ (im§RL(X*). Since the coaugmented cosimplicial object
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RL(X~') — RL(X*) remains L-split, we can reiterate our argument and thus show that the
bottom horizontal map is an equivalence in C. Therefore the top horizontal map is an equiva-

lence, as desired. ]

6.2 Model Category for Comodules

Recall there exist two model categories on chain complexes. The first one is called the projec-

tive model structure, denoted (Chpg) where its weak equivalences are the quasi-isomorphisms

proj’
and the fibrations are the levelwise epimorphisms. All objects are fibrant. It is cofibrantly gen-
erated by a pair of sets, see (Hovey, 1999, 2.3.11). It is a symmetric monoidal model category.

The second one is called the injective model structure, denoted (Chpg). ., where its weak equiv-

inj>
alences are the quasi-isomorphisms and the cofibrations are the levelwise monomorphisms. All
objects are cofibrant. It is cofibrantly generated, see (Hovey, 1999, 2.3.13). It is not in general a
monoidal model category. The identity functor on Chg gives the following Quillen equivalences:
(ChR)proj « L (ChR)iy -

We shall also be interested in the particular case where R = k is a finite product of fields.
It is a commutative ring k such that it is a product in commutative rings: k = k; x - -+ x ky,
where each k; is a field, for some 1 < n < oo. In the literature, such rings are referred
as commutative semisimple Artinian rings. For instance, if the integer n is the product of
distinct prime numbers py - - - py,, then the commutative ring Z/nZ is a finite product of fields.
In the case where k is a finite product of fields, then the model structures above are equal:

(Chk)proj = (Chk)inj' In particular, its fibrations and cofibrations are levelwise epimorphisms

and monomorphisms respectively. All objects are cofibrant and fibrant. If we restrict to the



o7

full subcategory Ch]f0 C Chg of non-negative chain complexes, we obtain a model category
for Chlf0 where the weak-equivalences are the quasi-isomorphisms, the fibrations are positive
levelwise epimorphisms, and the cofibrations are levelwise monomorphisms. In fact, this model
structure is left-induced from the adjunction Chﬂ§0 E Chg, where the right adjoint is the
O-th truncation functor 7>¢ : Chy — Ch]fO defined in (Weibel, 1994, 1.2.7).

A differentially graded R-coalgebra is a comonoid in Chg. Let us describe model structures

for right comodules over a differentially graded R-coalgebra.

Proposition 6.2.1 ((Hess et al., 2017, 6.3.7)). Let R be any commutative ring. Let C be
a differentially graded R-coalgebra. Then the category of right C-comodules in Chr admits a
model structure left induced from the injective model structure (ChR)inj, via the forgetful-cofree

adjunction:

U
CoMod¢(Chpg) 1 Chg.
-C

In particular U preserves and reflects cofibrations and weak equivalences.

Definition 6.2.2. We denote (CoMod¢ (Chg))inj the model structure constructed in Proposition

6.2.1 and call it the injective model structure on the category of right C-comodules in Chg.

In general, it is not possible to induce a model structure on CoModc(Chg) from the pro-
jective model structure on chain complexes unless R is a finite product of fields. However, we
shall see in Proposition 6.4.9 it is possible to induce a model structure for certain choices of

differential graded coalgebras.

Proposition 6.2.3. The injective model structure (CoModc(Chg))... is combinatorial.

inj
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Proof. Apply Proposition A.3.3. O
We can adapt the arguments to the non-negative case.

Proposition 6.2.4. Let k be a finite product of fields. Let C' be a non-negative differentially
graded R-coalgebra. Then the category of right C-comodules in Ch]f0 admits a combinatorial

model category left induced from the forgetful-cofree adjunction:

U
CoModo(ChZ®) 1T ChZ®
-®C

In particular U preserves and reflects cofibrations and weak equivalences.

Notice that CoModc(ChﬂfO) is enriched, tensored and cotensored over Chfo, the tensor
product Ch=" x CoModc(Ch=") -25 CoMod(Ch=") is given by (M, X) — M ® X where the
right C-coaction is induced on X. It is then elementary to show that CoModC(Chﬂ%o) is a
(Chfo)—model category in the sense of (Hovey, 1999, 4.2.18). In particular, this shows that

CoModc(Cth) is a simplicial model category.

6.3 The Simply Connected Case

We state and show here our main Theorem. We shall make use of the result in the appen-

dices, in particular we shall need Corollary B.3.15. We first start by a definition.

Definition 6.3.1. Let R be any commutative ring. A differentially graded R-coalgebra C' is

1-connected or simply connected if: Co = R, C7 =0 and C; = 0 for all i < 0.
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Remark 6.3.2. Any simply connected differentially graded R-coalgebra C' is naturally coaug-
mented, i.e., there is a map of coalgebras n : R — C which is trivial in every non-zero degree,

and in degree zero is the identity idg.

Theorem 6.3.3. Let k be a finite product of fields. Let C be a simply connected differentially
graded k-coalgebra. Then Chﬂ%O satisfies the rigidification of comodules over C: we have the

following equivalence of co-categories: N (CoModc(Cth)) [W_l] ~ CoMod ¢ (CDZO(k)).

The canonical ((— ® C') o U)-resolution is the following U-split coaugmented cosimplicial

object in CoModc(Cth):

X — U(X)®CEU(U(X)®C)®C§

We shall denote it simply by X — Q*(X,C,C) and refer to it as the cobar resolution of the
C-comodules X. Since CoModc(Ch]EO) is a simplicial model category, homotopy limits over
cosimplicial diagrams are computed as in (Hirschhorn, 2003, 18.1.8). We denote the homotopy
limit of the cosimplicial diagram Q°*(X,C,C) in Col\/lodc(Ch]fO) by Q(X,C,C). Notice that
each object in the cosimplicial diagram Q°®(X, C, C) is a right cofree C-comodule, hence fibrant.

Thus Q(X,C,C) is a fibrant right C-comodule by (Hirschhorn, 2003, 18.5.2).

Remark 6.3.4. We warn the reader that in the literature Q(X,C,C) denotes the homotopy
limit in ChfO (which is obviously quasi-isomorphic to X since Q°*(X,C, C) is U-split) and not

in CoModC(Chﬂfo). But as we will show in Lemma 6.3.6, this distinction won’t matter.
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Lemma 6.3.5. Let k be a finite product of fields. Let C' be a simply connected differentially
graded k-coalgebra. Let X = M ® C be a cofree right C'-comodule. Then the cobar resolution of

X induces a weak equivalence X — Q(X,C,C) in Col\/lodC(Ch]fO), i.e., a quasi-isomorphism.

Proof. Regard C' as a right C-comodule via its comultiplication A : C' — C'® C. Then the

coaugmented cosimplicial diagram C — Q*(C,C,C) in CoModC(Chfo):

C —— 092 o ——

splits in the Dwyer-Kan localization .4 (CoModc(CthO)) [W_l] via the map of C-comodules
e®idc : C®% = C, where ¢ : C — SV is the counit of C.

As we are working over a finite product of fields, tensoring with a chain complex M pre-
serves monomorphisms and quasi-isomorphisms, hence the functor M® : CoModc(Cth) —
CoModC(Cth) is left Quillen, and thus induces a derived functor on the Dwyer-Kan localiza-

. >0 1 >0 1 .
tions M @ — : AN (CoModc(Chﬂg )) (W — (CoModC(Chu; )) [W™!], thus it preserves
split cosimplicial objects. From the isomorphism of cosimplicial diagrams: M @ Q°*(C,C,C) =

Q*(M®C,C,C), we get the quasi-isomorphism M @C ~ MQ(C,C,C) ~ QMxC,C,C). O

Lemma 6.3.6. Let k be a finite product of fields. Let C' be a simply connected differentially
graded k-coalgebra. Let X be any right C'-comodule in Chﬂfo. Then the cobar resolution of X

induces a weak equivalence X —» QX,C,C) in CoModC(ChﬂfO), i.e., 18 a quasi-isomorphism.

Proof. We make use of Corollary B.3.15 and Definition B.3.16. Let {X(n)} be the Postnikov

tower of X, and denote by X the (homotopy) limit of the tower in CoModC(Chfo). Then the
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acyclic cofibration X < X induces an objectwise weak equivalence Q*(X,C,C) — Q'()? ,C,C)
between objectwise fibrant cosimplicial diagrams. Thus Q(X,C,C) — Q(X,C,C) is a weak
equivalence by (Hirschhorn, 2003, 18.5.3). Therefore it suffices to show that X - Q()N(, C,0)
is a weak equivalence.

Since the Postnikov tower {X(n)} stabilizes in each degree, we have the weak equivalence
U(holim$ X (n)) = holim, U(X (n)). Since the functor — ® C : ChZ" — CoMod¢(ChZ?) is right
Quillen, we also obtain the weak equivalence (U (holimS X (n))) ® C' ~ holim$ (U (X (n)) ® C).
Notice that the tower {U (X(n) e C } also stabilizes in each degree by Lemma B.3.5. The
maps in that tower are fibrations in CoModC(Cth) and in Chfo. Thus the homotopy limit can

also be computed in Ch]fo. Therefore:
Q(X,C, C) =~ holimC (Q(X(n),c, C)).

Hence it is enough to show that for all n > 0, the canonical maps X (n) — Q(X(n),C,C) are
weak equivalences in Col\/lodc(Ch]fO), i.e., quasi-isomorphisms.

We shall prove it inductively. For n = 0, we have X (0) = 0 and the map is trivial and
hence a quasi-isomorphims. For n = 1, we know that X (1) is a cofree right C-comodule, and

hence, by Lemma 6.3.5, we have X (1) — Q(X(1),C,C) is a quasi-isomorphism. Suppose now
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that we have shown X(n) — Q(X(n),C,C) is a quasi-isomorphism for some n > 1. Then by

construction, the comodule X (n + 1) is the following homotopy pullback in CoModC(Cth):

X(n+1) — DY(V)®C

_I

X(n) —— S™(V) & C.
By (Hirschhorn, 2003, 18.5.2), it induces a homotopy pullback in CoModc(Cth):

AX(n+1),C,C) — QD (V) C,C,C)
L l
QX (n),C,C) —— QS™(V)® C,C,0).
Since X (n), S™(V) ® C and D™"(V) ® C are weakly equivalent to their respective homotopy
limit of their cobar cosimplicial resolution, either by induction or by Lemma 6.3.5, we get then
that X(n+1) - Q(X(n+1),C,C) is a weak equivalence since homotopy pullbacks preserve

weak equivalences. O

Proof of Theorem 6.3.3. Since the forgetful functor U : CoModC(Cth) — Chﬂf0 preserves and
reflects weak equivalences by definition of the model structures, we immediately get that the left
Quillen derived functor JV(CoModC(Chfo)) (W™ — D=9(k) is conservative. By (Lurie, 2017,
1.3.4.23, 1.3.4.25), homotopy limits over cosimplicial diagrams in CoModC(Chfo) correspond
exactly to limits over cosimplicial diagrams in the oco-categorical sense. Hence the left Quillen

derived forgetful functor is comonadic by Lemma 6.3.6 and Proposition 6.1.4. We can conclude
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by Theorem 6.1.2 as Proposition 6.1.3 shows that Colodc(D=%(k)) is also comonadic over the

same comonad — ® C : D20 (k) — D=0(k). O

6.4 The Perfect Case

We let R be any commutative ring. In general, we have the forgetful-cofree adjunction:

COMOdc(ChR) ChR.

1
%
-®C

We are interested here to investigate when the forgetful functor U is a right adjoint. We begin
by recalling the following classical results.

Definition 6.4.1. A chain complex X in Chpg is said to be flat over R if the induced functor
— ® X : Chg — Chpg preserves monomorphisms. In other words, the chain complex X is flat if

it is a chain complex of flat R-modules.
The next lemma is a classical result.
Lemma 6.4.2. Let X be any chain complex over R. The following are equivalent.

(i) The functor —® X : Chr — Chpg preserves equalizers (i.e. is left exact).

(ii) The chain complex X is flat over R.

We obtain the following result since CoMod(Chp) is the category of coalgebras over the

comonad — ® C' : Chg — Chg.

Lemma 6.4.3. Let C be any differentially graded coalgebra over R. The following are equiva-

lent:
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(1) The forgetful functor U : CoModc(Chgr) — Chpr preserves equalizers.

(ii) The chain complex C is flat over R.

Similarly we have the following result, perhaps less well known.

Lemma 6.4.4. Let X be a chain complex over R. The following are equivalent.

(1) The functor — @ X : Chr — Chpg preserves infinite product.

(ii) X is a bounded chain complex of finitely presented R-modules.

Proof. This follows directly from the fact that, for any R module M, the functor — ® M in
R-modules preserves infinite products if and only if M is finitely presented as an R-module (see

(Brzezinski and Wisbauer, 2003, 40.17)). O

Definition 6.4.5. A perfect chain complex in Chg is a bounded chain complex of finitely

generated projective R-modules.

Lemma 6.4.6. Let C be any differentially graded coalgebra over R. Then the following are

equivalent.

(i) The forgetful functor U : CoModc(Chg) — Chg is a right adjoint.

(ii) The coalgebra C' is a perfect chain complez.

Proof. This is a combination of the previous lemmas. Notice that any flat bounded chain

complex of finitely presented R-modules is precisely a perfect chain complex over R. O
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Theorem 6.4.7. Let R be any commutative ring. Let C' be a differentially graded-R coalgebra
that is a perfect as a chain complex. Then the projective model structure on Chpg satisfies
the rigidification of comodules over C. In particular, we obtain the following equivalence of
00-categories:

JV(CoModC(ChR)> (W] =~ Collodc(D(R)),

where W is the class of quasi-isomorphisms between C-comodules in Chg.
We shall prove the theorem later in the section. We first make the following observation.

Remark 6.4.8. The result of Theorem 6.4.7 is perhaps not surprising as we have the following.
For any chain complex X in Chg, let us denote X* = Homcp, (X, R) its linear dual. For any
differentially graded coalgebra C' in Chp, we have a faithful functor towards the category of left
C*-modules:

CoModc(Chg) —— ¢+Mod(Chg).

Indeed, to any right C-comodule p: X — X ® C, we associate a left C*-modules by:

id *®P
_ido+®p

C*® X C*® X @C &alaton po x ~ x,

One can easily check that the functor is an equivalence of categories whenever C' is a per-
fect chain complex. Therefore, rigidification of C-comodules is somewhat equivalent to the

rigidification of C*-modules, which is already known.
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From the identification of right C-comodule with left C*-modules, we can view the dif-
ferentially graded algebra C* as a right C'-comodule. Then since the free module functor
—®C* : Chg — ¢+-Mod(Chg) is the left adjoint of the forgetful functor U : ¢=Mod(Chg) — Chg,
it is also the left adjoint of the forgetful functor on comodules U : CoModc(Chgr) — Chg. In

particular we get the following result.

Proposition 6.4.9. Let R be any commutative ring. Let C' be a differentially graded coalgebra
over R such that it is a perfect chain complex. Then the category of right C'-comodules in

Chg admits model categories right induced from the projective model structure (Chg) via the

proj’
free-forgetful adjunction:

ChR 1 COMOdc(ChR>,

were C* is regarded as a right C'-comodule. In particular, the weak equivalences and fibrations
in CoModc(Chg) are precisely the underlying quasi-isomorphisms and projective fibrations. The
generating cofibrations and acyclic cofibrations are the sets {S™ @ C* — D"*!' @ C*},cz and

{0 = D™ ® C*},,ez respectively, and the model category is combinatorial.

Proof. Recall that both categories are presentable (see Proposition 2.1.11). The projective

model structure (Chg),_.: is cofibrantly generated by the pair of sets I = {S™ — D"1}

proj
and J = {0 — D"},cz. Thus the sets I ® C* and J ® C* permit the small object argument.

The functor U takes relative (J ® C*)-cell complexes to weak equivalences as U preserves all

colimits. We conclude by (Hirschhorn, 2003, 11.3.2). O
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Definition 6.4.10. We denote (CoModc(Chpg))proj the model structure constructed in Propo-

sition 6.4.9 and call it the projective model structure on the category of right C-comodules in

Chg.

Proposition 6.4.11. Let R be any commutative ring. Let C' be a differentially graded R-
coalgebra that is perfect as a chain complex. Then the projective and injective model structures

are Quillen equivalent:
(COMOdC(ChR))proj A L (COMOdC(ChR))inJ‘

Proof. The generating projective acyclic cofibrations 0 «— D™ ®@ C* are clearly injective acyclic
cofibrations, i.e. are levelwise monomorphisms and quasi-isomorphisms. Let X — Y be an
injective fibration of right C'-comodules. Then in the diagram:
00— X
D" C* —— Y.

there is always a lift D" ® C* — X as 0 — D™ ® C* is also an injective acyclic cofibration. [

Proof of Thoerem 6.4.7. We apply Theorem 6.1.2. Since C' is a perfect chain complex, it is

cofibrant in the projective model structure of Chr. Thus the natural functor:

o JV(CoModc(ChR)) (W] —— Collodo(D(R)),
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induces an obvious equivalence of the comonads — ® C' : D(R) — D(R). We are only left to

show that the (derived) forgetful functor:
,/V(chodc(ChR)) W] —— D(R),

exhibits the Dwyer-Kan localization as comonadic over D (R). This follows directly from (Lurie,
2017, 1.3.4.23, 1.3.4.25) and the fact that U : (CoModc(Chg))proj = (Chg)proj is a right Quillen

functor and thus preserves all homotopy limits. O

We shall show in Theorem B.4.1 that (CoMod¢c(Chg))inj also admits a Postnikov presentation
and therefore allows also inductive arguments to compute limits in Colllod (D (R)) whenevever

C is a perfect chain complex.

Remark 6.4.12. Our argument in Theorem 6.4.7 can be generalized to any closed symmetric
monoidal combinatorial model category (M, ®,1). A sufficient condition on an object X such
that the functor — ® X : M — M preserves all limits is to require the object X to be strong
dualizable in the monoidal category (see (Dold and Puppe, 1980, 1.2) for a definition). In that
case, just as in Proposition 6.4.9, we can right induced a model category from M to the category
of right C-comodule in M, if C is a strong dualizable object in M. Then, just as in Theorem

6.4.7, we obtain:

A (CoModc(M) ) [Weled] = CotTlode (1 (M) W),
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for any coalgebra C' in M that is strong dualizable. When M = Chpg, a chain complex is strong
dualizable if and only if it is a perfect chain complex (see (Dold and Puppe, 1980, 1.6)). In
practice though, strong dualizable objects are rare in non algebraic context. For instance, a free
pointed space X is strong dualizable in Top,, the category of pointed spaces together with the
smash product, if and only if X = *. Therefore, the category CoModx (Top,) is isomorphic to
Top, and the case is vacuous. We can argue similarly that, in symmetric spectra, the symmetric

spectrum XX is strong dualizable if and only if X is a point.



CHAPTER 7

DERIVED COTENSOR OF COMODULES

We saw in Theorem 6.3.3 that there is a correspondance between (left or) right strict C-
comodules and (left or) right homotopically coherent C-comodules in non-differentially graded
context, over a finite product of fields, whenever C' is simply connected. We show here, in
Theorem 7.5.2, that we can also lift a symmetric monoidal structure via the cotensor product
of comodules. This shows that the co-category of comodules over a simply connected coalgebra
in connective Hk-modules is endowed with a symmetric monoidal structure given by the derived
cotensor product, which is equivalent to the cobar resolution.

Throughout this chapter, let k be a finite product of fields and let C be a simply connected
differentially graded k-coalgebra. We shall always assume C to be cocommutative so that
CoMod(D="(k)) represents both left and right C-comodules. All the results in this chapter
would remain true if we consider the oco-category of bicomodules over a non-cocommutative
C, but we choose C to be cocommutative for simplicity. We shall write CoMod¢ instead of

CoModC(Cth) and Colllod instead of Colllod (D=0 (k)).

7.1 Definition and Properties

We begin by introducing the main construction of this chapter which is the cotensor product

of C-comodules.

70
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Definition 7.1.1. Let X and Y be C-comodules in Chfo. Define their cotensor product XUOcY

to be the following equalizer in Chfo:
XOgYy — XY — =X X0QKY,

where the two parallel morphisms are induced by the coactions X - X ® Cand Y - C®Y.
Lemma 7.1.2. The cotensor XO¢Y is endowed with a C-comodule structure.

Proof. Since — ® C' : Ch]f0 — Ch]f0 preserves equalizers, we obtain the following dashed map

below by universality of equalizers:

XOgY ——— s XY /< XelRY

! !

(XOcY)0C — XY (C —= XlCY (.
We can check easily that the map is a coaction of a C-comodule. O

Lemma 7.1.3 ((Eilenberg and Moore, 1966, 2.2)). For any C-comodule X, we have XOcC =

X ~C00cX.

Lemma 7.1.4 ((Eilenberg and Moore, 1966, 2.1)). Let M be a non-negative chain complez.
Then for any cofree comodule M @ C' we have: (M @ C)OcX 2 M ® X and XOc(C @ M) =

X®M.

Proposition 7.1.5. The cotensor product defines a symmetric monoidal structure on C-comodules

and we shall denote it (CoMod¢, O¢, C).
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Proposition 7.1.6. Let X be a C-comodule. Then XUOgc— : CoModc — CoMod¢g is a left

exact functor that preserves finite limits and filtered colimits.

Proof. This follows directly from the fact that, when over a finite product of fields, any chain
complex M induces a functor M ® — : Ch]f0 — ChH?0 that preserves finite limits and all colimits.
The cotensor product preserves filtered colimits as equalizers in presentable categories commute

with filtered colimits. O

Remark 7.1.7. For a general C-comodule X, there is no reason to expect that the functor
XOg— : CoMode — CoModc¢ is a left nor a right adjoint. We shall see in Propositions 7.3.2
and 7.3.7 that when X is fibrant, then XUgc— is a left adjoint. So up to weak equivalence,
we can always have XOc— being a left adjoint. In (Takeuchi, 1977), the author introduced
the notion of quasi-finite C-comodules. Essentially, a C-comodule X is quasi-finite if and only
if XOg— is a right adjoint. However, it is easy to see that a C-comodule X is not weakly
equivalent to a quasi-finite one. For instance, if we choose C = k, then X is quasi-finite if and

only if X is a perfect chain complex.

In order to produce a derived cotensor product of C-comodule, we shall show that the
cotensor product almost defines a co-monoidal model category. Indeed, we will prove that when
X is a fibrant C-comodule, then Xo— : CoModc — CoMod( is a functor that preserves fibrant
objects (Proposition 7.5.1) and weak equivalences (Corollary 7.4.2). It won’t be a co-monoidal

model category as X[Jo— does not preserves all fibrations, see Remark 7.5.3. Surprisingly,
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when X is fibrant, we will have XUOc— is a left Quillen functor (Corollary 7.4.3) but this fact
alone won’t allow us to derive it.

One core issue with the cotensor product is that it does not behave well with non-finite
limits. However, the key point in this chapter is that the cotensor product does behave well

with respect to Postnikov towers.

Lemma 7.1.8. Let {X (n)} be a Postnikov tower of a C-comodule X . LetY be any C-comodule.
Then {X (n)OcY'} stabilizes in each degree and (IimS X (n))OcY = lim$ (X (n)OcY). In par-
ticular, if we denote X the limit of {X(n)}, then the Postnikov tower of XY is given by

{X(n)OcY).

Proof. Equalizers of towers that stabilize in each degree also stabilize in each degree. Then the

result follows from Lemma B.3.5. O]

7.2 The CoTor Functor

The category of C-comodules CoMod¢ is (Grothendieck) Abelian and has enough injective
objects. More specifically, any injective chain complex M in Chﬂ§0 induces an injective C-
comodule M ® C, and thus we easily see that any C-comodule X can be embedded into
an injective C-comodule. Thus we can derive the cotensor product in the sense of Abelian

categories.

Remark 7.2.1. Notice that a C-comodule is injective if and only if it acyclic fibrant in CoModc.

We precisely used the fact that CoMod¢ has enough injective objects in Lemma B.3.7.
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Definition 7.2.2. The functor XOg— : CoModc — CoMod¢ is left exact by Proposition 7.1.6,
for any C-comodule X. Define CoTor%(X7 —) : CoMod¢ — CoMod¢ to be the i-th right derived
functor of XUg—, for ¢ > 0. More specifically, given an injective resolution of a C-comodule
Y:

0 Y 1° I

then CoTor,(X,Y) is given by the i-th cohomology H(XOcI®).

As usual, we have that CoTord(X,Y) = XO¢Y for any comodules X and Y. If Y is an
injective C-comodule, then CoTors(X,Y) = 0 for any comodule X and i > 0.
Following (Eilenberg and Moore, 1966) and (Ravenel, 1986), we shall not use injective

resolutions but relative injective resolutions to compute CoTor.

Definition 7.2.3 ((Ravenel, 1986, A1.2.7, A1.2.10)). A relative injective C-comodule is the
direct summand of a cofree C-comodule. A resolution by relative injectives of a C-comodule Y

is a long exact sequence in CoMod¢:

in which each J? is a relatively injective C-comodule and the images of the maps J* — Ji*! is

) . >
a direct summand in Chﬂgo.
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Proposition 7.2.4 ((Ravenel, 1986, A1.2.4, A1.2.8)). Given a resolution by relative injectives
Y — J® for a C-comodule Y, then for any C-comodule X, CoTori:(X,Y) is given precisely by

the cohomology of the induced cochain complex:

0 —— XOcJ° — XOgJb —— -

We shall now show that the cobar resolution induces a resolution by relative injectives.
Recall from previous chapter that the cobar resolution of a C-comodule Y is the cosimplicial

object Q°*(C,C,Y) in CoMod¢ defined as:

CRY == oY £ -,

where the first coface maps are given by the coaction Y — C' ® Y and the other cofaces maps
are induced by the comultiplication C' = C ® C'. The codegeneracies are induced by the counit
e:C =k

Given any Abelian category M, recall that the conormalization functor provides an equiva-
lence of categories N® : M2 = CoCh=%(M), between cosimplicial objects in M and non-negative
cochain complexes of M. Given ® a cosimplicial object in M, we have that N*(®) is given by

®0 if 4 = 0, and by the kernel of the codegeneracies:

i—1
[ ker(®7 — @771,
§=0
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for ¢ > 1. The differentials are given by the alternating sum of the coface maps of .
If we apply the conormalization functor on Q°*(C,C,Y") then we obtain a cochain complex

of C-comodules that we denote Q°(C,C,Y).

Definition 7.2.5. Let X and Y be C-comodules. Define the normalized cobar resolution of X
and Y to be the cochain complex XO-Q°*(C,C,Y) in CoMod¢, which is denoted Q°*(X,C,Y).
If we denote C the unit coideal, i.e. the kernel of the counit € : C' — k, then Q"(X,C,Y) is

given by X @ C®*" @ Y.

Proposition 7.2.6 ((Ravenel, 1986, A1.2.12)). Let X and Y be any C-comodules. Then
Q*(C,C,Y) is a resolution by relative injectives for Y, and: CoTors(X,Y) = H'(Q*(X,C,Y)),

for alli > 0.

7.3 Coflat Comodules

We introduce here a new class of C-comodules that behaves well with respect to the cotensor

product. We shall see that this class includes all fibrant C'-comodules.

Definition 7.3.1. A C-comodule X is said to be coflat if XUc— : CoMode — CoMod¢ is

(right) exact.

The following proposition is an immidate consequence of Proposition 7.1.6.

Proposition 7.3.2. Let X be a C-comodule. The following are equivalent:

(1) the C-comodule X is coflat;

(ii) the functor XOg— : CoModc — CoMode preserves all colimits;



7

(iii) the functor XOc— : CoModc — CoModc is a left adjoint;
(iv) for any C-comodule Y, we have CoToro(X,Y) =0 for all i > 1.
We see that every injective C-comodule is automatically coflat. More generally, we shall

show that any fibrant C'-comodule is coflat in Proposition 7.3.7 below. We first observe the

following result.

Proposition 7.3.3. Let X and Y be coflat C-comodules. Then XUOcY is coflat. In particular,
the full subcategory of coflat C-comodules form a symmetric monoidal category when endowed

with the cotensor product.

Proof. We consider the following exact sequence in CoMod¢:

Since Y is coflat, we obtain the following exact sequence:

0 —— YO Z' —— YOoZ —— YO Z" —— 0.

Since X is coflat, we then obtain the following exact sequence:

0 —— XOc(YOcZ') —— XOc(YOcZ) —— XOc(YOeZ") — 0.
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By associativity of cotensor product, this exact sequence is equivalent to the following one:

0—— (XDOY)DOZ/ E— (XDOY)DOZ E— (XDOY)DOZ” — 0.

Thus XO¢Y is coflat by definition. O
Lemma 7.3.4. Any cofree C-comodule is cofiat.

Proof. Let M & C' be a cofree C-comodule. The functor (M ® C')Oc— : CoMode — CoMod¢
is equivalent to the functor M ® — : CoModc — CoMod¢ by Lemma 7.1.4, hence we get that

. . . > . . .
it preserves exactness, as M is flat in Chﬂz0 (since we are working over a finite product of

fields). O
Lemma 7.3.5. Coflat C-comodules are closed under extensions.

Proof. Given a short exact sequence in CoMod¢:

where X and Z are coflat, let us show that Y is coflat. Let W be any C-comodule. We obtain

a long exact sequence of C-comodules:

0+ XOcW » YOcW » ZOcW - CoTorb (X, W) » CoTors (Y, W) = --- .
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In particular, for any 7 > 1, we get that the following sequence is exact:
CoTor (X, W) —— CoTors,(Y, W) —— CoTore(Z,W).

Since X and Z are coflat, then CoTori (X, W) = 0 = CoTor,(Z, W). Thus for any C-comodule

W, we have CoTors(Y, W) = 0 for all i > 1. Hence Y is coflat. O
Lemma 7.3.6. Coflat C-comodules are closed under retracts.

Proof. Suppose a C-comodule X is a retract of a coflat comodule Y. Then for any C'-comodule
Z, and any i > 1, we have that CoTor,(X,Z) is a retract of CoTort(Y,Z) = 0. Thus

CoTorh(X, Z) = 0, hence X is coflat. O
Proposition 7.3.7. Every fibrant C-comodule is a coflat C-comodule.

Proof. Let X be a fibrant C-comodule. By Corollary B.3.15, X is a retract of the limit X of
its Postnikov tower {X(n)}. By Lemma 7.3.6, it is enough to show that X is coflat.

We first argue by induction on n that X (n) is a coflat comodule. It is trivial for the case
n = 0. The case n = 1 follows from Lemma 7.3.4. Suppose now that X (n) is coflat, and let us

show that X (n + 1) is coflat. Since it is given by the pullback in CoMod¢:

X(n+1) — DY(V)®C

X(n) —— S™(V)® C,
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and that pullbacks conserve kernels, we obtain the short exact sequence in CoMod:

0 —— " 1(V)®C —— X(n+1) —— X(n) —— 0.

By induction and Lemma 7.3.4, we get that X (n + 1) is coflat by Lemma 7.3.5.

For any short exact sequence 0 Y’ Y Y” 0 , we therefore obtain

a short exact sequence of towers in CoModc:
0 — {X(n)OcY'} — {X(n)OcY} —— {X(n)OcY"} —— 0.

Each of these towers has the Mittag-Lefller condition as we have the pullback:

X(n+1)0cY — DY(V)®@Y

X(n)OgY —— S*"(V)®Y.
Thus, by Proposition 7.1.8, we obtain the following short exact sequence:

0 —— XOcY —— XOcY —— XOgY” —— 0.

Thus X is coflat. O
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7.4 An Eilenberg-Moore Spectral Sequence

We would like to compute the homology of the cotensor product XY given the homologies
of H,(C), H.(X) and H.(Y). These are computed in an Eilenberg-Moore spectral sequence
similar to (Eilenberg and Moore, 1966) if we require X to be coflat.

Recall that to any chain complex M, we can regard its homology H,(M) as a chain complex
with trivial differentials. Then since C' is simply connected, we easily verify that H,(C) is also a
simply connected cocommutative differentially graded coalgebra. Moreover, for any C-comodule

X, we can check that H.(X) is a H,(C)-comodule.

Theorem 7.4.1 (Eilenberg-Moore Spectral Sequence). Let X be a coflat C-comodule. Let Y

be any C'-comodule. Then there is a convergent spectral sequence:

Efyq = COTOI’?{* (Hi(X), Hi(Y)) = E.O% = H,(XOcY).

(@)

Proof. The normalized cobar resolution Q°(X,C,Y’) of X and Y is a cochain complex of a chain
complex and thus defines a second quadrant double chain complex (2°(X,C,Y))., where we

grade the row cohomologically, but the columns homologically. For any p,q > 0, we have:

(QU(X,C,Y)), = (X0 C% oY),

Since C is simply connected, its unit coideal C is trivial in degrees 0 and 1. Therefore we obtain
(QI(X,CY)), =0, for 0 < p < 2¢ — 1. Hence the two associated spectral sequences to the

double complex converge, see (McCleary, 2001, 2.15).
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The first spectral sequence has its E'-page induced by the cohomology of the rows, and
therefore:

Ey, = HI(Q*(X,C,Y) = CoTord(X,Y).

Since X is coflat, then E}’q =0 for all ¢ > 1, and we have E.I,o = XO¢Y. Thus the spectral
sequence collapses onto its second page E?,o = H,(XOcY). The second spectral sequence has

its E'-page induced by the homology of the columns, and therefore:

El, = HJ(Q(X,C.Y)) = QU(H.(X), H.(C), H.(Y)).

Thus, as its E2-page is given by the cohomology of the induced cochain complex, we obtain:

B2, = CoTorl, \(H.(X), H.(Y)).

)

It converges to the page with trivial columns except H,(XOcY') as its 0-th column. ]

Corollary 7.4.2. Let X be a coflat C-comodule. Let Y — Y’ be a weak equivalence of

C-comodules. Then XOcY — XOcY' is a weak equivalence of C-comodules.

Proof. The weak equivalence induces an isomorphism H,(Y) = H,(Y') of H,(C)-comodules.

Therefore we obtain:

CoTord

H.(C) (Ho(X),Ho(Y)) = CoTor;{I*

o) (H(X), HL(Y")),
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for all ¢ > 0. By Theorem 7.4.1, we obtain H,(XOcY) = H.(XOcY') viathemap Y — Y/, O

Corollary 7.4.3. Let X be coflat C-comodule. Then XUc— : CoModc — CoModc is a left

Quillen functor that preserves all weak equivalences.

7.5 Cotensor Product Closed On Fibrant Objects

We shall prove at the end of this section the following result.

Proposition 7.5.1. If X and Y are fibrant C-comodules, then so is XUcY . In particular, the
full subcategory of fibrant C-comodules is a symmetric monoidal category when endowed with

the cotensor product.

Combining with Corollary 7.4.2, the above proposition allows us to apply the symmetric

monoidal Dwyer-Kan localization of Definition 3.2.1 to get the following theorem.

Theorem 7.5.2. The co-category Collodc(D=°(k)) of C-comodules in D=°(k) is endowed

with a symmetric monoidal structure defined by the derived cotensor product.

The main idea of the proof is that the tensor product Ch]f0 x CoMod¢g & CoMod is almost
a “co-Quillen bifunctor”, i.e. there is somekind of compatibility with certain fibrations on Ch[f0

and on CoModc.

Remark 7.5.3. In general X[o— : CoModc — CoMod¢ does not preserve fibrations, even
if X is fibrant. A simple example is given by applying the functor to the generating fibration
0 — S°%V)® C. If we choose V = k, then we obtain a map 0 — X which is clearly not a
fibration (consider the case C' = k). Similarly, for any chain complex M, we see that M @ — :

CoMod~ — CoMod¢ does not preserve fibrations.
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We observe the following characterizations of fibrations in the injective model structure

setting. We are grateful for Pete Bousfield to have pointed out this result.

Proposition 7.5.4. Let M be an Abelian category endowed with a model structure where acyclic
cofibrations are precisely monomorphisms with acyclic cokernels. Let f : X — 'Y be an epimor-

phism in M. Let F' be its kernel. Then f is a fibration if and only if F is fibrant.

Proof. A fibration always has fibrant kernel, regardless of being an epimorphism. This is because
pullbacks preserve fibrations and the the kernel F' is given by the pullback:

I

Y.

i

| 7]

Now suppose F' is fibrant, let us show that f is a fibration. Since M is a model category, we

can factor f as follows:

where 7 is an acylic cofibration and f’ is a fibration. Denote F’ the kernel of f’. We obtain the

following morphism of short exact sequences in M:

0 F x 1.y 0
N
0 P X’ Y 0
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We have used the fact that since f is an epimorphism and f = f’ o, then f’ must also be an
epimorphism. Since ¢ is a monomorphism, the snake lemma guarantees that the induced map

F — F’ is also a monomorphism. Therefore we can take the cokernels of the vertical maps:

0 0 0

0 F x L.y 0
S

0 jad x Ly 0

0 K K’ 0 0.
0 0 0

The 9-lemma guarantees that the third row is exact, and thus K is acylic. Therefore F' — F’

is an acylic cofibration. Since F is fibrant, then we obtain the following section of F' — F:

7]
/ 0.
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In an Abelian category, pushouts preserve monomorphisms so F' — P is a monomorphism.
Pushouts also preserve cokernels, thus Y is the cokernel of FF — P. Therefore we obtain the

following composite of short exact sequences:

f

0 F > X > Y > 0
S

0 F’ s x Ly > 0
ol

0 F > P > Y > 0.

The composite of the left vertical arrows is the identity on F' by construction of £. By the
5-lemma, we get that P is isomorphic to Y. Therefore, we have just shown that f is a retract

of f’ which is a fibration. Hence f is also a fibration. O

Lemma 7.5.5. Let M € ChﬂfO and Y a fibrant C-comodule. Then M ® Y 1is a fibrant C-

comodule.

Proof. Let Y be the (homotopy) limit of the Postnikov tower {Y (n)} of Y. Since Y is a retract
of 17, then M ® Y is a retract of M ® 17, and thus it suffices to show M ® Y is fibrant. Notice
that as {M ® Y (n)} stabilizes in cach degree, then M ® Y = limS (M @ Y (n)).

We show that {M ® Y (n)} is a fibrant tower in CoModC(Chﬂ%O), in the sense of Proposition
A.1.13. For n =0, then M®Y (0) = 0 is trivially fibrant. For n = 1, since every cofree comodule
is fibrant, then M ® Y (1) is fibrant. Since M ® — : Chf0 — Chﬂf0 preserves epimorphisms, then
M@D™"(V) — M®S™(V) is a fibration in ChZ%, and so M@ D"(V)®C — M@ S"(V)®C is a

fibration of C-comodule (alternatively, apply Proposition 7.5.4 as its kernel M @ S*~1(V)® C
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is clearly fibrant). Since M ® — : CoModc(Ch=") — CoMod(ChZ") preserves pullbacks, then

from the pullback in CoMod¢(ChZ?):

M@Yn+1) —s M@DWV)&C
- |

MoY(n) —— M S" (V)& C,
we get that M @ Y(n+ 1) - M ® Y(n) is a fibration. O

Lemma 7.5.6. Let V be a k-module. Let Y be a fibrant C-comodule. Let L — M be an
epimorphism in Chfo. Then LY — M ®Y is a fibration of C-comodules. In particular, for

anyn > 1, the map D"(V)QY — S™(V) QY is a fibration of C-comodule.

Proof. Let F be the kernel of L — M. Since —® Y : Ch]f0 — CoMod¢ preserves short exact

sequences, we obtain the following short exact sequence in CoMod¢:
0 — FRY — LY — MY —— 0.

By Lemma 7.5.5 and Proposition 7.5.4, we can conclude. O

Proof of Proposition 7.5.1. Let {X(n)} be the Postnikov tower of X and X its (homotopy)
limit. Then since X is a retract of X , then XY is a retract of X Y. Whence it suffices
to check that XOgY = lim$ (X (n)dcY) is a fibrant C-comodule. This will follow from the
fact that {X(n)OcY} is a fibrant tower of C-comodules. For n = 0, we trivially have that

X(0)dcY = 0 is fibrant. For n = 1, since X(1) = U(X) ® C, then X(1)OcY =2 U(X)®Y
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which is fibrant by Lemma 7.5.5. For n > 1, since X (n + 1) is defined as the pullback in

CoMod¢ (Chi0):
X(n+1) — D (V)@ C

|- |
X(n) — S*(V) & C,

and —O¢Y : CoModC(Cth) — CoModC(Cth) preserves pullbacks, then we have the following

pullback in CoMod¢(ChZ?):

X(n+1)HOgY —— D"(V)®Y
l 3
X(n)OgY —— S"(V) Y,
where we have used Lemma 7.1.4 to identify the right vertical map. Since this map is a fibration

of C-comodules by previous lemma, then we get X(n + 1)0cY — X (n)OcY is a fibration of

C-comodules. O

7.6  Change of Coalgebras

We observe here a direct consequence from Corollary 7.4.2. Let f : C — D be a map
of simply connected cocommutative differentially graded k-coalgebras. The map endows the

coalgebra C' with a D-comodule structure:

c -2 oo M ogp,
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such that f: C' — D is a map of D-comodules. We obtain a functor f* : CoModc — CoModp
where each C-comodule (X, p) is sent to the D-comodule (X, (idx ® f) o p). We shall often
write f*(X) simply as X.

Given any D-comodule X, we can form the cotensor of D-comodules X[pC, which can
be endowed with the structure of C-comodule as follows. The C-coaction is induced by the

natural map of equalizers:

XO0pC —— XC — X XDl

! |

(XOpC)®@C — X @0C —X XDl C(C,

where the vertical arrows are induced by the comultiplication on C'. One can easily check that

we obtain a functor —OpC : CoModp — CoMod¢ which is right adjoint to f*.

Proposition 7.6.1. Let f : C'— D be a map of cocommutative simply connected differentially

graded Kk-coalgebras. Then the adjunction:

f*
CoMode , L " CoModp,
—0OpC

18 a Quillen pair. Moreover, the adjunction is a Quillen equivalence if and only if the map f is

a quasi-isomorphism.

Proof. The first statement follows directly from the fact that the functor f* preserves monomor-

phisms and quasi-isomorphisms. For the second statement, we shall apply (Hovey, 1999, 1.3.16).
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Notice that f* reflects weak equivalences. Suppose first that f is a quasi-isomorphism. Now

let X be any fibrant D-comodule, the counit of the adjunction:

XOpC —=— XOpD = X,

is a quasi-isomorphism by Corollary 7.4.2. Conversly, if we suppose the adjunction to be a

Quillen equivalence, then the map:

f:C=~DpOpC — DOpD = D,

must be a weak equivalence, as D is always fibrant as a D-comodule. O
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Appendix A

DUAL TERMINOLOGY IN MODEL CATEGORY

One of the main tool of model categories is to assume the structure is cofibrantly generated by
a pair of sets (see definition in (Hovey, 1999, 2.1.17)). If in addition the category is presentable,
we say it is combinatorial. In such a case, cofibrations and acyclic cofibrations are retracts of
maps built out of pushouts and transfinite compositions, and we can inductively construct a
cofibrant replacement.

Simply dualizing the notions would be a fine method if one were working with copresentable
categories. However, if we still want to work with presentable categories, then naively dualizing
the notion of cofibrantly generated to fibrantly generated causes issues, as a model category is
rarely this way, see (Addmek and Rosicky, 1994, 1.64). We instead weaken the definition (as in
Definitions A.1.9 and A.2.1). Unfortunately we cannot apply the cosmall object argument and
thus showing that a model category has an interesting Postnikov presentation will be challenging

in general.

A.1 Postnikov Presentation

We present the definition of Postnikov presentations, introduced by Kathryn Hess, which
is dual to cellular presentations and appeared in (Hess, 2009), (Hess and Shipley, 2014) and
(Bayeh et al., 2015).

We first dualize the notion of relative cell complex (Hovey, 1999, 2.2.9).



93
Appendix A (Continued)

Definition A.1.1 ((Hess, 2009, 5.12)). Let P be a class of morphisms in a category closed
under pullbacks C. Let A be an ordinal. Given a functor Y : A°® — C such that for all 8 < A,

the morphism Yz, 1 — Y} fits into the pullback diagram:

Yo — Xy
I

Yg _— XB-Ha

where X é 41 — Xp41 is some morphism in P, and Ys — Xpgi1 is a morphism in C, and we
denote:

Y, ;= limYjs,
ol 6<75

for any limit ordinal v < A. We say that the composition of the tower Y:

|>|\£TP1Y,8 — Y07

if it exists, is a P-Postnikov tower. The class of all P-Postnikov towers is denoted Postp.

Proposition A.1.2 ((Bayeh et al., 2015, 2.10)). If C is a complete category, the class Postp
1s the smallest class of morphism in C containing P closed under composition, pullbacks and

limits indexed by ordinals.
Proof. See dual statements in (Hovey, 1999, 2.1.12, 2.1.13). O

Proposition A.1.3. Let R: C — D be a right adjoint between complete categories. Let P be a

class of morphisms in C. Then we have: R(Postp) C Postgp).
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Proof. Right adjoints preserve limits. O

We also recall the dual notion of small object in a category.

Definition A.1.4. Let D be a subcategory of a complete category C. We say an object A in C
is cosmall relative to D if there is a cardinal x such that for all x-filtered ordinals A (see (Hovey,
1999, 2.1.2)) and all A-towers Y : A — D°P, the induced map of sets:

lim (Homc (Y3, A)) — H limYs, A,
cglim (Home (Y5, 4)) — Home (B.gﬁ )

is a bijection. We say that A is cosmall if it is cosmall relative to C itself.

Example A.1.5. The terminal object, if it exists, is always cosmall. In procategories, every

object is cosmall. Therefore in copresentable categories, every object is cosmall.

Example A.1.6. As noted after (Hovey, 1999, 2.1.18), the only cosmall objects in the category
of sets are the empty set and the one-point set. In practice, objects in a presentable categories

are rarely cosmall.
The dual of the small object argument (Hovey, 1999, 2.1.14) can be stated as follows.

Proposition A.1.7 (The cosmall object argument). Let C be a complete category and P be a
set of morphisms in C. If the codomains of maps in P are cosmall relative to Postp, then every

morphism f of C can be factored functorially as:

A f B
7% %(f)
o,
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where §(f) is a P-Postnikov tower and v(f) admits the left lifting property with respect to all
maps in P.
Notation A.1.8. Given a class of morphisms A in C, we denote A its closure under formation

of retracts.

Definition A.1.9. A Postnikov presentation (P,Q) of a model category M is a pair of classes
of morphisms P and Q such that the class of fibrations is %st\p, the class of acyclic fibrations

is %st\Q, and for any morphism f: X — Y in M:

(a) the morphism f factors as:

where i is a cofibration and ¢ is a Q-Postnikov tower;

(b) the morphism f factors as:

X Y

A

w

where j is an acyclic cofibration and p is a P-Postnikov tower.
We say in this case that the model category M is Postnikov presented by (P, Q).

Remark A.1.10. Since we do not require sets, every model category is trivially Postnikov
presented by the classes of all fibrations and acyclic fibrations. Although it was noted in
(Bayeh et al., 2015, 2.13, 2.14) that this trivial presentation can occasionally be useful (as we
will see in Theorem B.4.1), we use more interesting subclasses in this paper, see Theorems B.2.1

and B.3.3.
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Definition A.1.11. Let M be a complete model category that admits a Postnikov presentation
(P, Q). Given any object X in M, we can provide an inductive fibrant replacement F X as follows.

Let * be the terminal object of M. There is an object FF.X in M that factors the trivial map:

X *

N A

FX,

where j : X S FX is an acyclic cofibration in M, and p is a P-Postnikov tower. This means

that F'X can be defined as iterated maps of pullbacks along P, starting with (FX)g = *.

We shall sometimes make us of homotopy limits of countable towers, we record here some

notation and an explicit formula.

Notation A.1.12. Denote N the poset {0 < 1 <2 < ---}. Let C be any complete category.

Objects in CY are diagrams of shape N and can be represented as (countable) towers in C:

L x2) B x(1) -5 x(0).

We denote such object by {X(n)} = (X(n), fn)nen. The limit of the tower is denote lim, X (n).

Proposition A.1.13 ((Goerss and Jardine, 1999, VI.1.1)). Let M be a model category. Then the
category of towers MY can be endowed with the Reedy model structure, where a map {X (n)} —
{Y(n)} is a weak equivalence (respectively a cofibration), if each map X (n) — Y (n) is a weak
equivalence (respectively a cofibration) in M, for alln > 0. An object {X(n)} is fibrant if and

only if X(0) is fibrant and all the maps X(n + 1) — X(n) in the tower are fibrations in M.
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Moreoever, if we denote v : M — MY the functor induced by the constant diagram, then we

obtain a Quillen adjunction ¢: M . L~ MN:lim,.

A.2 Fibrantly Generated Model Categories

We introduce the notion of fibrantly generated as in (Bayeh et al., 2015).

Definition A.2.1. A model category is fibrantly generated by (P,Q) if the cofibrations are
precisely the morphisms that have the left lifting property with respect to Q, and the acyclic
cofibrations are precisely the morphisms that have the left lifting property with respect to P.

We call P and Q the generating fibrations and generating acyclic fibrations respectively.

Remark A.2.2. Our definition of fibrantly generated makes no assumption of cosmallness

and is not the usual definition one can find in the literature.

Remark A.2.3. Just as for Remark A.1.10, since we allow P and Q to be classes, any model

category is trivially fibrantly generated by its fibrations and acyclic fibrations.

Proposition A.2.4. If a model category is Postnikov presented by a pair of classes (P,Q), then

it is fibrantly generated by (P, Q).

Proof. Direct consequence of the retract argument (see (Hovey, 1999, 1.1.9)). O

Remark A.2.5. The converse of Proposition A.2.4 is true if P and Q are sets that permit
the cosmall object argument. However, this rarely happens in context of interest as seen in

Example A.1.6.



98
Appendix A (Continued)

A.3 Left-Induced Model Categories

Definition A.3.1. Let M be a model category and A be any category, such that there is a pair

L
of adjoint functors: A 1 M. We say that the left adjoint L : A — M left-induces a model
R

structure on A if the category A can be endowed with a model structure where a morphism
fin A is defined to be a cofibration (respectively a weak equivalence) if L(f) is a cofibration
(respectively a weak equivalence) in M. This model structure on A, if it exists, is called the

left-induced model structure from M.

The next result is the dual of the Quillen path object argument and is in practice the way

we verify left-induced model structures exist.

Proposition A.3.2 ((Hess et al., 2017, 2.2.1)). Let M and A be presentable categories. Suppose

we have an adjunction:
Suppose M is endowed with a cofibrantly generated model structure where all objects are cofi-
brant. If, for every object A in A, there is a factorization in A:

AJTA —2 Cyl(4) —2— 4,

such that, after applying the left adjoint L, we obtain a good cylinder object in M (i.e. L(j) is
a cofibration and L(p) is a weak equivalence in M), then the left-induced model structure from

M on A exists.
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The following result guarantees that left-inducing from a combinatorial model category gives

back a combinatorial model category.

Proposition A.3.3 ((Bayeh et al., 2015, 2.23),(Hess et al., 2017, 3.3.4)). Suppose A is a model
category left-induced by a model category M. Suppose both A and M are presentable. If M is

cofibrantly generated by a pair of sets, then A is cofibrantly generated by a pair of sets.

Proposition A.3.4 ((Bayeh et al., 2015, 2.18)). Suppose A is a model category left-induced by
a model category M, via an adjunction L : A 1L M: R. If M is fibrantly generated by

(P,Q), then A is fibrantly generated by (R(P), R(Q)).

Remark A.3.5. If M is Postnikov presented by (P, Q), there is no reason to expect that A is

Postnikov presented by (R(P), R(Q)), as we made no assumption of cosmallness in general.
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POSTNIKOV PRESENTATIONS OF DIFFERENTIAL GRADED

COMODULES

In this appendix, we present the explicit ad-hoc Postnikov presentations. We first show, in
Theorem B.1.8, that chain complexes over a finite product of fields k are fibrantly generated
in the sense of Definition A.2.1. Then we show that comodules over a simply connected differ-
entially graded k-coalgebra also admit a Postnikov presentation, generalizing the presentation
defined in (Hess, 2009). The induced explicit Postnikov tower of comodules defined in Corollary
B.3.15 will be crucial to prove the rigidification result in Theorem 6.3.3. We also observe in
Theorem B.4.1 that we can produce a Postnikov presentation for comodules over a coalgebra
that is a perfect chain complex. However, it will not be used in this paper, but remains useful

for any explicit homotopy limit computations.

B.1 The Generating Fibrations

We start with the following definition.

Definition B.1.1. Let R be any commutative ring. Let V be an R-module. Let n be any
integer. Denote S™(V'), the n-sphere over V, the chain complex that is V' concentrated in
degree n and zero elsewhere. Denote D™(V'), the n-disk over V, the chain complex that is V'

concentrated in degree n — 1 and n, with differential the identity. As noted in (Bayeh et al.,
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2015, 3.1), it is enlightening to regard S™(V') as the Eilenberg-Mac Lane space K(V,n) and

D™(V) as the based path of K(V,n —1). We obtain the obvious map D"(V) — S™(V):

D™(V) i 00— V=—=V +— 0 ¢— -+
S™(V) 0 0 1% 0
This defines functors:
Sn(*) : MOdR E— ChR7 Dn(*) : MOdR e ChR.

The map defined above is natural, i.e. we have a natural transformation D"(—) = S™(—), for

all n € Z. When V = R, we simply write D" and S™.

Chain complexes over a field are advantageous as they are all split. In general, if R is a
unital domain ring, and if all short exact sequences of R-modules are split, then R must be a

field. In fact, a direct consequence of Wedderburn-Artin theorem gives the following result.

Proposition B.1.2. Let k be a commutative (unital) ring. The following are equivalent.

(i) Every k-module is projective.

(ii) Ewvery k-module is injective.

(iii) Ewer short exact sequence of k-modules splits.

(iv) k is a finite product of fields.
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Notation B.1.3. Given any chain complex, we denote B,(X) the n-boundaries of X and

Zn(X) the n-cycles of X.

Proposition B.1.4. Letk be a finite product of fields. Let X be a chain complex in Chyx. Then

X is split as a chain complex and we have a non-canonical decomposition:

In particular any chain compler X can be decomposed non-canonically as product of disks and

spheres:

where V,, = H,(X) and W,, = B,_1(X).

Proof. We have the following short exact exact sequences of k-modules:

0 —— Zp(X) < Xn

Since any short exact sequence splits (Proposition B.1.2), we can choose sections (the dashed

maps denoted above), such that we obtain the following isomorphism of k-modules:

&
1

Zn(X) @ Br-1(X)

12

Hn(X) @ Bn(X) & Bn-1(X). O
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We introduce now our generating fibrations and acyclic fibrations in Chy.

Definition B.1.5. Let k be a finite product of fields. Define & and Q to be the following sets
of maps in Chy:

P ={D" — S"},cz, Q ={D" — 0}pez.

We thicken the sets & and Q to classes P and Qg of morphisms in Chy:

Py = {D”(V) — S™(V) |V any k—module}nez,

9 = {D"(V) — 0| V any kemodule|

Clearly, the maps in # and Pg are fibrations in Chy and the maps in Q and Qg are acyclic

fibrations in Chy.

Remark B.1.6. When k is a field, as every k-module is free, we get:

A A

Py = {@ D" — S| A any ordinal} ,
nez

Qg = {@ D" — 0| A any ordinal} .
A nez

Lemma B.1.7. Let R be any commutative ring. Given a split exact sequence of R-modules:

0 Ve S Vaew W 0,
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it induces the following diagram of split exact sequences in Chr for all n € Z with compatible

retracts:

0 —— S™"(V) —— S"(V)gp S"(W) —— S*"(W) —— 0.
Proof. Notice first that we have the equalities S" (Ve W) = S™(V)& S™(W) and D"(VeW) =
D™(V) @& D™(W). The choice of a splitting V & W — V provides a coherent choice of chain

maps D"(V & W) — D™(V) and S*(V & W) — S™(V). O

Theorem B.1.8. Let k be a finite product of fields. Let C be any differentially graded coalgebra

over k.

(1) The model category of unbounded chain complex Chy is fibrantly generated by the pair of
sets (P, 9).
(ii) The injective model category CoModc(Chy) of comodules over k is fibrantly generated by

the pair of sets (P ® C,2 ® C).

A similar result as of (i) above was proved in early unpublished versions of (Soré, 2016) in
(Soré, 2010, 3.1.11, 3.1.12) for non-negative chain complexes over a field. We extend the results
for the unbounded case and show that (i) of Theorem B.1.8 follows from Lemma B.1.11 and
Lemma B.1.12 below. Notice that (ii) above is a direct consequence of (i) by Propositions

A34.

Notation B.1.9. Given any class of maps A in a category C, we denote LIp(A) the class of

maps in C having the left lifting property with respect to all maps in A.



105
Appendix B (Continued)

Lemma B.1.10. Letk be a finite product of fields. We have the equalities of classes: LIp(Pg) =

LIp(%) and LIp(Qa) = LIp(Q) in Chy.

Proof. Since @ C Pg, we get LIp(Pg) C Lip(P). Suppose now f is in LIp(P), let us argue it

also belongs in Llp(%g). Suppose we have a diagram:

for some k-module V. Since V is projective, there is another k-module W such that V & W is
free. Thus V@& W = @, k, for some basis A. In particular, by Lemma B.1.7, we obtain the

commutative diagram:

N k77T

X —— D™(V) c—;@Dgc—> [[pr —— D2

[ P R T

Yy —— S”(V)k:—; @SQ s HSZ — Sy,
aEX aE

where D! and S]! are a copies of D™ and S™. Since f is in LIp(%), we obtain a lift ¢, : Y — D7,
for each a. It induces a lift £ : Y — ], D2 which restricts to Y — D™(V) via the retracts

(dashed maps in the diagram). O

Lemma B.1.11. Let k be a finite product of fields. Maps in the set Q = {D™ — O},ez are the

generating acyclic fibrations in Chy.



106
Appendix B (Continued)

Proof. Let f : X — Y be a map in Llp(Q), let us show it is a cofibration in Chg, i.e. a

monomorphism. Following Proposition B.1.4, we decompose X as:

Then the canonical inclusions S™(V;,) — D"*1(V},) induce a monomorphism &:

o [T 570 @ D"(Wa) — [[ D" (V) @ D" (Wa).
nez ne”

Since f is in LIp(Q), then there is a map ¢ such that ¢ = fo f. Hence f must be a monomorphism

and thus a cofibration. O

Lemma B.1.12. Let k be a finite product of fields. Maps in the set P = {D"™ — S"},cz are

the generating fibrations in Chy.

Proof. Notice that Llp(%) C LIp(Q) as any lift Y — D™ in the following commutative diagram

induces the dashed lift:
Dn

7

S

%

N

S

TN

N
N
~
~
~
\
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In particular, Lemma B.1.11 shows that maps in LIp(#) are monomorphisms. Let f: X — Y
be map in LIp(#) and let us show it is a quasi-isomorphism. Since f is a monomorphism, there

is an induced short exact sequence in Chy:

where K = coker(f). It remains to show that K is acyclic. Notice first that K is defined as the

pushout:

and so, since f is in LIp(#), then 0 — K is in LIp(#). Following Proposition B.1.4, decompose

K as:

K =[] 5" (Vo) ® D"(Wy),
nez

where V,, = H,(K). Then we obtain a map by projection:

[15"(Va) & (W) —— ] S"(Va),

neZ neL

that factors through the non-trivial map:

[[o"(v) — T 5" (V)

neL neZ
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as 0 — K is in LIp(®) = Llp(#Pg). But this is only possible when V,, = 0, hence K must be

acyclic. Thus f is a quasi-isomorphism. O

B.2 Postnikov Presentation for Unbounded Chain Complexes

A Postnikov presentation was constructed in (Hess, 2009) and (Bayeh et al., 2015) for
finitely generated non-negative chain complexes over a field. We extend here the argument to

the unbounded non-finitely generated case, over a finite product of fields.

Theorem B.2.1. Let k be a finite product of fields. The pair (Pg,2) is a Postnikov presenta-

tion of the model category of unbounded chain complex Chy.

We shall prove Theorem B.2.1 with Lemmas B.2.4 and B.2.7 below. The theorem provides
an inductive fibrant replacement for diagram categories in Chy endowed with the injective model

structure and thus provides inductive arguments to compute homotopy limits in Chy.

Remark B.2.2. We were not able to restrict ourselves to the set # and had to consider the

class #Pg. We note here a few basic results.

(i) As @ C Pg, we get Postp C Postg, .

(ii) The maps S™ — 0 are in Posty as they are obtained as pullbacks:

Sn —— pntl
_
|7

0 —— S~tL

Similarly, for any k-module V', the maps S™ (V) — 0 are in Postp, .
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(iii) Since D™ — 0 is the composite D" — S™ — 0, we see that Q C Postyp, and thus

Postg C Postyp C Postg,, by Proposition A.1.2.

(iv) Although #g ¢ Postp, we have Pg C Post, (see Notation A.1.8). Indeed, for any k-
module V, Lemma B.1.7 shows that any map D"(V) — S™(V) is the retract of a map
D™(F) — S™(F) where F is a free k-module. Then, for A a basis of F', we have the retract

in Chki

D" —— D" —— D"
o —llr—o

! ! !
PBs—[[s" — P,

induced by the split short exact sequence in k-modules:

ISR
0—— @k SN Hk — coker(t) — 0,
A A

where ¢ : @k — Hk is the natural monomorphism.
A A

Lemma B.2.3. Letk be a finite product of fields. Let X be any chain complex over k. Then the
trivial map X — 0 is a Pg-Postnikov tower. If X is acyclic, the trivial map is a Qg-Postnikov

tower.
Proof. Follows from Proposition B.1.4, (ii) of Remark B.2.2, and Proposition A.1.2. O

Lemma B.2.4. FEvery acyclic fibration in Chy is a retract of a Q-Postnikov tower. Every map

in Chy factors as a cofibration followed by a Q-Postnikov tower.



110
Appendix B (Continued)

Proof. We provide two proofs by presenting two different factorizations. The first one has the
advantage to be functorial but harder to compute. The second is not functorial but is easier
to compute. Let us do the first possible factorization. By Theorem B.1.8; the set Q of maps
in Chy is the set of generating acyclic fibrations. Their codomain is the terminal object in Chy
and is thus cosmall. We can then apply the cosmall object argument (Proposition A.1.7) to
obtain the desired factorization.

For the second possible factorization, start with any morphism f : X — Y in Chg. Choose a
decomposition of X by using Proposition B.1.4: X =[], ., S™(V,,) ® D"(W,), for some collec-
tion of k-modules V;, and W,,. The inclusions S™(V;,) < D"*1(V,,) define then a monomorphism
in Chy:

X = [[S"(Va) @ D" (W) —— [ D"'(Va) ® D™ (Wa).
neZ neZ

Since V,, and W,, are projective k-modules, they can be embedded into free k-modules, say F,

and G, with basis A, and ~,,. Then we obtain the following monomorphisms in Chy:

[[ o) e D"(Wh) — [[EP 0" e P D"

nez neEZL An Tn

Thus, we get the monomorphism in Chy: X «—— H H D"l @ D" Denote Z the acyclic
NEZL AnyYn

chain complex [[, .7 [I,, -, D"t @ D". We obtain the desired second factorization in Chy:

X (% ZaY —L5 Y, where the map ¢ is the projection onto Y, which is indeed a Q-

Postnikov tower by Proposition A.1.2. O
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The following arguments are based on the proof of (Bayeh et al., 2015, Lemma 3.3). We

begin with preliminary results.

Lemma B.2.5. Let k be a finite product of fields. Let X be any chain complex in Chy. Let
V' be any k-module. Let n be any integer in Z. Given a surjective linear map fn, : X, — V
non-trivial only on n-cycles, there is a map of chain complezes f : X — S™(V'), and the pullback

chain complex P in the following diagram:

has homology:

and we have P; = X; fori#n—1 and P,_1 = X, 1 ® V.

Proof. By construction, since pullbacks in Chy are taken levelwise, for ¢ # n,n — 1, we have the

pullbacks of k-modules:

P, —V P, —V P,—— 0
[ R A I
X, 1 — 0, X, " v, X; —— 0
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Thus P,—1 =2 X,,—1®V and P, = X for any i # n — 1. The differential P, — P, _1 is the linear

map X, ﬂ X,—1 @V, and the differential P,_1 — P, _o is the linear map:

dn—
Xp 10V — Xp1 — X, o,

where the unlabeled map is the natural projection. All the differentials P; — P;_1 for i # n,n—1
are the differentials X; — X;_1 of the chain complex X. Clearly, we get H;(P) = H;(X) for

i #n,n—1. For i =n — 1, by Proposition B.1.4, we can choose a decomposition:

X, & Hy(X) @ Bp_1(X) ® Bn(X).

The differential d,, : X,, — X,,—1 sends the factor B,_1(X) in X,, to itself, and the factor
H,(X) @ B,(X) to zero. By definition, the map f, : X,, = V sends the factor H,(X) in X,
to the image of f,,, which is V since f,, is surjective, and the factor B,_1(X) ® B,(X) to zero.
Thus the image of the differential P, — P,_1, is precisely B,,_1(X)@®V. Therefore, we obtain:

ker(Pn_l — Pn_g)
im(P, — P,_1)

H, (P) =

12

I
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For i = n, notice that the n-boundaries of P are precisely the n-boundaries of X, the n-cycles
of P are the n-cycles x in X such that f,(x) = 0. Since f, : X,, — V is entirely defined on the

copy Hy(X) in X,,, we get from the commutative diagram:

Zn(X) c > Xn s V
l Hn(f)
H,(X),
that H,(P) = ker(Hy(f)). O

Lemma B.2.6. Let k be a finite product of fields. Let j : X — Y be a monomorphism in Chy,
such that it induces a monomorphism in homology in each degree. Let n be a fized integer in

Z. Then the map j factors in Chy as:

X J %
Fn(4) %n(pj)
Fo.(Y)

where F,(Y') is a chain complex built with the following properties.

e The chain map Fy,(p;) : Fo(Y) = Y is a Pg-Postnikov tower.
e The chain map F,,(j) : X — F,(Y) is a monomorphism (i.e. a cofibration in Chy).
e The k-module (F,,(Y)); differs from Y; only in degree i =n — 1.

e In degrees i # n in homology, we have H;(F,(Y)) = H;(Y) and the maps:

Hi(Fn(5)) « Hi(X) — Hi(Fo(Y)) = Hi(Y),
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are precisely the maps H;(j) : Hi(X) — H;(Y). In particular, the maps H;(F,(j)) are
monomorphisms. Moreover, if the maps H;(j) are isomorphisms, then so are the maps

e In degree n in homology, the map H,(Fy, (7)) : Hp(X) = H,(F,(Y)) is an isomorphism.

Proof. We construct below the chain complex F),(Y) explicitly using Lemma B.2.5. By Propo-

sition B.1.4, we can decompose Y, as:

where Y,, is the direct sums of the copies of the boundaries. Denote the k-module V =
coker(H,(j)) and define the linear map f,, : Y, — V to be the natural projection. In particular,
the map f, sends n-boundaries of Y to zero. This defines a chain map: f : Y — S™(V).
Notice that since j : X — Y is a monomorphism, we get j(X,,) C Y,,, and so, by construction
of f, we get that the composite: X % Y L> S™(V'), 1is the zero chain map. We obtain

F,.(Y) as the following pullback in Chg, with a chain map F,(j) induced by universality of

pullbacks:
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By construction, the induced chain map F,(p;) : F,(Y) — Y is in Postg,. From the commu-

tativity of the diagram:

Fn(35)

X Fo(Y)

\ F (05)

Y,
since j is a monomorphism, so is Fy,(j). Since H;(j) is a monomorphism for i € Z, then so is

H;(F,(j)). By Lemma B.2.5, we get H;(F,(Y)) = H;(Y) for all i # n. For i = n, we get:

as we have the short exact sequence of k-vector spaces:

0 Ho(X) Hu(j) H (V) ) |y 0,
since V' = coker(H,(j)). Thus H,(F,(j)) is an isomorphism as desired. O

Lemma B.2.7. Every fibration in Chy is a retract of a Pg-Postnikov tower and every map in

Chy factors as an acyclic cofibration followed by a Pg-Postnikov tower.

Remark B.2.8. Unlike Lemma B.2.4, we cannot use the cosmall object argument in order to

prove Lemma B.2.7. Indeed, as noted in (Soré, 2010), the codomains S™ of maps in the set &P
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are not cosmall relative to Postp. Indeed, let Y = S™ for all £ > 0 and Yj41 — Y be the zero

maps. Let Y = I!:iQ?JYk be the limit in Chg. The set map:

cgg(r)n (Homcp, (Y, S™)) — Homcp, (Y, S™)

is not a bijection. Indeed, the map is equivalent to the map:

Pr— []]k *,

k>0 k>0

which is never a bijection. A similar argument can be applied to show that the codomains

S™(V) of the maps in the class %g are not cosmall relative to Postg, , for any k-module V.
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Proof of Lemma B.2.7. The first statement follows from the second using the retract argument.
Given a chain map f : X — Y, we build below a chain complex W as a tower in Chy using

Lemma B.2.6 repeatedly so that f factors as:

%4
Gy (W)
G (p)
7 w
p
G () :
j+ ~
G o) G (p)
L Ggw)
Gy (4) .
/ GO (p)

where } is a monomorphism and a quasi-isomorphism, and all the vertical maps and p are in
Postgp, . The composition of all the vertical maps and p is a chain map W — Y which is in

Postg,,, by Proposition A.1.2.
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We first start by noticing the following factorization:

Zf.

~
N @

The map p is in Postg, by Lemma B.2.3 and Proposition A.1.2. By commutativity of the upper
triangle, we see that the monomorphism j induces a monomorphism in homology. We denote
W=XeaeY.
The second step is to replace the map j : X — W by a chain map j* : X — W that
remains a cofibration, a monomorphism in homology in negative degrees, and an isomorphism
n

in homology in non-negative degrees. We construct W+ as the limit Ii;rg) (G;F(W)) in Chy of the
nz

tower of maps:

G3(p)
0

+ +
s GEw) E2 ar o) DB g o) W,



119
Appendix B (Continued)

where each G} (p) is in Postp,. The map j© : X — W is induced by the monomorphisms

G} (j) : X = G} (W) which are compatible with the tower:

G (W)
Grt(]) lGjL-(p)
X — G (W),

Gl _109)

and G, (j) induces an isomorphism in homology in degrees i, for 0 < i < n, and a monomor-

phism otherwise. We construct the chain complexes G;7 (W) of the tower inductively as follows.

e For the initial step, apply Lemma B.2.6 to the monomorphism j : X — W, for n = 0.

Denote G§ (W) := Fy(W). The cofibration G (j) defined as the chain map:

Fo(j) : X — Fpy(W) = Gg (W),

is an isomorphism in homology in degree 0, and a monomorphism in other degrees. The

chain map Gy (p) defined as the map:

Fo(pj) : Gg (W) = Fo(W) — W,

is a Pg-Postnikov tower.

e For the inductive step, suppose, for a fixed integer n > 0, the chain complex G, (W) is

defined, together with a cofibration G, (j) : X — G,}(W) inducing an isomorphism in
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homology for degrees i, where 0 < ¢ < n, and a monomorphsim in homology for other

degrees. Apply Lemma B.2.6 to the monomorphism G, (j) for the degree n + 1. Denote:
Gt (W) = Fop1 (G (W)).
The cofibration G\, | (j) defined as the chain map:
Fri1(Gn(5) : X — Fopr (G (W) = Gy (W),

is an isomorphism in homology in degrees 7 where 0 < i < n + 1, and a monomorphism

in other degrees. We obtain a Pg-Postnikov tower G}, (p) defined as the chain map:
Furt (P Gt (W) = Faa (G(W)) — GE(W),

such that the following diagram commutes:

+ .
X ¢ Gn9) s GHW)
GL% /G:-i—l(p)
GTJLrJrl (W)

The induced map j* : X — W™ is a monomorphism of chain complexes. Indeed, for any fixed

i € 7, we have:

(G5401), = (G22)), = (GF5(1)), =
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Thus (W), = (G},

z+1(W))7;' Therefore the linear map (j1); : X; — (W™); is the linear map:

(G:{H(j))i X — (G;Zrl(W))i,

which is a monomorphism. Similarly, we get: H;(W™T) = H;(G}, ,(W)), for all i € Z, and so

i+1
4T is a monomorphism in negative degrees in homology, and an isomorphism in homology in
non-negative degrees.

The last step is to replace the map j7 : X — W™ by the desired chain map :7V X > W
that is an acyclic cofibration. We construct w similarly as W+ (inductively applying Lemma

B.2.6) but in negative degrees. We build W as the limit Ii£nO(G,;(W+)) in Chy of the tower of

maps:

G; (p) G7 (p)
— —

F—— G (W) Gy (W) Go (W) =W+,

where each G, (p) is in Postp,. The map i X - W is induced by the monomorphisms

G,,(j) : X = G,; (W) which are compatible with the tower:

G, (W)
Gn(9) JGE (p)
X ——— G, (W),
Gn71(1)

and G, (j) induces an isomorphism in homology in degrees i, for i > —n, and a monomor-
phism otherwise. Similarly as the positive case, the map 3 : X — W can be shown to be a

monomorphism and quasi-isomorphism, hence an acyclic cofibration, as desired. ]
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B.3 Cocellular Presentation for Comodules over Simply-Connected Coalgebras

Definition B.3.1. For all commutative ring R, we denote 7>0 : Chp — Ch}%0 the 0-th trunca-
tion (see (Weibel, 1994, 1.2.7)). Let k be a finite product of fields. From the sets and classes of

Definition B.1.5, we denote their image under the truncation by:
P20 = {D" — S"},>1 U {0 — S°}, Q20 = {D" — 0},,>1,
and:

%0 = {D"(V) — S™(V) | V any k—module}

n>1

U {O — S%V) | V any k—module}.

Since 7>¢(Postg, ) C Post@e%o and 7>0(Postg) C Postg>0 by Proposition A.1.3, we can easily
adapt our arguments and show fibrant generation and cocellular presentation for Ch]fo.
We can easily adapt our arguments of before to show the following (it also follows from

Theorem B.2.1 and Proposition A.3.4).

Proposition B.3.2. Let k be a finite product of fields. Let C' be a non-negative differentially
graded k-coalgebra. Then the model category Chfo is fibrantly generated by (#=°,920). The

model category Col\/Iodc(ChﬂfO) is fibrantly generated by (P=° ® C,22°® O).

We shall focus in this section to show the following, which is a generalization of the result

in (Hess, 2009).
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Theorem B.3.3. Let k be a finite product of fields. Let C be a simply connected differentially
graded k-coalgebra. Then (@50 ®C,22%® ) is a Postnikov presentation of the model category

CoModc(Cth) of right C'-comodules in non-negative chain complezes.

We shall prove Theorem B.3.3 with Lemmas B.3.7 and B.3.12 below. This will provides
us with a very explicit inductive fibrant replacement for comodules as we will see in Corollary
B.3.15.

In order to understand a Postnikov presentation of Col\/IodC(Ch]fO) we must be able to
describe limits of towers and pullbacks. Recall that U : CoModC(Cth) — ChﬂfO preserves and
reflects colimits and finite limits. Thus pullbacks in Col\/Iodc(Ch]fO) are computed in Chfo. In
general, limits of towers in CoModc(Ch]EO) are very different than limits of the underlying towers
in Ch0. If {X(n)} is a tower of right C-comodules, we denote its limit by lim$ X (n), and if we
forget the C-comodule coactions, we denote the limit in Ch[f0 by lim,U (X (n)). Nevertheless,

in good situations, we can describe those towers.

Definition B.3.4. Let R be a commutative ring. A tower {X(n)} in Ch%0 stabilizes in each
degree if for each degree i > 0, the tower {X(n);} of k-modules stabilizes for n > ¢+ 1, i.e., for
all n >0, and all 0 < ¢ <n, we have: X(n+1); = X(n+2); =X(n+3);=---.Let C bea
non-negative differentially graded R-coalgebra. A tower {X(n)} in Col\/lodc(Ch]Z%O) stablizes in

each degree if the underlying tower {U(X (n))} in Ch}%0 stabilizes in each degree.
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Lemma B.3.5. Let R be a commutative ring. Let {X(n)} be a tower in Chjz;i0 that stabilizes
in each degree. Let C be any chain complex in Ch}%O. Then the tower {X(n) ®C} mn Chl,%0 also

stabilizes in each degree and we have: (IimnX(n)) ® C = lim, (X(n) ® C’).

Proof. For all n > 0, and all 0 < i < n, we have:

(X(n+1)®0)' = P X(n+1).0GC
a+b=i

= @ X(n+2),®C

a+b=1
- (X(n +2)® C>

V)
(2

as 0 < a < ¢ < n. This argument generalizes in higher degrees and thus shows that the
desired tower stabilizes in each degree. For all ¢ > 0, notice that both ((limnX(n)) ® C’) ~and
(2

<|imn (X(n) ® C’))Z are equal to ag?ziX(i +1)g ® Ch. O

Corollary B.3.6. Let R be a commutative ring. Let C be a non-negative differentially graded
R-coalgebra. Let {X(n)} be a tower in CoModC(ChIZ%O) that stabilizes in each degree. Then the
natural map:

U(limSX (n)) = lim,U(X (n))
1 an isomorphism in Ch%o.

Proof. This follows directly from Lemma B.3.5 as U preserves and reflects a limit precisely when

the comonad — ® C : Ch]%0 — Chjz%0 preserves that limit. In details, if we denote X the chain
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complex lim,U(X (n)), then the coaction X — X ® C' is constructed as follows. For each degree

i > 0, the map X; — (X®C); is entirely determined by the coaction X (i+1) — X (i+1)®C. O

We now start proving Theorem B.3.3. The following lemma remains true for the unbounded

case and actually follows from (Hess, 2009, 1.15).

Lemma B.3.7. Let k be a finite product of fields. Let C' be a non-negative differentially graded
k-coalgebra. FEvery acyclic fibration in CoModC(Chfo) is a retract of a (22° ® C)-Postnikov
tower. Every map in CoModc(Cth) factors as a cofibration followed by a (22°® C)-Postnikov

tower.

Proof. Just as in Lemma B.2.4, the proof follows either from the cosmall object argument, or
given any map X — Y in CoModC(Cth), choose an acylic chain complex Z which is a product
of 1-dimensional disks, such that U(X) < Z, just as in Lemma B.2.4. By adjunction, we
obtain a monomorphism X — Z ® C into an acyclic cofree C-comodule. Then the desired

factorization is given by factoring through (Z @ C) @ Y. O

Corollary B.3.8. Let k be a finite product of fields. Let C' be a mnon-negative simply con-
nected differentially graded k-coalgebra. Then the forgetful functor U : CoModC(Cth) — Ch[f0

preserves acyclic fibrations.
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Proof. Every acyclic fibration X — Y in CoModC(Chfo) is a retract of the projection (Z ®
C)®Y — Y as constructed in the proof of Lemma B.3.7. Notice that we have the projection

is the following pullback in CoModc(ChZ?) (and in ChZ?):

(ZC)pY — ZC
L

Y —— 0.
Since Z ® C' — 0 is clearly an acyclic fibration in Chfo, the result follows. O

For any chain complex C' and any k-module V', we see that the i-th term of the chain
complex S™(V)® C is the k-module V ® C;_,,. If we choose C' to be a 1-connected differentially

graded k-coalgebra, we get:

0 1 < n,

\% 1 =n,
(S"(V)®0C); =

0 1=n-+1,

V®Oz;n 1>n+ 2.

Thus, around the n-th term, the chain complex S™(V)®C'is similar to S™(V). We can therefore

modify the homology of a C-comodule for a specific degree without modifying the lower degrees.

Lemma B.3.9. Let k be a finite product of fields. Let C' be a simply connected differentially
graded k-coalgebra. Let X be any object in CoModC(ChﬂfO). Let V' be any k-module. Let n > 1

be any integer. Given a surjective linear map fy, : (U(X)), — V non-trivial only on n-cycles,
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there is a comodule map f : X — S™(V) ® C, and the pullback comodule P in the following

diagram in Col\/lodc(ChIfO):
P—— D" (V)®C

has homology:

HZ(X) 1< n,

and we have P, = X; fori <n—1andi=mn, and P,_1 =X, 10 V.

Proof. The proof is similar to Lemma B.2.5, as we have:

0 1< n—1,

(D"(V)®C), =8 Vv i=n-—1,n,

(VeCi,) e (Ve Ci—(n—l)) 12>n+ 1.

Notice that the differential (D™(V)® C),,,; — (D™(V)® C),, is trivial. Thus we can adapt

our arguments. O

Lemma B.3.10. Let k be a finite product of fields. Let C be a simply connected differentially

graded k-coalgebra. Let j : X — 'Y be a monomorphism in CoModc(Ch]fo), such that it induces
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a monomorphism in homology in each degree. Let n > 1 be a fized integer. Then the map j

factors in CoModC(Chfo) as:

X J %
Fn(35) Az}j)
Fo(Y)

where F,(Y') is a right C'-comodule built with the following properties.

e The map F,(pj) : Fr(Y) =Y isa (@%O ® C')-Postnikov tower.
e The map F,(j): X — F,(Y) is a monomorphism (i.e. a cofibration in CoModc(Chio)).
e The k-module (F,,(Y)); differs from Y; in degrees i =n—1 and i > n+ 1.

e In degrees i < n in homology, we have H;(F,(Y)) = H;(Y) and the maps:

Hi(Fn(4)) - Hi(X) — Hi(Fn(Y)) = Hi(Y),

are precisely the maps H;(j) : Hi(X) — H;(Y'). For all degrees i > 0, the maps H;(Fy(j))
are monomorphisms, such that, if the maps H;(j) are isomorphisms, then so are the maps

e In degree n in homology, we have Hy,(F,(Y)) = H,(X) and the map:

Hp(Fn(4)) : Ho(X) — Ho(F(Y)) = Hy (X)),

is an isomorphism.
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Proof. This is similar to the proof of Lemma B.2.6 and thus we shall omit some details. Define
V' as the cokernel of H,(j) and obtain a chain map U(Y) — S™(V). By adjointness, obtain a

C-comodule map Y — S™(V) ® C. Define F,(Y) as the following pullback CoMod¢(ChZ?):

F,(Y) — D"(V)®C
l 3
Y —— S"(V)® C,
and the argument follows from previous lemma. O

We state the case n = 0 carefully.

Lemma B.3.11. Letk be a finite product of fields. Let C be a 1-connected differentially graded
k-coalgebra. Let j : X — Y be a monomorphism in CoModc(Cth), such that it induces a

monomorphism in homology in each degree. Then the map j factors in CoModC(Cth) as:

X J %
Fo(j) %o(po)
Fy(Y)

where Fy(Y) is a right C-comodule built with the following properties.

o The map Fy(po) : Fo(Y) =Y isa (@50 ® C')-Postnikov tower.
e The map Fy(j) : X — Fo(Y) is a monomorphism and a monomorphism in homology.

e In degree zero, the map Ho(Fy(j)) : Ho(X) — Ho(Ep(Y)) is an isomorphism of k-modules.
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Proof. Let V = coker(Hy(j)) which defines a map Y — S%(V) ® C of right C-comodules, such
that, if we precompose with j: X — Y it is the zero map. Define the right C-comodule Fy(Y)

as follows:
(YY) —0

_
Fo (Po)l

Y —— S%V)ec.

One can easily check that Fy(Y) has all the desired properties by the same arguments as

before. =

Lemma B.3.12. Let k be a finite product of fields. Let C be a simply connected differentially
graded k-coalgebra. FEwvery fibration in Col\/IodC(Cth) is a retract of a (6”50 ® C')-Postnikov
tower. Any morphism in CoModc(Ch]EO) factors as a cofibration followed by a (@50 ® C)-

Postnikov tower.

Proof. We argue similarly as in the proof of Lemma B.2.7. Let f : X — Y be any morphism
in CoModc(ChZ?%). We can factor through the C-comodule W := (U(X) ® C) @ Y via the

following pullback in CoModc(Cth):
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where p is the C-coaction of X. Then define W+ = lim$ F, (W) inductively using previous

lemmas. Notice that the tower stabilizes in each degree and thus, for each ¢ > 0:

(W) = (limG Fy(W)); = (limy Fo (W)); = (Fiy1(W))i = (Frya(W))i = -+,

by Corollary B.3.6. Thus H;(W™") = H;(F;+1(W)) = H;(X) and we get the desired factoriza-

tion. O

Remark B.3.13. The forgetful functor U : CoModC(Cth) — Ch]f0 does not preserve fibra-
tions in general. Indeed, the generating fibration 0 — S°(V) ® C' is not a positive levelwise

epimorphism.

Remark B.3.14. Using the vocabulary of (Hess and Shipley, 2014), we have essentially shown
that the comonad — ® C on Ch]f0 is tractable and allows the inductive arguments and thus by
(Hess and Shipley, 2014, 5.8) we indeed have that (@50@)0, 929 () is a Postnikov presentation

of CoModc(Ch™®).

The following crucial result follows directly from Lemma B.3.12 where we apply the factor-
ization to a trivial map of right C-comodule X — 0. We recall that we define homotopy limits

of towers as limit of fibrant towers as in Proposition A.1.13.

Corollary B.3.15. Let X be any right C-comodule in Chﬂfo. Then there exists a countable
tower {X(n)} in Col\/Iodc(ChﬂfO) with limit X := im$ X (n) where the right C-comodules X (n)

are built inductively as follows.
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e Define X (0) to be the trivial C-comodule 0.
e Define X(1) to be the cofree C-comodule U(X)® C. The map X (1) — X (0) is trivial.

e Suppose X (n) was constructed for a certain n > 1. Then there exist a certain k-module
Vi and a map of C-comodule X (n) — S™(V,,) ® C such that X (n + 1) is defined as the

following pullback in CoModc(ChZ%):

X(n+1) —— D"(V,)®C
| - |

X(n) — S"(Vy) ® C.

The tower {X(n)} enjoys the following properties.
(i) The map X —0isa (P @ C)-Postnikov tower and there exists an acyclic cofibration

of right C-comodules X <> X.

(ii) If X is a fibrant right C-comodule, then X is a retract of X.

(iii) For alln > 1, we have H;(X(n)) = H;(X) for all0 <i<mn—1.

(iv) The tower {X(n)} stabilizes in each degree. In particular U(X) = U(lim$X(n)) =
lim,(U(X(n))).

(v) Each map X(n+1) — X(n) for n > 0 is a fibration in CoModc(Chlfo), and its under-
lying map U(X(n+ 1)) — U(X(n)) is also a fibration in Chfo. In particular X is the
homotopy limit of {X(n)} in CoModC(Chfo) and we have: U(X) ~ U(holim$ X (n)) ~

holim, (U (X (1))
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Proof. Observe that we do not need to apply Lemma B.3.11 as X (1) = U(X) ® C has already
the correct homology: Hy(X (1)) = Ho(X) ® Ho(C) = Hp(X) as C is 1-connected. Notice that
the generating fibrations D"(V) ® C — S™(V) ® C are all levelwise positive epimorphisms as
chain maps, and thus are fibrations in Chﬂfo. Since pullbacks in Col\/lodc(Ch]fO) are computed

in Chfo, we get that each U(X(n+ 1)) — U(X(n)) is a fibration in Ch]fo. O

Definition B.3.16. Let X be a right C-comodule in Ch]fo. The Postnikov tower of X is the

tower {X(n)} in Col\/IodC(Chﬂ%O) built in Corollary B.3.15. The construction is not functorial.

B.4 Postnikov Presentation Over a Perfect Coalgebra

In the previous section, we followed the approach of (Hess, 2009). For comodules over a
differentially graded coalgebra C' that is a perfect chain complex, we shall follow the approach
of (Smith, 2011). Although not used for the arguments in this paper, this can help compute
homotopy limits in CoModc(Chg) but also in ¢+=Mod(Chg), see Remark 6.4.8. The Postnikov
towers will be functorial but not constructed degree by degree, unlike the case for finite product
of fields.

Let R be a commutative ring. In this section, we shall always assume that the category
of unbounded chain complexes Chg is endowed with its injective model structure and we shall
always assume that CoModc(Chp) is endowed with its injective model structure too.

Let Fib and Fib denote the classes of injective fibrations and acyclic injective fibrations re-
spectively. Then Chp is (trivially) fibrantly generated and Postnikov presented by (Fib, IEIB) For
any differentially graded R-coalgebra C, we then get, by Proposition A.3.4, that CoMod(Chpg)

is fibrantly generated by (Fib ® C, Fib ® (). We shall show the following here.
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Theorem B.4.1. Let R be a commutative ring. Let C be a differentially graded R-coalgebra
that is perfect as a chain complex. Then (Fib ® C, Fib ® C) is a Postnikov presentation of the

injective model structure of right C'-comodules CoModc(Chpg).

Proof. Let f: X — Y be a map of right C-comodules. We need to show first that f factors
through an acyclic cofibration followed by (ﬁ) ® C')-Postnikov tower. This follows from (Hess,

2009, 1.15). In more details, there is an acyclic chain complex Z and a (functorial) factorization

in Chg: vx) ;
\ ) A

Since the functor —®C' : Chg — CoMod¢(Chpg) is right Quillen, then Z®@C — 0 is in Postﬁ@c.

The chain map U(X) — Z induces a comodule map X — Z®C that remains a monomorphism

(as C is a flat chain complex). We obtain the desired factorization via the following pullback

in CoMod¢(Chpg):
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We now want to show the second factorization, i.e. we want to show that f factors through
an acyclic cofibration followed by a (Fib ® C')-Postnikov tower. For any chain complex M, let

us fix a following (functorial in M) factorization in Chg:

Now we inductively define our desired factorization. Define W(0) = (Z ® C) @ Y as above,
and let jo : X — W(0) and pp : W(0) — Y be the cofibration and the (F~|b ® C)-Postnikov
tower respectively defined above. Notice that Postﬁ)@C C Postgipgc. Let W(—1) denote YV
and j_1 = f. Now, for n > 0, suppose we have defined a cofibration j, : X < W(n) and a
(Fib ® C)-Postnikov tower p,, : W(n) — W(n — 1) such that p, o j, = jn—1. Define the right
C-comodule K (n) as the cokernel of j,:

X ——0
"
W(n) —2s K(n).
Then the comodule map &, induces a map ky : W(n) — U(K(n)) ® C which is the adjoint of

U(kp) : UW(n)) — U(K(n)). It is easy to check that ky, o j, = 0. Let us denote K(n) :=



136
Appendix B (Continued)

U(K(n)). Then the fibration P(K(n)) — K(n) induces a (Fib ® C)-Postnikov tower map

P(K(n)) ® C — K(n) ® C. Define W(n + 1) as the following pullback of right C-comodules:

Define W as the limit of right C-comodules of the tower {W(n)} (recall that since C is a perfect
chain complex, the limit is computed in Chg). Notice that naturality of cokernels induces tower
comodule maps K(n + 1) — K(n):

X—0

+1) — K(n+1)
)

Jn+ j
W(n

ll k
( n

W(n) — s K(n).

Jn

Pn+

This defines a tower {K(n)} of right C-comodules, such that we obtain the following exact

sequence of towers of right C-comodules:

0 {X} W(n)y —— {K(@n)} ——0,
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where {X} denotes the constant tower, which trivially satisfies the Mittag-Leffler condition
(see (Weibel, 1994, 3.5.6)) as a tower in Chgr. Thus, since tower limits in CoMod¢(Chg) are

computed in Chp, we obtain the following exact sequence of right C-comodules:

where K is the limit of the tower {K(n)}. Thus the map f: X — Y factors through W, the
map X — W is a cofibration and W — Y is a (Fib ® C')-Postnikov tower by construction. We
are only left to show that K is an acyclic chain complex. This will follow from the fact that
the maps K(n + 1) — K(n) are trivial in homology. Indeed, the counit € : C' — k induces the

following commutative diagram in Chg (we have dropped U from some of the notations):

W(n+1) — P(K(n))®C — P(K(n))
kn,

! |
o :

Wn) —= 5 Kn)®C ——— K

T e —

Notice that the horizontal composite W(n + 1) — P(K(n)) is trivial if we precompose it with

~— ——

).

Jn+1: X = W(n+1). Therefore by universality of the cokernel, we get that K(n+1) — K(n)
factors in Chp through the chain complex P(K(n)) which is acyclic. Thus the induced map
in homology H;(K(n + 1)) — H;(K(n)) is trivial for all degrees ¢ and all n > 0. Since
W(n + 1) — W(n) are levelwise epimorphisms then so is K(n + 1) — K(n) (as pushouts

preserves epimorphisms). Therefore the tower { K(n)}, considered in Chp, satisfies the Mittag-
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Leffler condition and the induced maps in homologies are trivial. Thus by (Weibel, 1994, 3.5.8),

the homology of K is trivial. O
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